JPH02109606A - Method for controlling synchronous rotation of numerically controlled lathe - Google Patents

Method for controlling synchronous rotation of numerically controlled lathe

Info

Publication number
JPH02109606A
JPH02109606A JP26439488A JP26439488A JPH02109606A JP H02109606 A JPH02109606 A JP H02109606A JP 26439488 A JP26439488 A JP 26439488A JP 26439488 A JP26439488 A JP 26439488A JP H02109606 A JPH02109606 A JP H02109606A
Authority
JP
Japan
Prior art keywords
spindle
sub
main
main shaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26439488A
Other languages
Japanese (ja)
Inventor
Akio Hayashi
明夫 林
Takayoshi Kojima
小島 隆好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP26439488A priority Critical patent/JPH02109606A/en
Publication of JPH02109606A publication Critical patent/JPH02109606A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/04Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps
    • B23Q39/048Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps the work holder of a work station transfers directly its workpiece to the work holder of a following work station

Abstract

PURPOSE:To offer a synchronous rotation control method between a main spindle and a sub-spindle in a numerically controlled lathe which can deliver not only round materials but also square materials by conforming the phases of the main spindle and sub-spindle at the time of delivering a workpiece from the main spindle to the sub-spindle during rotation. CONSTITUTION:In order to conform the phase difference between a main spindle 1 and a sub-spindle 7, the position PP of the sub-spindle 7 is detected based on the position detecting signal PPS of a position detector 11 by a sub-spindle position detecting portion 126. Also, the position MP of the main spindle 1 is detected based on the position detecting signal MPS of a position detector 5 by a main spindle position detecting portion 127. The difference in positions between both is detected by a phase difference detecting portion 128 and theta/2 half of the detected phase difference theta is transferred to a sub-spindle decelerating portion 129P and a main spindle accelerating portion 129M. Based on the phase difference theta/2 at the point of time of inputting a rotating speed conformation signal CN from a rotating speed comparing portion 124, the sub-spindle decelerating portion 129P outputs the decelerating quantity PDWN of the sub-spindle 7 to a sub-spindle rotation control portion 125. The sub- spindle rotation control portion 125 transfers a rotation command PDS in which the amount of decelerating quantity PDWN is subtracted from a sub-spindle rotation command at the time of conforming to a main spindle rotating speed to a sub-spindle motor driving portion 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主軸に対向する副主軸を有する数値制御旋盤
における主軸及び副主軸間の同期回転制御方式に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a synchronous rotation control system between a main spindle and a sub-spindle in a numerically controlled lathe having a sub-spindle facing the main spindle.

(従来の技術) 対向する2つのスピンドル、メインスピンドル(以下、
主軸とする)とサブスピンドル(以下、副主軸とする)
とを持つ旋盤においては、−船釣に主軸で第1工程を行
ない、副主軸で第2工程(たとえば背面加工)を行なう
ようになっている。そして、第i工程から第2工程へ移
行する際、副主軸を主軸に近づけて直接ワークを受渡ず
ようにしている。第1工程の最後と第2工程の最初が旋
削であり、加工する上では主軸を停止する必要のない場
合は、主軸を回転させたままでワークを受渡すことがで
きれば、主軸を停止させてから再び回転させるまでの時
間を省くことができる。
(Prior art) Two opposing spindles, the main spindle (hereinafter referred to as
(hereinafter referred to as the main spindle) and sub-spindle (hereinafter referred to as the sub-spindle)
In a lathe having a main shaft, the first process is carried out by the main spindle, and the second process (for example, back processing) is carried out by the sub-main spindle. When transitioning from the i-th process to the second process, the sub-spindle is moved closer to the main spindle so that the workpiece is not directly transferred. The end of the first process and the beginning of the second process are turning, and if the main spindle does not need to be stopped during machining, if the workpiece can be transferred while the main spindle is still rotating, the main spindle should be stopped and then turned. This saves time until it is rotated again.

