JPH02109605A - Method for controlling synchronous rotation of numerically controlled lathe - Google Patents

Method for controlling synchronous rotation of numerically controlled lathe

Info

Publication number
JPH02109605A
JPH02109605A JP26439188A JP26439188A JPH02109605A JP H02109605 A JPH02109605 A JP H02109605A JP 26439188 A JP26439188 A JP 26439188A JP 26439188 A JP26439188 A JP 26439188A JP H02109605 A JPH02109605 A JP H02109605A
Authority
JP
Japan
Prior art keywords
spindle
sub
main
main shaft
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26439188A
Other languages
Japanese (ja)
Inventor
Akio Mori
森 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP26439188A priority Critical patent/JPH02109605A/en
Publication of JPH02109605A publication Critical patent/JPH02109605A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/04Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps
    • B23Q39/048Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps the work holder of a work station transfers directly its workpiece to the work holder of a following work station

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To offer a synchronous rotation control method between a main spindle and a sub-spindle in a numerically controlled lathe which can deliver not only round materials but also square materials by conforming the phases of the main spindle and sub-spindle at the time of delivering a workpiece from the main spindle to the sub-spindle during rotation. CONSTITUTION:In order to conform the phase difference between a main spindle 1 and a sub-spindle 7, the position PP of the sub-spindle 7 is detected based on the position detecting signal PPS of a position detector 11 by a sub-spindle position detecting portion 126. Also, the position MP of the main spindle 1 is detected based on a position detecting signal MPS of a position detector 5 by a main spindle position detecting portion 127. The difference in positions between both is detected by a phase difference detecting portion 128 and the detected phase difference theta is transferred to a sub-spindle decelerating portion 129. Based on the phase difference theta at the point of time of inputting a rotating speed conformation signal CN from a rotating speed comparing portion 124, the sub-spindle decelerating portion 129 outputs the decelerating quantity PDWN of the sub-spindle 7 to a sub-spindle rotation control portion 125. The sub-spindle rotation control portion 125 transfers a rotation command PDS in which the amount of decelerating quantity PDWN is subtracted to a sub-spindle motor driving portion 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主軸に対向する副主軸を有する数値制御旋盤
における主軸及び副主軸間の同期回転制御方式に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a synchronous rotation control system between a main spindle and a sub-spindle in a numerically controlled lathe having a sub-spindle facing the main spindle.

(従来の技術) 対向する2つのスピンドル、メインスピンドル(以下、
主軸とする)とサブスピンドル(以下、副主軸とする)
とを持つ旋盤においては、−船釣に主軸で第1工程を行
ない、副主軸で第2工程(たとえば背面加工)を行なう
ようになっている。
(Prior art) Two opposing spindles, the main spindle (hereinafter referred to as
(hereinafter referred to as the main spindle) and sub-spindle (hereinafter referred to as the sub-spindle)
In a lathe having a main shaft, the first process is carried out by the main spindle, and the second process (for example, back processing) is carried out by the sub-main spindle.

そして、第1工程から第2工程へ移行する際、副主軸を
主軸に近づけて直接ワークを受渡すようにしている。第
1工程の最後と第2工程の最初が旋削であり、加工する
上では主軸を停止する必要のない場合は、主軸を回転さ
せたままでワークを受渡すことができれば、主軸を停止
させてから再び回転させるまでの時間を省くことができ
る。
When moving from the first process to the second process, the sub-spindle is moved closer to the main spindle to directly transfer the workpiece. The end of the first process and the beginning of the second process are turning, and if the main spindle does not need to be stopped during machining, if the workpiece can be transferred while the main spindle is still rotating, the main spindle should be stopped and then turned. This saves time until it is rotated again.

従来技術では主軸回転中にワークを受渡す場合、主軸回
転数に副主軸回転数を合せて双方の回転数が一致した時
に主軸と副主軸との間の同期回転が完了したとみなし、
その状態でワークの受渡しを行なっていた。つまり、従
来技術は主軸及び副主軸の回転数(速度)のみの同期制
御であり。
In conventional technology, when transferring a workpiece while the main spindle is rotating, it is assumed that the synchronous rotation between the main spindle and the sub-spindle is complete when the rotation speed of the main spindle and the sub-spindle are matched, and the rotation speed of the sub-spindle is considered to be complete.
In this state, the work was delivered. In other words, the conventional technology is synchronous control of only the rotational speed (speed) of the main spindle and sub-spindle.

