JPH02109256A - Paper battery - Google Patents

Paper battery

Info

Publication number
JPH02109256A
JPH02109256A JP63262376A JP26237688A JPH02109256A JP H02109256 A JPH02109256 A JP H02109256A JP 63262376 A JP63262376 A JP 63262376A JP 26237688 A JP26237688 A JP 26237688A JP H02109256 A JPH02109256 A JP H02109256A
Authority
JP
Japan
Prior art keywords
conductive coating
coating film
conductive
polyvinyl butyral
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63262376A
Other languages
Japanese (ja)
Other versions
JP2878289B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Yuzo Tanaka
田中 雄三
Mitsuhiro Nakamura
光宏 中村
Minoru Inagaki
稔 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63262376A priority Critical patent/JP2878289B2/en
Publication of JPH02109256A publication Critical patent/JPH02109256A/en
Application granted granted Critical
Publication of JP2878289B2 publication Critical patent/JP2878289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase mix holding capacity of a conductive coating film by using a specific binder such as polyvinyl butyral. CONSTITUTION:Graphite serving as a conductive filler is added to polyvinyl butyral and dibutylphthalate, and a specified amount of alcohol and a dispersant are added thereto, then they are kneaded to uniformly disperse the conductive filler, and a conductive coating material is obtained. A specified amount of the conductive coating material is applied to a positive terminal plate 1 to form a conductive coating film 2. A positive mix 3 is fixed on the conductive coating film 2, and they are heated to conduct thermal decomposition of polyvinyl butyral and dibutylphthalate and to contact the conductive fillers each other. By using polyvinyl butyral as a binder, adhesion of the conductive coating film 2 is increased and the positive mix is surely fixed to a positive current collector or the positive terminal plate. A battery is easily fabricated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、正極や負極等を積層して作った偏平薄形の
発電要素を用いて構成される、ベーパー電池に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a vapor battery constructed using a flat and thin power generation element made by laminating a positive electrode, a negative electrode, etc.

〈従来の技術〉 この種のベーパー電池、例えばリチウムベーパー電池で
は、従来より、正極合剤と正極集電体あるいはd−極端
子板などとの固着性を改善して電池の内部抵抗を低減す
る方法の1つとして、正極合剤と正極集電体ないし正極
端子板などとの間に、導電性を持つ塗膜を介在させるこ
とが提案されている。
<Prior art> In this type of vapor battery, for example, a lithium vapor battery, it has conventionally been possible to reduce the internal resistance of the battery by improving the adhesion between the positive electrode mixture and the positive electrode current collector or the d-electrode terminal plate. As one method, it has been proposed to interpose an electrically conductive coating film between the positive electrode mixture and the positive electrode current collector or positive terminal plate.

このような導電性塗膜としては、水ガラス系やフッ素系
樹脂等を結着剤としまたグラファイトやカーボンブラッ
ク等の炭素粉を導電性フィラーとして用いてなる導電性
塗料を、正極集電体や正極端子板の正極合剤対向側の面
に塗布して形成したものが知られている。
Such a conductive coating film is made by using a water glass-based or fluorine-based resin as a binder and carbon powder such as graphite or carbon black as a conductive filler. It is known that the material is formed by coating the surface of the positive electrode terminal plate facing the positive electrode mixture.

〈発明が解決しようとする課題〉 しかしながら、この導電性塗料において従来より結着剤
として用いられている水ガラス系やフッ素系樹脂等は固
着性に劣るため合剤保持力が低く、このため電池組立時
において、この導電性塗膜を形成した正極集電体ないし
正極端子板の合剤対向面に正極合剤を載置する際、正極
合剤を所定の位置に固定・保持させることが難しい。
<Problems to be Solved by the Invention> However, the water glass-based and fluorine-based resins conventionally used as binders in this conductive paint have poor adhesion and have a low mixture retention ability, which makes them difficult to use in batteries. During assembly, when placing the positive electrode mixture on the mixture-opposing surface of the positive electrode current collector or positive electrode terminal plate on which this conductive coating has been formed, it is difficult to fix and hold the positive electrode mixture in a predetermined position. .