従来技術では主軸回転中にワークを受渡す場合、主軸回
転数に副主軸回転数を合せて双方の回転数が一致した時
に主軸と副主軸との間の同期回転が完了したとみなし、
その状態でワークの受渡しを行なっていた。つまり、従
来技術は主軸及び副主軸の回転数(速度)のみの同期制
御であり、位相差を残したままである。このため、ワー
クが丸材の場合は副主軸はどの位置でも把めるから問題
はないが、ワークが角材の場合は副主軸が安定して把め
る位置は限られるため、主軸と副主軸の双方で位相差が
あってはうまく把めない場合がある。
In conventional technology, when transferring a workpiece while the main spindle is rotating, it is assumed that the synchronous rotation between the main spindle and the sub-spindle is complete when the rotation speed of the main spindle and the sub-spindle are matched, and the rotation speed of the sub-spindle is considered to be complete.
In this state, the work was delivered. In other words, in the conventional technology, only the rotational speed (speed) of the main shaft and sub-main shaft is synchronously controlled, and a phase difference remains. For this reason, if the workpiece is a round material, there is no problem because the sub-spindle can grip it in any position, but if the workpiece is a square material, there are only a limited number of positions where the sub-spindle can stably grip it, so the main and sub-spindles are If there is a phase difference between the two, it may not be possible to understand it well.

(発明が解決しようとする課題) 以上のように、主軸回転中にワークを受渡す際に、ワー
クが角材の場合には主軸と副主軸の位相を回転中に合せ
る機能が必要となる。
(Problems to be Solved by the Invention) As described above, when transferring a workpiece while the main shaft is rotating, if the workpiece is a square piece of material, a function is required to match the phases of the main shaft and sub-main shaft during rotation.

本発明は上述のような事情よりなされたものであり、本
発明の目的は、回転中に主軸から副主軸へワークを受渡
す場合に、主軸と副主軸の位相を合せることにより、丸
材ばかりでなく角材の受渡しも可能な数値制御旋盤にお
ける主軸と副主軸間の同期回転制御方式を提供すること
にある。
The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to align the phases of the main spindle and sub-spindle when transferring a workpiece from the main spindle to the sub-spindle during rotation, so that only round materials can be transferred. An object of the present invention is to provide a synchronous rotation control system between a main spindle and a sub-main spindle in a numerically controlled lathe, which enables the transfer of square pieces without any problems.

(課題を解決するための手段) 本発明の上記目的は、主軸及び副主軸にそれぞれ位置検
出手段を設け、主軸及び副主軸の間で主軸及び副主軸が
回転中のワークの受渡しを行なう際、回転中の双方の位
置検出値の差(位相差)を検出し、主軸又は副主軸のい
ずれか一方を減速し、同時に他方を加速して、主軸及び
副主軸の双方から前記位相差分の半分ずつ位相を近づけ
て位相を合せることによって達成される。すなわち、本
発明は、主軸に対向する副主軸を有し、前記主軸及び副
主軸にそれぞれ位置検出手段を設け、前記主軸及び副主
軸がそれぞれ位置制御可能となっている数値制御旋盤に
おける同期回転制御方式に関するもので、本発明の上記
目的は、前記主軸及び副主軸間で前記主軸及び副主軸が
回転中にワークの受渡しを行なう際、前記主軸及び副主
軸の回転数を一致させるのみならず、前記位置検出手段
で前記主軸と前記副主軸との間の位相差を検出し、前記
主軸又は前記副主軸のいずれか一方を一時的に減速する
と共に、他方を一時的に加速することにより前記位相差
を無くし、前記主軸及び副主軸の位相をも一致させるよ
うにすることによって達成される。
(Means for Solving the Problems) The above-mentioned object of the present invention is to provide position detection means on the main spindle and the sub-spindle, and to transfer a workpiece between the main spindle and the sub-spindle while the main spindle and the sub-spindle are rotating. Detects the difference (phase difference) between the position detection values of both during rotation, decelerates either the main shaft or the sub-main shaft, and simultaneously accelerates the other to calculate half of the phase difference from both the main shaft and the sub-main shaft. This is achieved by bringing the phases closer and matching the phases. That is, the present invention provides synchronous rotation control in a numerically controlled lathe, which has a sub-spindle facing the main spindle, the main spindle and the sub-spindle are provided with position detection means, respectively, and the positions of the main spindle and the sub-spindle are respectively controllable. The above object of the present invention is to not only match the rotational speeds of the main spindle and the sub-main spindle when transferring a workpiece between the main spindle and the sub-main spindle while the main spindle and the sub-main spindle are rotating; The position detecting means detects a phase difference between the main shaft and the sub-main shaft, and temporarily decelerates either the main shaft or the sub-main shaft and temporarily accelerates the other, thereby adjusting the position. This is achieved by eliminating the phase difference and also matching the phases of the main axis and sub-main axis.