位相差を残したままである。このため、ワークが丸材の
場合は副主軸はどの位置でも把めるから問題はないが、
ワークが角材の場合は副主軸が安定して把める位置は限
られるため、主軸と副主軸の双方で位相差があってはう
まく把めない場合がある。
The phase difference remains. For this reason, if the workpiece is a round material, there is no problem because the sub-spindle can be gripped at any position.
If the workpiece is a square piece of timber, there are only a limited number of positions where the sub-spindle can stably grip it, so if there is a phase difference between the main and sub-spindles, it may not be possible to grip it properly.

(発明が解決しようとする課題) 以上のように、主軸回転中にワークを受渡す際に、ワー
クが角材の場合には主軸と副主軸の位相を回転中に合せ
る機能が必要となる。
(Problems to be Solved by the Invention) As described above, when transferring a workpiece while the main shaft is rotating, if the workpiece is a square piece of material, a function is required to match the phases of the main shaft and sub-main shaft during rotation.

本発明は上述のような事情よりなされたものであり、本
発明の目的は、回転中に主軸から副主軸へワークを受渡
ず場合に、主軸と副主軸の位相を合せることにより、丸
材ばかりでなく角材の受渡しも可能な数値制御旋盤にお
ける主軸と副主軸間の同期回転制御方式を提供すること
にある。
The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to align the phases of the main spindle and the sub-spindle when the workpiece is not transferred from the main spindle to the sub-spindle during rotation, so that only round materials can be processed. An object of the present invention is to provide a synchronous rotation control system between a main spindle and a sub-main spindle in a numerically controlled lathe, which enables the transfer of square pieces without any problems.

(課題を解決するための手段) 本発明の上記目的は、主軸及び副主軸にそれぞれ位置検
出手段を設け、主軸及び副主軸の間で主軸及び副主軸が
回転中のワークの受渡しを行なう際、回転中の双方の位
置検出値の差(位相差)を検出し、その位相差分だけ副
主軸を遅らせるか又は進ませて位相を合せることによっ
て達成される。すなわち、本発明は、主軸に対向する副
主軸を有し、前記主軸及び副主軸にそれぞれ位置検出手
段を設け、前記位置検出手段により検出された前記主軸
の位置に従って前記副主軸が位置制御されるようになっ
ている数値制御旋盤における同期回転制御方式に関する
もので、本発明の上記目的は、前記主軸及び副主軸間で
前記主軸及び副主軸が回転中にワークの受渡しを行なう
際、前記主軸及び副主軸の回転数を一致させるのみなら
ず、前記位置検出手段で前記主軸と前記副主軸との間の
位相差を検出し、前記副主軸を一時的に減速するか又は
加速することにより前記位相差を無くし、前記主軸及び
副主軸の位相をも一致させるようにすること虹よって達
成される。
(Means for Solving the Problems) The above-mentioned object of the present invention is to provide position detection means on the main spindle and the sub-spindle, and to transfer a workpiece between the main spindle and the sub-spindle while the main spindle and the sub-spindle are rotating. This is achieved by detecting the difference (phase difference) between the two position detection values during rotation, and adjusting the phases by delaying or advancing the sub-main shaft by the phase difference. That is, the present invention has a sub-spindle facing the main spindle, a position detecting means is provided on each of the main spindle and the sub-spindle, and the position of the sub-spindle is controlled according to the position of the main spindle detected by the position detecting means. The present invention relates to a synchronous rotation control system in a numerically controlled lathe, which is configured as follows.The above object of the present invention is to provide a synchronous rotation control method for a numerically controlled lathe, when a workpiece is transferred between the main spindle and the sub-main spindle while the main spindle and the sub-main spindle are rotating. In addition to matching the rotational speed of the sub-main shaft, the position detecting means detects the phase difference between the main shaft and the sub-main shaft, and temporarily decelerates or accelerates the sub-main shaft to adjust the position. This is achieved by eliminating the phase difference and making the phases of the main axis and sub-main axis coincide.