それ故iE極合剤の位置ズレが起こり品<、電池組立て
に支障が出る等の問題があった。
Therefore, there were problems such as misalignment of the iE electrode mixture, which caused problems in the product and battery assembly.

この発明は、特定の結着剤を用いることで、正極集電体
ないし正極端子板と正極合剤との間の固着性低下を招く
ことなしに、導電性塗膜の合剤保持力を向」ニさせるこ
とかできるペーパー電池を提供することを目的とする。
This invention uses a specific binder to improve the retention strength of the conductive coating film without reducing the adhesion between the positive electrode current collector or positive terminal plate and the positive electrode mixture. The aim is to provide a paper battery that can be used for a long time.

〈課題を解決するだめの手段〉 この発明のリチウムペーパー電池は、導電性フィラーと
、結着剤としてポリビニルブチラル(PVB)と、また
可塑剤としてフタル酸ジブチル(DBP)とを含んでな
る導電性塗料を、正極集電体上ないし正極端子板上に塗
布して導電性塗膜を形成し、更にこの導電性塗膜上に正
極合剤を圧着させ一体化させてなることを要旨とする。
<Means for Solving the Problem> The lithium paper battery of the present invention comprises a conductive filler, polyvinyl butyral (PVB) as a binder, and dibutyl phthalate (DBP) as a plasticizer. The gist of the present invention is to apply a conductive paint onto a positive electrode current collector or a positive electrode terminal plate to form a conductive paint film, and then press and bond a positive electrode mixture onto this conductive paint film to integrate the positive electrode mixture. .

尚、上記圧着による一体化後に、300℃程度の温度で
加熱乾燥処理を行なうようにしてもよい。この加熱乾燥
処理により、導電性塗膜中のポリビニルブチラール並び
にフタル酸ジブチルをそれぞれ80〜90重量%程度熱
分解させることができる。
Incidentally, after the above-mentioned integration by pressure bonding, a heat drying process may be performed at a temperature of about 300°C. By this heat drying treatment, polyvinyl butyral and dibutyl phthalate in the conductive coating film can be thermally decomposed by about 80 to 90% by weight, respectively.

上記の導電性フィラーとしては、グラファイト、カーボ
ンブラック等の炭素粉末、あるいは銀粉等の金属粉末を
用いることかできる。
As the conductive filler, carbon powder such as graphite or carbon black, or metal powder such as silver powder may be used.

そして、ポリビニルブチラール自体は可塑性がないので
、可塑剤を併用する必要がある。この場合、上記のよう
に、ポリビニルブチラールと相溶性のあるフタル酸ジブ
チルを可塑剤に用いることが最適である。
Since polyvinyl butyral itself has no plasticity, it is necessary to use a plasticizer together. In this case, as mentioned above, it is optimal to use dibutyl phthalate, which is compatible with polyvinyl butyral, as a plasticizer.

また、このフタル酸ジブチルの添加量をポリビニルブチ
ラールの十分程度とすれば、導電性塗膜を均一なシート
状とし得ることが判っている。
It has also been found that if the amount of dibutyl phthalate added is sufficient to the amount of polyvinyl butyral, it is possible to form a conductive coating film in the form of a uniform sheet.

更に、これらポリビニルブチラール、並びにフタル酸ジ
ブチルの添加量は、導電性塗料における導電性フィラー
との合計量に対して、それぞれ20重量%未満110重
量%未満の場合は」二記圧着後に加熱乾燥処理を施す必
要かあり、一方それぞれ5重量%未満、2.5重量%未
満の場合は加熱乾燥処理を施す必要がない。前記範囲内
より多い添加量とした場合は、導電性塗膜の電気抵抗が
大きく増加する。
Furthermore, if the amount of polyvinyl butyral and dibutyl phthalate added is less than 20% by weight and less than 110% by weight, based on the total amount of the conductive filler in the conductive paint, heat drying treatment is performed after pressure bonding. On the other hand, if the amount is less than 5% by weight and less than 2.5% by weight, there is no need to perform heat drying treatment. If the amount added is greater than the above range, the electrical resistance of the conductive coating film will increase significantly.