(作用) 本発明は数値制御旋盤における主軸と副主軸の間の同期
回転制御方式に関するもので、主軸及び副主軸双方の回
転数を一致させて位相差が一定となった状態で位相差を
検出する。その時の主軸及び副主軸の各回転指令値がC
ONであったとすると、以後−時的に主軸の回転指令値
を微量アップ(ψ)させると共に、副主軸の回転指令値
を微量ダウン(ψ)させて位相合せを行なう。つまり、
位相差がθであったとするとθ÷(ψ×2)=N・・・
(ψ、+ψP)となる。ここに、ψ2.ψ2はそれぞれ
主軸、副主軸をψで微量アップ又は微量ダウンさせた後
の端数である。つまり、主軸を(CON◆ψ)の回転指
令値でN回指令し、指令値(CON+ψ闘)で1回指令
し、同時に副主軸を(C0N−ψ)の回転指令値でN回
指令し、指令値(CON−ψ2)で1回指令した時点で
位相は一致するはずである。位相が一致した後は主軸及
び副主軸共に回転指令値をCOHに戻し、位相差=0で
一定状態となる。
(Function) The present invention relates to a synchronous rotation control method between a main spindle and a sub-spindle in a numerically controlled lathe, and detects the phase difference when the rotational speeds of both the main spindle and the sub-spindle are matched and the phase difference is constant. do. At that time, each rotation command value of the main spindle and sub-spindle is C
If it is ON, then the rotation command value of the main shaft is increased by a slight amount (ψ) and the rotation command value of the sub-main shaft is decreased by a small amount (ψ) to perform phase matching. In other words,
If the phase difference is θ, θ÷(ψ×2)=N...
(ψ, +ψP). Here, ψ2. ψ2 is a fraction after the main axis and sub-main axis are slightly increased or decreased by ψ, respectively. In other words, command the main shaft N times with a rotation command value of (CON◆ψ), command once with a command value (CON + ψ), and at the same time command the sub-spindle N times with a rotation command value of (C0N-ψ). The phases should match when the command value (CON-ψ2) is issued once. After the phases match, the rotation command values for both the main shaft and the sub-main shaft are returned to COH, and a constant state is maintained with the phase difference=0.

(実施例) 第1図は対向する主軸1及び副主軸7の構造図であり、
この2つの軸間でワーク6を受は渡すようになっている
。すなわち、主@1にはチャック2が装着されており、
チャック2はワーク6を把握しており、副主軸7にはチ
ャック8が装着されている。本発明は、主11ilkl
及び副生l1llI7が回転中に、チャック2が把握し
ているワーク6をチャック8で把握させるものである。
(Example) FIG. 1 is a structural diagram of a main shaft 1 and a sub-main shaft 7 facing each other,
The workpiece 6 is passed between these two axes. That is, the chuck 2 is attached to the main @1,
The chuck 2 grips a workpiece 6, and a chuck 8 is attached to the sub-main shaft 7. The present invention mainly consists of
The workpiece 6 held by the chuck 2 is gripped by the chuck 8 while the by-product l1llI7 is rotating.