(作用) 本発明は数値制御旋盤における主軸と副主軸の間の同期
回転制御方式に関するもので、主軸及び副主軸双方の回
転数を一致させて位相差が一定となった状態で位相差を
検出する。その時の副主軸の瞬時回転指令値がΔCON
であったとすると、以後−時的に副主軸の瞬時回転指令
値を微量ダウン(Δψ)させて位相合せを行な恒。つま
り、位相差がΔθだったとするとΔθ÷Δψ=N・・・
Δψ。
(Function) The present invention relates to a synchronous rotation control method between a main spindle and a sub-spindle in a numerically controlled lathe, and detects the phase difference when the rotational speeds of both the main spindle and the sub-spindle are matched and the phase difference is constant. do. The instantaneous rotation command value of the sub-spindle at that time is ΔCON
If so, then the instantaneous rotation command value of the sub-spindle will be slightly decreased (Δψ) from time to time to perform phase alignment. In other words, if the phase difference is Δθ, Δθ÷Δψ=N...
Δψ.

で(ΔC0N−Δψ)の瞬時回転指令値でN回転指令し
、(−CON−Δψ°)で1回転指令した時点で位相は
一致するはずである。位相が一致した後は瞬時回転指令
値をΔCONに戻し、位相差=0で一定状態となる。
The phases should match when N rotations are commanded with an instantaneous rotation command value of (ΔC0N-Δψ) and one rotation is commanded with (-CON-Δψ°). After the phases match, the instantaneous rotation command value is returned to ΔCON, and a constant state is maintained with the phase difference=0.

(実施例) 第1図は対向する主軸1及び副主軸7の構造図であり、
この2つの輪間でワーク6を受は渡すようになっている
。すなわち、主軸1にはチャック2が装着されており、
チャック2はワーク6を把握しており、副主軸7にはチ
ャック8が装着されている。本発明は、主軸1及び副主
軸7が回転中に、チャック2が把握しでいるワーク6を
チャック8で把握させるものである。主制御装置12に
よる指令に基づいて、主軸モータ駆動部4及び副主軸そ
一タ駆動部lOはそれぞれ主軸モータ3及び副主軸モー
タ9を駆動し、モータ3及び9の回転がそれぞれ主軸1
及び副主軸7に伝達され、これによって主軸1及び副主
軸7が回転駆動される。位置検出器5及び11は主軸l
及び副主軸7の回転位置をそれぞれ検出する。位置検出
器5及び11の位置検出信号MPS及びPPSは主制御
装置12に入力され、主制御装置12は主軸モータ3の
指令として回転指令MDSを出力すると共に、副主軸モ
ータ9の指令として回転指令PDSを出力する。
(Example) FIG. 1 is a structural diagram of a main shaft 1 and a sub-main shaft 7 facing each other,
The workpiece 6 is passed between these two rings. That is, the chuck 2 is attached to the main shaft 1,
The chuck 2 grips a workpiece 6, and a chuck 8 is attached to the sub-main shaft 7. The present invention allows the chuck 8 to grasp the workpiece 6 that the chuck 2 has already grasped while the main spindle 1 and the sub-main spindle 7 are rotating. Based on the commands from the main controller 12, the main shaft motor drive section 4 and the sub main shaft motor drive section 1O drive the main shaft motor 3 and the sub main shaft motor 9, respectively, so that the rotation of the motors 3 and 9 respectively drives the main shaft 1.
and is transmitted to the sub-main shaft 7, whereby the main shaft 1 and the sub-main shaft 7 are rotationally driven. The position detectors 5 and 11 are connected to the main axis l.
and the rotational position of the sub-main shaft 7, respectively. The position detection signals MPS and PPS of the position detectors 5 and 11 are input to the main controller 12, and the main controller 12 outputs a rotation command MDS as a command for the main shaft motor 3, and also outputs a rotation command as a command for the sub-main shaft motor 9. Output PDS.

第4図は副主軸7が主軸1と同一回転数になったときの
位置関係を示しており、このとき副主軸7のチャック8
はまだ開いている。第4図中の右方の円は点Oを中心と
する回転座標である。
Figure 4 shows the positional relationship when the sub-spindle 7 reaches the same rotation speed as the main spindle 1, and the chuck 8 of the sub-spindle 7 at this time.
is still open. The circle on the right in FIG. 4 is a rotational coordinate centering on point O.