一方、下限は特に限定されず、例えばポリビニルブチラ
ールを0.5重量%用いた場合でも十分な効果が得られ
る。
On the other hand, the lower limit is not particularly limited; for example, even when using 0.5% by weight of polyvinyl butyral, sufficient effects can be obtained.

また、上記の導電性塗料に、その延展性を増大させるべ
く、例えばアルコール系溶媒を添加しても良い。このよ
うな溶媒は、上記の加熱乾燥処理をする場合はその際、
またこの処理をしない場合でも作業雰囲気で容易に飛散
させることができる。尚、ポリビニルブチラール、並び
にフタル酸ジブチルは水溶性ではないので溶媒として水
を使用することはできない。
Furthermore, an alcohol-based solvent, for example, may be added to the above-mentioned conductive paint in order to increase its spreadability. When such a solvent is subjected to the heat drying treatment described above,
Moreover, even if this treatment is not performed, it can be easily dispersed in the working atmosphere. Note that polyvinyl butyral and dibutyl phthalate are not water-soluble, so water cannot be used as a solvent.

〈作用〉 」二紀のように結着剤としてポリビニルブチラールを用
いることで、導電性塗膜に固着性が付与され、正極合剤
を正極集電体ないし正極端子板に確実に固着させること
ができ、電池の組立容品化が図れる。
〈Function〉 By using polyvinyl butyral as a binder like in Niki, adhesiveness is imparted to the conductive coating film, making it possible to reliably adhere the positive electrode mixture to the positive electrode current collector or positive electrode terminal plate. This allows the battery to be assembled into a package.

また、このように導電性塗膜に固着性を持たせることて
正極合剤と正極集電体または正極端子板との固着性が向
上するので、電池内部の接触抵抗を大幅に低下させるこ
とができるという効果がある。
In addition, by imparting adhesion to the conductive coating film in this way, the adhesion between the positive electrode mixture and the positive electrode current collector or positive electrode terminal plate is improved, so it is possible to significantly reduce the contact resistance inside the battery. There is an effect that it can be done.

〈実施例〉 次に、実施例について説明する。<Example> Next, examples will be described.

ポリビニルブチラール24重量部とフタル酸ジブチルi
2重量部に、導電性フィラーとしてグラファイト64重
量部と加え、更に所定量のアルコールと分散剤を添加し
、これらをボールミルにより所定時間混練して導電フィ
ラーを均一に分散させ、導電性の塗料を作製した。
24 parts by weight of polyvinyl butyral and dibutyl phthalate
To 2 parts by weight, 64 parts by weight of graphite as a conductive filler was added, and a predetermined amount of alcohol and a dispersant were added, and these were kneaded for a predetermined time using a ball mill to uniformly disperse the conductive filler, thereby forming a conductive paint. Created.

次いで、この導電性塗料を正極端子板に所定量塗布して
、厚さ2〜3μmの導電性の塗膜を形成した後、導電性
塗膜上に正極合剤を圧着し固定させる。
Next, a predetermined amount of this conductive paint is applied to the positive electrode terminal plate to form a conductive coating film with a thickness of 2 to 3 μm, and then the positive electrode mixture is pressed and fixed onto the conductive coating film.

その後、これらを恒温槽中に入れ、300℃程度の温度
で加熱乾燥処理して、導電性塗膜中のポリビニルブチラ
ール並びにフタル酸ジブチルを熱分解させ、導電性フィ
ラー同士の接触を持だせる。
Thereafter, these are placed in a constant temperature bath and heated and dried at a temperature of about 300° C. to thermally decompose the polyvinyl butyral and dibutyl phthalate in the conductive coating film and bring the conductive fillers into contact with each other.