主制御装置!2による指令に基づいて、主軸モータ駆動
部4及び副主軸モータ駆動部lOはそれぞれ主軸モータ
3及び副主軸そ一夕9を駆動し、そ−夕3及び9の回転
がそれぞれ主軸型及び副主軸7に伝達され、これによっ
て主軸1及び副主軸7が回転駆動される。位置検出器5
及び11は主軸1及び副主軸7の回転位置をそれぞれ検
出する。位置検出器5及び11の位置検出信号MPS及
びPPSは主制御装置12に人力され、主制御装置12
は主軸モータ3の指令として回転指令MDSを出力する
と共に、副主軸モータ9の指令として回転指令PDSを
出力する。
Main control device! 2, the main shaft motor drive unit 4 and sub main shaft motor drive unit 10 drive the main shaft motor 3 and sub main shaft 9, respectively, so that the rotations of the main shaft motor 3 and the sub main shaft 9 are controlled by the main shaft type and the sub main shaft, respectively. 7, whereby the main shaft 1 and the sub-main shaft 7 are rotationally driven. Position detector 5
and 11 detect the rotational positions of the main shaft 1 and the sub-main shaft 7, respectively. The position detection signals MPS and PPS of the position detectors 5 and 11 are manually inputted to the main control device 12.
outputs a rotation command MDS as a command for the main shaft motor 3, and also outputs a rotation command PDS as a command for the sub-main shaft motor 9.

第4図は副生fIth7が主軸1と同一回転数になった
ときの位置関係を示しており、このとき副主軸7のチャ
ック8はまだ開いている。第4図中の右方の円は点Oを
中心とする回転座標である。
FIG. 4 shows the positional relationship when the by-product fIth7 reaches the same rotational speed as the main shaft 1, and at this time the chuck 8 of the sub-main shaft 7 is still open. The circle on the right in FIG. 4 is a rotational coordinate centering on point O.

チャック2上の点Mは主1th1の基準点、チャック8
上の点Pは副主軸7の基準点、点PMは基準点Mの回転
座標値、点PPは基準点Pの回転座標値とする。そして
、第4図を左から右方向に見たときの右回りを回転軸増
加方向とし、主軸1及び副主軸7が共に回転軸増加方向
に回転しているとする。
Point M on chuck 2 is the reference point of main 1th1, chuck 8
The upper point P is the reference point of the sub-principal axis 7, the point PM is the rotational coordinate value of the reference point M, and the point PP is the rotational coordinate value of the reference point P. It is assumed that the clockwise rotation when FIG. 4 is viewed from the left to the right is the rotation axis increasing direction, and that the main shaft 1 and the sub-main shaft 7 are both rotating in the rotation axis increasing direction.

第4図の場合、点ppは点PMに対してθ分だけ進んで
いるので、このままでは副主軸7のチャック8はワーク
6がθ分だけ遅れた状態で把握することになる。
In the case of FIG. 4, point pp is advanced by θ with respect to point PM, so if this continues, the chuck 8 of the sub-main spindle 7 will grasp the workpiece 6 with a delay of θ.

以下、本発明による回転中の主軸1と副主軸7の位相合
せ方式について説明する。ここでは、副主軸7を減速さ
せ、主軸lを加速させて位相を合せる場合を例にとって
説明する。
Hereinafter, a method for phasing the main shaft 1 and the sub-main shaft 7 during rotation according to the present invention will be explained. Here, an example will be explained in which the sub-main shaft 7 is decelerated and the main shaft 1 is accelerated to match the phases.