チャック2上の点Mは主軸lの基準点、チャック8上の
点Pは副主軸7の基準点、点PMは基準点Mの回転座標
値、点PPは基準点Pの回転座標値とする。そして、第
4図を左から右方向に見たときの右回りを回転軸増加方
向とし、主軸1及び副主軸7が共に回転軸増加方向に回
転しているとする。
The point M on the chuck 2 is the reference point of the main axis l, the point P on the chuck 8 is the reference point of the sub-main axis 7, the point PM is the rotational coordinate value of the reference point M, and the point PP is the rotational coordinate value of the reference point P. . It is assumed that the clockwise rotation when FIG. 4 is viewed from the left to the right is the rotation axis increasing direction, and that the main shaft 1 and the sub-main shaft 7 are both rotating in the rotation axis increasing direction.

第4図の場合、点PPは点PMに対してθ分だけ進んで
いるので、このままでは副生@7のチャック8はワーク
6がθ分だけ遅れた状態で把握することになる。
In the case of FIG. 4, since the point PP is ahead of the point PM by θ, the chuck 8 of the by-product @7 will grasp the workpiece 6 with a delay of θ.

以下、本発明による回転中の主軸1と副生@It 7の
位相合せ方式について説明する。ここでは、副生@7を
減速させて位相を合せる場合を例にとって説明するが、
副生@7を加速させて位相を合わせることも可能である
Hereinafter, a method of phasing the rotating main shaft 1 and the by-product @It 7 according to the present invention will be described. Here, we will explain the case where the by-product @7 is decelerated and the phase is adjusted as an example.
It is also possible to accelerate the by-product @7 and match the phase.

第2図は本発明方式を実現するための制御系ブロックを
第1図に対応させて示している。主制御装置12内のコ
マンド解析部120から主軸回転指令MHIが出力され
ると、主軸回転制御部121は主軸回転指令MHIに基
づいて主軸モータ駆動部4に対して回転指令MDSを出
力し、主軸回転数算出部123は位置検出器5からの位
置検出信号MPSに基づいて主軸1の回転数MRを算出
する。主軸1が回転中に、コマンド解析部120から主
軸1に対する副生tld7の同期回転指令SYRが出力
されると、副主軸回転制御部125はその時の主軸回転
指令に基づいて副主軸モータ駆動部lOに対して副主軸
回転指令PDSを出力し、副主軸回転数算出部122は
位置検出器11からの位置検出信号ppsに基づいて副
生l1II17の回転数PRを算出する。回転数比較部
1211は副主軸7の回転数PRを主軸lの回転数MR
と比較し、一致したときに回転数一致信号CNを副主軸
回転制御部125へ転送する。副主軸回転制御部125
は回転数一致信号CNを人力すると、回転数が一致した
時の副主軸7の回転指令を以後副主軸モータ駆動部lO
へ出力し続ける。従来技術では上述のように、主軸lと
副生@7の回転数のみを一致させる制御をしていた。
FIG. 2 shows control system blocks for realizing the system of the present invention in correspondence with FIG. 1. When the command analysis unit 120 in the main controller 12 outputs the spindle rotation command MHI, the spindle rotation control unit 121 outputs a rotation command MDS to the spindle motor drive unit 4 based on the spindle rotation command MHI, and The rotation speed calculation unit 123 calculates the rotation speed MR of the main shaft 1 based on the position detection signal MPS from the position detector 5. When the command analysis unit 120 outputs a synchronous rotation command SYR for the by-product tld7 to the main spindle 1 while the main spindle 1 is rotating, the sub-spindle rotation control unit 125 controls the sub-spindle motor drive unit lO based on the main spindle rotation command at that time. The sub-spindle rotational speed calculation unit 122 calculates the rotation speed PR of the sub-spindle I1II17 based on the position detection signal pps from the position detector 11. The rotation speed comparison unit 1211 converts the rotation speed PR of the sub-spindle 7 into the rotation speed MR of the main shaft l.
When they match, the rotation speed matching signal CN is transferred to the sub-spindle rotation control section 125. Sub spindle rotation control section 125
When the rotation speed match signal CN is input manually, the rotation command for the sub-spindle 7 when the rotation speeds match is then sent to the sub-spindle motor drive unit lO.
Continue outputting to. In the prior art, as described above, only the rotational speeds of the main shaft 1 and the by-product @7 were controlled to match.