尚、加熱乾燥処理による熱分解後にロールまたはプレス
しても良い。この圧着により、上記の熱分解処理の際に
生した内部の気泡がなくなり、また導電性フィラー同士
の接触性がより高まるため、導電性塗膜の電気抵抗を更
に向上できて好ましい。
Note that it may be rolled or pressed after thermal decomposition by heating and drying treatment. This pressure bonding eliminates internal air bubbles generated during the above thermal decomposition treatment and further increases the contact between the conductive fillers, which is preferable because it further improves the electrical resistance of the conductive coating film.

そして、第1図のように、こうして正極端子板7.導電
性塗膜2並びに正極合剤3を組合せて作った正極部を、
セパレータ4を介して負極端子板5にリチウム負極6を
圧着した負極部と組合せ、また正極端子板周縁部と負極
端子板周縁部との間に封口剤7を介在させて両者を密着
させて、図示した通りの、厚さ 0.5順て1.6m1
X34 inの大きさのペーパーリチウム電池(本発明
品)を作製した。
Then, as shown in FIG. 1, the positive terminal plate 7. A positive electrode part made by combining the conductive coating film 2 and the positive electrode mixture 3,
A lithium negative electrode 6 is combined with a negative electrode part that is crimped onto a negative terminal plate 5 through a separator 4, and a sealant 7 is interposed between the peripheral edge of the positive terminal plate and the peripheral edge of the negative terminal plate to bring them into close contact. As shown, thickness 0.5 is 1.6m1
A paper lithium battery (product of the present invention) with a size of 34 inches was produced.

一方、上記の導電性塗膜を形成しない他は同様にして、
リチウムペーパー電池(従来品)を作製した。
On the other hand, in the same manner except that the above conductive coating film was not formed,
A lithium paper battery (conventional product) was manufactured.

これらの電池を各々 100個ずつ作り、それぞれの電
池について、各電池の内部抵抗(Ω)を調べ、その平均
値、最大1直並びに最小値などを求めた所、下表の通り
の結果を得た。
We made 100 of each of these batteries, checked the internal resistance (Ω) of each battery, and found the average value, maximum 1 series, minimum value, etc., and obtained the results shown in the table below. Ta.

表 範囲を調べるため、導電性塗料における各組成を変化さ
せ、その際の導電性塗膜の電気抵抗の変化を調べた。
In order to investigate the table range, each composition of the conductive paint was changed and the change in electrical resistance of the conductive paint film at that time was examined.

この結果は第2図に示した通りであり、電気抵抗が最も
低くなるのは、導電性フィラーであるグラファイトが7
0重量部、またポリビニルブチラール、フタル酸ジブチ
ルがそれぞれ20重量部10重量部の付近であり、この
前後の領域ではいずれも電気抵抗が高くなることが判る
The results are shown in Figure 2, and the electrical resistance is lowest when graphite, which is a conductive filler, has the lowest electrical resistance.
0 parts by weight, and around 20 parts by weight and 10 parts by weight of polyvinyl butyral and dibutyl phthalate, respectively, and it can be seen that the electrical resistance becomes high in both regions before and after this.

尚、この図は導電性塗膜形成後に加熱分解処理を行った
結果である。
Note that this figure shows the results of thermal decomposition treatment performed after the conductive coating film was formed.

グラファイトが70重量部以下(つまりポリビニルブチ
ラールが20重量部以上)の領域で電気抵抗が大きく増
加する原因としては、余剰のポリビニルブチラールがグ
ラファイト粒子を覆ってしまうことによりグラファイト
同士の接触が不十分となり、電気抵抗か増加するものと
思われる。
The reason why the electrical resistance increases significantly in the region where graphite is 70 parts by weight or less (that is, polyvinyl butyral is 20 parts by weight or more) is that the excess polyvinyl butyral covers the graphite particles, resulting in insufficient contact between the graphite particles. , the electrical resistance is expected to increase.