第2図は本発明方式を実現するための制御系ブロックを
第1図に対応させて示している。主制御装置12内のコ
マンド解析部120から主軸回転指令MRIが出力され
ると、主軸回転制御部121は主軸回転指令MHIに基
づいて主軸モータ駆動部4に対して回転指令MDSを出
力し、主軸回転数算出部123は位置検出器5からの位
置検出信号UPSに基づいて主軸1の回転数MRを算出
する。主軸1が回転中に、コマンド解析部120から主
軸1に対する副主軸7の同期回転指令SYRが出力され
ると、副主軸回転制御部125はその時の主軸回転指令
に基づいて副主軸モータ駆動部10に対して副主軸回転
指令PDSを出力し、副主軸回転数算出部!22は位置
検出器11からの位置検出信号PPSに基づいて副主軸
7の回転数PRを算出する0回転数比較部124は副生
@7の回転数PRを主軸1の回転数MRと比較し、一致
したときに回転数一致信号CNを副主軸回転制御部12
5へ転送する。副主軸回転制御部125は回転数一致信
号CNを人力すると、回転数が一致した時の副生@7の
回転指令を以後副主軸モータ駆動部lOへ出力し続ける
。従来技術では上述のように、主!Thl11と副主軸
7の回転数のみを一致させる制御をしていた。
FIG. 2 shows control system blocks for realizing the system of the present invention in correspondence with FIG. 1. When the command analysis unit 120 in the main controller 12 outputs the spindle rotation command MRI, the spindle rotation control unit 121 outputs a rotation command MDS to the spindle motor drive unit 4 based on the spindle rotation command MHI, and The rotation speed calculation unit 123 calculates the rotation speed MR of the main shaft 1 based on the position detection signal UPS from the position detector 5. When the command analysis unit 120 outputs a synchronous rotation command SYR for the sub-spindle 7 with respect to the main spindle 1 while the main spindle 1 is rotating, the sub-spindle rotation control unit 125 controls the sub-spindle motor drive unit 10 based on the main spindle rotation command at that time. Outputs the sub-spindle rotation command PDS to the sub-spindle rotation speed calculation unit! 22 calculates the rotation speed PR of the sub spindle 7 based on the position detection signal PPS from the position detector 11. The zero rotation speed comparison unit 124 compares the rotation speed PR of the sub-product @7 with the rotation speed MR of the main spindle 1. , when they match, the rotation speed matching signal CN is sent to the sub-spindle rotation control unit 12.
Transfer to 5. When the sub-spindle rotation control unit 125 receives the rotation speed match signal CN manually, it continues to output the rotation command of the sub-generated @7 when the rotation speeds match to the sub-spindle motor drive unit IO. In the prior art, as mentioned above, the main! Control was performed to match only the rotation speeds of the Thl 11 and the sub-main shaft 7.

本発明ではさらに主軸lと副生!+117の位相差を一
致させるために、副主軸位置検出部126で位置検出器
11からの位置検出信号PPSに基づいて副主軸7の位
置PPを検出し、また、主軸位置検出部127で位置検
出器5からの位置検出信号MPSに基づいて主軸1の位
置MPを検出し、双方の位置の差(位相差)を位相差検
出部128で検出し、検出された位相差θの半分θ/2
を副主軸減速部129P及び主軸加速部129Mへ転送
するようになっている。
In the present invention, the main axis l and the by-product! In order to match the phase difference of +117, the sub-spindle position detection section 126 detects the position PP of the sub-spindle 7 based on the position detection signal PPS from the position detector 11, and the main spindle position detection section 127 detects the position. The position MP of the spindle 1 is detected based on the position detection signal MPS from the device 5, and the difference (phase difference) between the two positions is detected by the phase difference detection unit 128, and half of the detected phase difference θ is θ/2.
is transferred to the sub-main shaft deceleration section 129P and the main shaft acceleration section 129M.

副主軸減速部129Pは、回転数比較部124より回転
数一致信号CNを人力した時点の位相差θ/2に基づき
、副生@7の減速量PDWNを副主軸回転制御部125
へ出力する。副主軸回転制御部125は、主軸回転数に
一致した時の副主軸回転指令より減速量PDWNだけ減
速した回転指令PDSを副主軸モータ駆動部10へ転送
する。同時に主軸加速部129Mは主軸lの加速量MO
Pを主軸回転制御部121へ送り、主軸回転制御部12
!はそれまでの主軸回転指令より加速ffi MOPだ
け加速した回転指令MDSを主軸モータ駆動部4へ送る
The sub-main shaft deceleration unit 129P sets the deceleration amount PDWN of the sub-generated @7 to the sub-main shaft rotation control unit 125 based on the phase difference θ/2 at the time when the rotation speed matching signal CN is manually input from the rotation speed comparison unit 124.
Output to. The sub-spindle rotation control section 125 transfers a rotation command PDS that is decelerated by the deceleration amount PDWN from the sub-spindle rotation command when the rotation speed matches the main shaft rotation speed to the sub-spindle motor drive section 10 . At the same time, the spindle accelerator 129M accelerates the spindle l by an acceleration amount MO.
P is sent to the spindle rotation control section 121, and the spindle rotation control section 12
! sends to the spindle motor drive unit 4 a rotation command MDS that is accelerated by the acceleration ffi MOP than the previous spindle rotation command.