本発明ではさらに主軸1と副主軸7の位相差を一致させ
るために、副主軸位置検出部126で位置検出器11か
らの位置検出信号ppsに基づいて副生@7の位置PP
を検出し、また、主軸位置検出部127で位置検出器5
からの位置検出信号MPSに基づいて主軸lの位置MP
を検出し、双方の位置の差(位相差)を位相差検出部1
28で検出し、検出された位相差θを副主軸減速部12
9へ転送するようになっている。副主軸減速部129は
、回転数比較部124より回転数一致偲号CNを入力し
た時点の位相差θに基づき、副主軸7の減速量PDWN
を副主軸回転制御部125へ出力する。副生l1rb回
転制御部125は、減速ff1PDWNだけ減速した回
転指令PDSを副主軸モータ駆動部lOへ転送する。上
述のような副主軸減速制御を位相差θが0になるまで続
け、位相差が0となった時点で減速量PDWNも0とし
、以後主軸回転数に一致した副主軸回転指令PDSを出
力する。
In the present invention, in order to match the phase difference between the main shaft 1 and the sub-main shaft 7, the sub-main shaft position detection section 126 detects the position PP of the sub-generated @7 based on the position detection signal pps from the position detector 11.
, and the position detector 5 is detected by the spindle position detection section 127.
Position MP of main shaft l based on position detection signal MPS from
and detects the difference (phase difference) between the two positions by the phase difference detection unit 1.
28, and the detected phase difference θ is detected by the sub-main shaft reduction unit 12.
9. The auxiliary main shaft deceleration unit 129 determines the deceleration amount PDWN of the auxiliary main shaft 7 based on the phase difference θ at the time when the rotational speed coincidence signal CN is input from the rotational speed comparison unit 124.
is output to the sub-spindle rotation control section 125. The by-product l1rb rotation control unit 125 transfers the rotation command PDS decelerated by the deceleration ff1PDWN to the sub-main shaft motor drive unit lO. The sub-spindle deceleration control as described above is continued until the phase difference θ becomes 0, and when the phase difference becomes 0, the deceleration amount PDWN is also set to 0, and thereafter the sub-spindle rotation command PDS that matches the main shaft rotation speed is output. .

第3図のフローチャートは主fIIIllと副主軸7の
位相合せ処理を示し、第5図は第3図の処理の流れ(ス
テップ5l−56)に対応した副主軸7の回転指令値の
推Bを示している。
The flowchart in FIG. 3 shows the phase matching process for the main spindle and the sub-spindle 7, and FIG. It shows.

先ずステップSl及びS2で、副主軸回転数が主軸回転
数に合うように副主軸7の回転指令を行なう。副主軸回
転数が主軸回転数と一致したと籾、位相差検出部128
で主@111と副主軸7の位相差θを検出する(ステッ
プ53)。この場合、位相差θは副主軸7の位相が主軸
1の位相に対してどれだけ進んでいるかで検出する。次
に、副主軸7の回転指令を一時的に微小低下させて副主
軸7の位相を少しずつ遅らせることにより、主111[
l11の位相に合わせる(ステップS4,55 )。こ
の時の微小低下量をψとすると、次式が成り立つ。
First, in steps Sl and S2, a rotation command for the sub-spindle 7 is given so that the sub-spindle rotation speed matches the main spindle rotation speed. When the sub-spindle rotational speed matches the main-spindle rotational speed, the phase difference detection unit 128
The phase difference θ between the main @ 111 and the sub-main axis 7 is detected (step 53). In this case, the phase difference θ is detected based on how far the phase of the sub-main shaft 7 advances relative to the phase of the main shaft 1. Next, by temporarily slightly decreasing the rotation command of the sub-main shaft 7 and delaying the phase of the sub-main shaft 7 little by little, the main 111 [
The phase is adjusted to the phase of l11 (step S4, 55). If the amount of slight decrease at this time is ψ, the following equation holds true.

θ=ψXN+ψ°   (ψ゛くψ)・・・・・・(1
)つまり、ψだけ低下した回転指令値をN回、ψ′だけ
低下した回転指令値を1回指令すれば、位相は一致する
はずである。第5図の斜線部DSで示される減速量が位
相差θに相当している。副生@7の位相液(軸1の位相
と一致したとき・副主軸7の回転指令値を主軸lと同じ
値に戻す(ステップS6)、このようにして副主軸7の
回転数及び位相を、主軸1のそれに合わせることができ
る。
θ=ψXN+ψ° (ψ゛kuψ)・・・・・・(1
) In other words, if the rotation command value decreased by ψ is commanded N times and the rotation command value decreased by ψ' is commanded once, the phases should match. The amount of deceleration indicated by the shaded area DS in FIG. 5 corresponds to the phase difference θ. The phase liquid of the by-product @7 (when the phase matches the phase of the axis 1, the rotation command value of the sub-spindle 7 is returned to the same value as that of the main axis l (step S6). In this way, the rotation speed and phase of the sub-spindle 7 are adjusted. , can be matched to that of the main shaft 1.