一方、ポリビニルブチラールの添加量が20重量部未満
の場合、ポリビニルブチラールの量か少量のため、導電
性塗膜に十分な固着性を付与することができなくなり、
グラファイト同士の接触は十分であるにも拘らず、導電
性塗料と正極端子板、導電性塗料とiE極会合剤の接触
が不十分となり、電気抵抗が増加するものと思われる。
On the other hand, if the amount of polyvinyl butyral added is less than 20 parts by weight, the amount of polyvinyl butyral is too small to impart sufficient adhesion to the conductive coating.
Although the contact between the graphites is sufficient, it is thought that the contact between the conductive paint and the positive terminal plate, and between the conductive paint and the iE electrode association agent is insufficient, leading to an increase in electrical resistance.

尚、ポリビニルブチラールが20重量部未満の場合には
、上記のように熱分解処理を行なってポリビニルブチラ
ールの80〜90重量%を分解(フタル酸ジブチルも同
様に分解)させる必要があり、それにより、グラファイ
ト同士の接触が十分となって、電気抵抗の低い導電性塗
膜が確保される。
If the amount of polyvinyl butyral is less than 20 parts by weight, it is necessary to perform a thermal decomposition treatment as described above to decompose 80 to 90% by weight of the polyvinyl butyral (dibutyl phthalate is also decomposed in the same way). , sufficient contact between graphites is achieved, ensuring a conductive coating film with low electrical resistance.

また、ポリビニルブチラールの添加量を5重量部未満と
した場合、加熱分解処理をしなくともグラファイト同士
が十分接触しているか、または極めて接近しているため
、電子のトンネル効果により、電気抵抗の低い導電性塗
膜を確保することができる。
In addition, when the amount of polyvinyl butyral added is less than 5 parts by weight, the graphite particles are in sufficient contact with each other or are very close to each other even without thermal decomposition treatment, resulting in low electrical resistance due to the electron tunneling effect. A conductive coating can be ensured.

〈発明の効果〉 以上のようにこの発明のペーパー電池によれば、電池組
立てに程において正極合剤を正極集電体上ないし正極端
子板上に確実に固着させることができて、電池の組立容
易化が図れる。
<Effects of the Invention> As described above, according to the paper battery of the present invention, the positive electrode mixture can be reliably fixed on the positive electrode current collector or the positive electrode terminal plate during the battery assembly process, and the battery assembly can be performed easily. It can be made easier.

更に、正極合剤と正極集電体または正極端子板との固着
性が向上するから、電池内部の接触抵抗が大幅に低下し
、電池性能の向上を図れるという利点もある。
Furthermore, since the adhesion between the positive electrode mixture and the positive electrode current collector or positive electrode terminal plate is improved, the contact resistance inside the battery is significantly reduced, and there is also the advantage that battery performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の電池の断面図、第2図は導電性塗膜に
おけるグラファイトの含有量と電気抵抗との関係を示し
たグラフである。 ・正極端子板、 導電性塗膜、 3・・・正極 合剤、 セバレ 夕、 5・・・負極端子板。
FIG. 1 is a cross-sectional view of the battery of the example, and FIG. 2 is a graph showing the relationship between the graphite content in the conductive coating film and the electrical resistance.・Positive electrode terminal plate, conductive coating film, 3... Positive electrode mixture, separator, 5... Negative electrode terminal plate.

Claims (1)

【特許請求の範囲】[Claims] 1、導電性フィラーと、結着剤としてポリビニルブチラ
ールと、また可塑剤としてフタル酸ジブチルとを含んで
なる導電性塗料を、正極集電体上ないし正極端子板上に
塗布して導電性塗膜を形成し、更にこの導電性塗膜上に
正極合剤を圧着させてなることを特徴とするペーパー電
池。
1. A conductive paint containing a conductive filler, polyvinyl butyral as a binder, and dibutyl phthalate as a plasticizer is applied onto the positive electrode current collector or the positive terminal plate to form a conductive coating film. What is claimed is: 1. A paper battery comprising a conductive coating film and a positive electrode mixture being pressure-bonded onto the conductive coating film.
JP63262376A 1988-10-18 1988-10-18 Paper battery Expired - Fee Related JP2878289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63262376A JP2878289B2 (en) 1988-10-18 1988-10-18 Paper battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262376A JP2878289B2 (en) 1988-10-18 1988-10-18 Paper battery