上述のような副主軸減速制御及び主軸加速制御を位相差
θがOになるまで続け、位相差が0となった時点で減速
量PDWN及び加速量MOPも0とし、以後主軸回転指
令及び副主軸回転指令は回転数一致信号CNが出力され
た時の回転指令を出力する。
The sub-spindle deceleration control and main-spindle acceleration control as described above are continued until the phase difference θ becomes O, and when the phase difference becomes 0, the deceleration amount PDWN and the acceleration amount MOP are also set to 0, and from then on, the main-spindle rotation command and the sub-spindle rotation command The rotation command is output when the rotation number matching signal CN is output.

第3図のフローチャートは主i1と副主軸7の位相合せ
処理を示し、第5図は第3図の処理の流れ(ステップ5
1〜56)に対応した主@111及び副主軸7の回転指
令値の推移を示している。
The flowchart in FIG. 3 shows the phase matching process of the main i1 and the sub-main shaft 7, and FIG. 5 shows the flow of the process in FIG.
1 to 56) shows changes in the rotation command values of the main @ 111 and the sub-main shaft 7.

先ずステップS1及びS2で、副主軸回転数が主軸回転
数に合うように副主軸7の回転指令を行なう。副主軸回
転数が主軸回転数と一致したとき、位相差検出部128
で主軸!と副主軸7の位相差θを検出する(ステップS
3)。この場合、位相差θは副生@7の位相が主軸!の
位相に対してどれだけ進んでいるかで検出する0次に、
副主軸7の回転指令値を一時的に微小ダウンさせると共
に、主軸1の回転指令値を一時的に微小アップさせて両
者の位相を合わせる(ステップS4.S5 > 、この
時の微小ダウン量及び微小アップ量をψとすると、次式
が成り立つ。
First, in steps S1 and S2, a rotation command for the sub-spindle 7 is given so that the sub-spindle rotation speed matches the main shaft rotation speed. When the sub-spindle rotation speed matches the main spindle rotation speed, the phase difference detection unit 128
And the main axis! and detect the phase difference θ between the sub-main shaft 7 (step S
3). In this case, the main axis of the phase difference θ is the phase of the by-product @7! The 0th order is detected by how far it is ahead of the phase of
The rotation command value of the sub-spindle 7 is temporarily slightly decreased, and the rotation command value of the main shaft 1 is temporarily slightly increased to match the phases of the two (Steps S4 and S5 >, the amount of slight down and the slight When the amount of up is ψ, the following formula holds true.

θ;2ψ×N十(ψ闘◆ψP) (ψM、ψP 〈ψ)・・・・・・ (1)ここに、ψ
2.ψPは端数とする。
θ;2ψ×N0(ψfight◆ψP) (ψM, ψP 〈ψ)・・・・・・ (1) Here, ψ
2. ψP is a fraction.

つまり、副主軸7にψだけ低下した回転指令値をN回、
ψまたけ低下した回転指令値を1回指令し、同時に主軸
1にはψだけ上昇した回転指令値をN回、ψ、たけ上昇
した回転指令値を1回指令すれば、位相は一致するはず
である。第5図の左下り斜線部DSで示される減速量が
位相差θ/2に相当し、右下り斜線部USで示される加
速量が位相差θ/2に相当している。副主軸1の位相゛
と主軸1の位相とが一致したとき、副主軸7及び主軸1
の回転指令値を上記ステップS3の時の値に戻す(ステ
ップS6)、このようにして副主軸7の回転数及び位相
を、主軸1のそれに合わせることができる。
In other words, the rotation command value decreased by ψ is applied to the sub-spindle 7 N times.
If you command the rotation command value that has decreased by ψ once, and at the same time command the rotation command value that has increased by ψ N times to spindle 1, and once the rotation command value that has increased by ψ, the phases should match. It is. The amount of deceleration indicated by the downwardly hatched area DS to the left in FIG. 5 corresponds to the phase difference θ/2, and the amount of acceleration indicated by the downwardly shaded area US to the right corresponds to the phase difference θ/2. When the phase of the sub spindle 1 and the phase of the main spindle 1 match, the sub spindle 7 and the main spindle 1
The rotation command value is returned to the value at step S3 (step S6). In this way, the rotation speed and phase of the sub-main shaft 7 can be matched with those of the main shaft 1.

なお、上述では副主軸7を減速し、主lllIb1を加
速して位相合せする場合について説明したが、副主軸7
を加速し、主軸lを減速して位相合せする場合も全く同
様に考えればよい。また、上述では主軸1から副主軸7
ヘワークを受渡す場合について説明したが、逆に副主軸
7から主軸1ヘワークを受渡す場合も全く同様に考えれ
ばよい。
In addition, in the above description, the case where the sub-main shaft 7 is decelerated and the main IllIb1 is accelerated to achieve phase alignment has been described, but the sub-main shaft 7
In the case of accelerating the main shaft l and decelerating the main shaft l for phase matching, it is sufficient to think in exactly the same way. In addition, in the above description, from the main shaft 1 to the sub-main shaft 7
Although the case where the workpiece is transferred has been described, the case where the workpiece is transferred from the sub-spindle 7 to the main spindle 1 can be considered in exactly the same way.

(発明の効果) 以上のように本発明によれば、主軸に対向する副主軸を
有する数値制御旋盤において、ワークが角材の場合にも
主軸を回転させたままでワークを副主軸へ受渡すことが
可能となり、主軸側での加工から副主軸側への加工へ移
る際に、主軸を停止させて再び回転させる必要がなくな
るため、その分加工時間を短縮することができる。
(Effects of the Invention) As described above, according to the present invention, in a numerically controlled lathe having a sub-spindle facing the main spindle, even when the workpiece is a square piece of material, the workpiece can be transferred to the sub-spindle while the main spindle remains rotating. When moving from machining on the main spindle side to machining on the sub-spindle side, there is no need to stop and rotate the main spindle again, so the machining time can be shortened accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は対向する2つの主軸及び副主軸の構成例を示す
図、第2図はその制御系を示すブロック図、第3図は主
軸と副主軸の位相合せ処理例を示すフローチャート、第
4図は主軸及び副主軸が同回転数で回転しているときの
位置関係を示す図、第5図は第3図のフローチャートに
対応した主軸及び副主軸の回転指令値の推移を示す図で
ある。 1・・・主軸、3・・・主軸モータ、7・・・副主軸、
9・・・副主軸モータ、12・・・主制御装置、120
・・・コマンド解析部、121・・・主軸回転制御部、
124・・・回転数比較部、128・・・位相差検出部
、129M・・・主軸加速部、129P・・・副主軸減
速部。 13図
FIG. 1 is a diagram showing an example of the configuration of two opposing main shafts and sub-main shafts, FIG. 2 is a block diagram showing the control system, FIG. The figure shows the positional relationship when the main spindle and sub-spindle rotate at the same rotation speed, and Fig. 5 is a diagram showing the transition of the rotation command values of the main spindle and sub-spindle corresponding to the flowchart in Fig. 3. . 1... Main shaft, 3... Main shaft motor, 7... Sub-main shaft,
9...Sub spindle motor, 12...Main controller, 120
...Command analysis section, 121...Spindle rotation control section,
124... Rotation speed comparison section, 128... Phase difference detection section, 129M... Main shaft acceleration section, 129P... Sub main shaft deceleration section. Figure 13

Claims (1)

【特許請求の範囲】[Claims] 1、主軸に対向する副主軸を有し、前記主軸及び副主軸
にそれぞれ位置検出手段を設け、前記主軸及び副主軸が
それぞれ位置制御可能となっている数値制御旋盤におい
て、前記主軸及び副主軸間で前記主軸及び副主軸が回転
中にワークの受渡しを行なう際、前記主軸及び副主軸の
回転数を一致させるのみならず、前記位置検出手段で前
記主軸と前記副主軸との間の位相差を検出し、前記主軸
又は前記副主軸のいずれか一方を一時的に減速すると共
に、他方を一時的に加速することにより前記位相差を無
くし、前記主軸及び副主軸の位相をも一致させるように
したことを特徴とする数値制御旋盤における同期回転制
御方式。
1. In a numerically controlled lathe, which has a sub-spindle facing the main spindle, the main spindle and the sub-spindle are respectively provided with position detection means, and the positions of the main spindle and the sub-spindle can be controlled, respectively. When transferring a workpiece while the main spindle and sub-spindle are rotating, not only do the rotation speeds of the main spindle and sub-spindle match, but also the position detection means detects the phase difference between the main spindle and the sub-spindle. The phase difference is eliminated by temporarily decelerating one of the main axis or the sub-main axis and temporarily accelerating the other, thereby making the phases of the main axis and the sub-main axis coincide. A synchronous rotation control method for numerically controlled lathes characterized by:
JP26439488A 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe Pending JPH02109606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26439488A JPH02109606A (en) 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26439488A JPH02109606A (en) 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe

Publications (1)

Publication Number Publication Date
JPH02109606A true JPH02109606A (en) 1990-04-23

Family

ID=17402547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26439488A Pending JPH02109606A (en) 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe

Country Status (1)

Country Link
JP (1) JPH02109606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279253A (en) * 1989-04-19 1990-11-15 Nakamuratome Seimitsu Kogyo Kk Spindle synchronization control device for machine tool
WO1991004812A1 (en) * 1989-10-06 1991-04-18 Fanuc Ltd Method of controlling rotations of main shafts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228751A (en) * 1988-03-09 1989-09-12 Fanuc Ltd Machine tool with two spindles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228751A (en) * 1988-03-09 1989-09-12 Fanuc Ltd Machine tool with two spindles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279253A (en) * 1989-04-19 1990-11-15 Nakamuratome Seimitsu Kogyo Kk Spindle synchronization control device for machine tool
WO1991004812A1 (en) * 1989-10-06 1991-04-18 Fanuc Ltd Method of controlling rotations of main shafts

Similar Documents

Publication Publication Date Title
JPWO2009139046A1 (en) Numerical control method and apparatus
KR920007639B1 (en) Position control system
JPH02290187A (en) Synchronous control and device therefor
JPH0550329A (en) Controlling unit and method of machine tool
US4347470A (en) Spindle orientation control apparatus
US5027680A (en) Machine tool with two spindles
JPH02109606A (en) Method for controlling synchronous rotation of numerically controlled lathe
JPH02109605A (en) Method for controlling synchronous rotation of numerically controlled lathe
US6969961B2 (en) Method for controlling a rotation speed of a slave drive, a corresponding controller and a corresponding machine
JPH0698521B2 (en) Numerical control device for combined machining lathe
JPH048423A (en) Tapping method
EP0091320A1 (en) Turning control apparatus and method
JPH03121748A (en) Spindle synchronous rotation control system
KR930007539B1 (en) Spindle driving device for a machine tool
JP2854425B2 (en) Spindle synchronous control device
JPH03204703A (en) Numerical controller
JP2955296B2 (en) Spindle synchronous control device for machine tools
JP2814278B2 (en) Two-spindle opposed type CNC lathe and work processing method
JPH0716802B2 (en) Free-run method for synchronous rotation of opposed type two-spindle lathe
JPH0223285B2 (en)
JPS6235907A (en) Controller for machine tool
JPH0637883Y2 (en) CNC grinder equipped with position synchronization controller
JP2712881B2 (en) Numerical control unit
JPS63262082A (en) Controller for motor
JPS5933507A (en) Numerical controlling and processing system of processing machine with compound tool rest