なお、上述では副生軸7を減速して位相合せする場合に
ついて説明したが、副主軸7を加速して位相合せする場
合も全く同様に考えればよい。また、上述では主軸1か
ら副主軸7ヘワークを受渡す場合について説明したが、
逆に副生!b7から主軸1ヘワークを受渡す場合も全く
同様に考えればよい。
In addition, although the case where the sub-production shaft 7 is decelerated and phase-aligned is described above, the case where the sub-main shaft 7 is accelerated and phase-aligned may be considered in exactly the same way. Furthermore, in the above description, the case where the workpiece is transferred from the main spindle 1 to the sub-spindle 7 is explained.
On the contrary, it is a byproduct! When transferring the workpiece from b7 to spindle 1, it is sufficient to think in exactly the same way.

(発明の効果) 以上のように本発明によれば、主軸に対向する副主軸を
有する数値制御旋盤において、ワークが角材の場合にも
主軸を回転させたままでワークを副主軸へ受渡すことが
可能となり、主軸側での加工から副主軸側への加工へ移
る際に、主軸を停止させて再び回転させる必要がなくな
るため、その分加工時間を短縮することができる。
(Effects of the Invention) As described above, according to the present invention, in a numerically controlled lathe having a sub-spindle facing the main spindle, even when the workpiece is a square piece of material, the workpiece can be transferred to the sub-spindle while the main spindle remains rotating. When moving from machining on the main spindle side to machining on the sub-spindle side, there is no need to stop and rotate the main spindle again, so the machining time can be shortened accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は対向する2つの主軸及び副主軸の構成例を示す
図、第2図はそのIII御系を示すブロック図、第3図
は主軸と副主軸の位相合せ処理例を示すフローチW −
ト、第4図は主軸及び副生軸が同回転数で回転している
ときの位置関係を示す図、第5図は第3図のフローチャ
ートに対応した副主軸の回転指令値の推穆を示す図であ
る。 !・・・主軸、3・・・主軸モータ、4・・・主軸モー
タ駆動部、5.lト・・位置検出器、7・・・副主軸、
9・・・副主軸モータ、10・・・副主軸モータ駆動部
、12・・・主制御装置、120・・・コマンド解析部
、121・・・主軸回転制御部、122・・・副主軸回
転数算出部、123・・・主軸回転数算出部、124・
・・回転数比較部、125・・・副主軸回転制御部、1
2B・・・副主軸位置検出部、127・・・主軸位置検
出部、128・・・位相差検出部、129・・・副主軸
減速部。 第 回 メース /−一\ 】
Fig. 1 is a diagram showing an example of the configuration of two opposing main axes and sub-main axes, Fig. 2 is a block diagram showing its III system, and Fig. 3 is a flowchart showing an example of phase alignment processing of the main axes and sub-main axes.
Fig. 4 is a diagram showing the positional relationship when the main shaft and sub-production shaft are rotating at the same rotation speed, and Fig. 5 shows the estimation of the rotation command value of the sub-main shaft corresponding to the flowchart in Fig. 3. FIG. ! ... Main shaft, 3... Main shaft motor, 4... Main shaft motor drive section, 5. l...Position detector, 7...Sub spindle,
9...Sub spindle motor, 10...Sub spindle motor drive section, 12...Main controller, 120...Command analysis section, 121...Spindle rotation control section, 122...Sub spindle rotation Number calculation unit, 123... Spindle rotation speed calculation unit, 124.
... Rotation speed comparison section, 125... Sub-spindle rotation control section, 1
2B...Sub spindle position detection section, 127...Spindle position detection section, 128...Phase difference detection section, 129...Sub spindle reduction section. 1st Mace/-1\]

Claims (1)

【特許請求の範囲】[Claims] 1、主軸に対向する副主軸を有し、前記主軸及び副主軸
にそれぞれ位置検出手段を設け、前記位置検出手段によ
り検出された前記主軸あるいは副主軸の位置に従って前
記副主軸あるいは主軸が位置制御されるようになってい
る数値制御旋盤において、前記主軸及び副主軸間で前記
主軸及び副主軸が回転中にワークの受渡しを行なう際、
前記主軸及び副主軸の回転数を一致させるのみならず、
前記位置検出手段で前記主軸と前記副主軸との間の位相
差を検出し、前記副主軸あるいは主軸を一時的に減速す
るか又は加速することにより前記位相差を無くし、前記
主軸及び副主軸の位相をも一致させるようにしたことを
特徴とする数値制御旋盤における同期回転制御方式。
1. It has a sub-spindle facing the main spindle, position detection means are provided on each of the main spindle and sub-spindle, and the position of the sub-spindle or main spindle is controlled according to the position of the main spindle or sub-spindle detected by the position detection means. In a numerically controlled lathe that is designed to operate, when a workpiece is transferred between the main spindle and the sub-main spindle while the main spindle and the sub-main spindle are rotating,
In addition to matching the rotational speed of the main shaft and sub-main shaft,
The position detecting means detects a phase difference between the main shaft and the sub-main shaft, and temporarily decelerates or accelerates the sub-main shaft or the main shaft to eliminate the phase difference, and the main shaft and the sub-main shaft are A synchronous rotation control method for numerically controlled lathes, which is characterized by matching the phases.
JP26439188A 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe Pending JPH02109605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26439188A JPH02109605A (en) 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26439188A JPH02109605A (en) 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe

Publications (1)

Publication Number Publication Date
JPH02109605A true JPH02109605A (en) 1990-04-23

Family

ID=17402507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26439188A Pending JPH02109605A (en) 1988-10-20 1988-10-20 Method for controlling synchronous rotation of numerically controlled lathe

Country Status (1)

Country Link
JP (1) JPH02109605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333615B1 (en) 1997-07-02 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Synchronization control device for servo motors
CN113543912A (en) * 2019-04-11 2021-10-22 西铁城时计株式会社 Machine tool and sensing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228751A (en) * 1988-03-09 1989-09-12 Fanuc Ltd Machine tool with two spindles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228751A (en) * 1988-03-09 1989-09-12 Fanuc Ltd Machine tool with two spindles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333615B1 (en) 1997-07-02 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Synchronization control device for servo motors
DE19882519B4 (en) * 1997-07-02 2005-12-22 Mitsubishi Denki K.K. Synchronization control unit for a servomotor
CN113543912A (en) * 2019-04-11 2021-10-22 西铁城时计株式会社 Machine tool and sensing method
EP3954481A4 (en) * 2019-04-11 2023-01-04 Citizen Watch Co., Ltd. Machine tool, and detecting method
CN113543912B (en) * 2019-04-11 2023-12-26 西铁城时计株式会社 Machine tool and sensing method

Similar Documents

Publication Publication Date Title
JP4947214B2 (en) Numerical control method and apparatus
US5088361A (en) Machining control apparatus in a machine tool
JPH02290187A (en) Synchronous control and device therefor
US4347470A (en) Spindle orientation control apparatus
US5027680A (en) Machine tool with two spindles
JPH02109605A (en) Method for controlling synchronous rotation of numerically controlled lathe
EP0401375B1 (en) Method of controlling synchronized operation of a machine tool
JPH02109606A (en) Method for controlling synchronous rotation of numerically controlled lathe
JPH048423A (en) Tapping method
JPH0698521B2 (en) Numerical control device for combined machining lathe
JPH0716802B2 (en) Free-run method for synchronous rotation of opposed type two-spindle lathe
JPH03121748A (en) Spindle synchronous rotation control system
JP2955296B2 (en) Spindle synchronous control device for machine tools
JPS6378206A (en) Following delay removal method using digital servo system in full close feedback nc system
JP2814278B2 (en) Two-spindle opposed type CNC lathe and work processing method
JPH0319748A (en) Spindle driving gear for machine tool
JPH02139101A (en) Cutting control method for numerically controlled lathe
JP2585768B2 (en) Cutting feed setting device for machine tools
JP3114505B2 (en) Synchronous control device
JP2854425B2 (en) Spindle synchronous control device
JPH0223285B2 (en)
JP2841086B2 (en) Work machining method for two-spindle opposed lathe
JPH0716803B2 (en) Work transfer confirmation method and control device for opposed type two-axis spindle lathe
KR940008497B1 (en) Method of controlling synchronized operation of a machine tool
JPH03131905A (en) Synchronizing operation device for machine tool