Publications (2)

Publication Number Publication Date
JPH02109256A true JPH02109256A (en) 1990-04-20
JP2878289B2 JP2878289B2 (en) 1999-04-05

Family

ID=17374893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262376A Expired - Fee Related JP2878289B2 (en) 1988-10-18 1988-10-18 Paper battery

Country Status (1)

Country Link
JP (1) JP2878289B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403806B1 (en) * 1996-11-30 2003-12-18 삼성전자주식회사 Lithium secondary battery
US9659716B2 (en) 2011-07-29 2017-05-23 Uacj Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electrical storage device using same
US9911546B2 (en) 2011-07-29 2018-03-06 Uacj Corporation Current collector, electrode structure, nonaqueous electrolyte battery, electrical storage device, and nitrocellulose resin material
SE2251198A1 (en) * 2022-10-13 2024-04-14 Northvolt Ab Overlapping edge coating comprising polyvinyl butyralin in an electrode roll, and a cylindrical secondary cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403806B1 (en) * 1996-11-30 2003-12-18 삼성전자주식회사 Lithium secondary battery
US9659716B2 (en) 2011-07-29 2017-05-23 Uacj Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electrical storage device using same
US9911546B2 (en) 2011-07-29 2018-03-06 Uacj Corporation Current collector, electrode structure, nonaqueous electrolyte battery, electrical storage device, and nitrocellulose resin material
SE2251198A1 (en) * 2022-10-13 2024-04-14 Northvolt Ab Overlapping edge coating comprising polyvinyl butyralin in an electrode roll, and a cylindrical secondary cell
SE546181C2 (en) * 2022-10-13 2024-06-18 Northvolt Ab Overlapping edge coating comprising polyvinyl butyral in an electrode roll, and a cylindrical secondary cell

Also Published As

Publication number Publication date
JP2878289B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
CN1196217C (en) Method for producing nonaqueous gel electrolyte cell
JPH10275747A (en) Electric double layer capacitor
JP2014216131A (en) All solid battery and manufacturing method therefor
US5006696A (en) Face-like heating device
CN108695489A (en) The manufacturing method of electrode
US3400020A (en) Carbon-coated duplex electrode and process for making the same
JPH02109256A (en) Paper battery
EP2500973A1 (en) Electrode and method for producing the same
JPH07331201A (en) Electrically conductive adhesive and bonded structure using the same
CN206134813U (en) Anodal pole piece of lithium ion battery of quick heat conduction
JP2869156B2 (en) Manufacturing method of positive electrode plate
JPH06342739A (en) Electric double layer capacitor and manufacture thereof
HU197645B (en) Method for making cadmium electrode reinforced by polymer of alakaline accumulators
JPS60112261A (en) Method of producing solid state battery
JPS5950207B2 (en) Manufacturing method of electric double layer capacitor
US5972056A (en) Method of manufacturing a battery electrode
JP3418940B2 (en) Method for producing negative electrode current collector for zinc alkaline battery
JP2900426B2 (en) Manufacturing method of electric double layer capacitor
CN108417776A (en) Battery pole piece and preparation method thereof and lithium ion battery
JP2935427B2 (en) Lithium paper battery
CN115863630B (en) Preparation method of lithium iron phosphate positive electrode material, positive electrode plate and lithium ion battery
EP4106045A1 (en) Non-aqueous electrolyte secondary battery
JP3070796B2 (en) Manufacturing method of polarized electrode
CN116505053A (en) Full-lug cylindrical battery cell, battery, electric equipment and preparation method thereof
CN117638420A (en) Electrode lug structure of composite current collector, preparation method of electrode lug structure, electrode plate, battery core and lithium ion battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees