JPH02108661A - Production of aromatic sulfonyl chlorides - Google Patents

Production of aromatic sulfonyl chlorides

Info

Publication number
JPH02108661A
JPH02108661A JP26175088A JP26175088A JPH02108661A JP H02108661 A JPH02108661 A JP H02108661A JP 26175088 A JP26175088 A JP 26175088A JP 26175088 A JP26175088 A JP 26175088A JP H02108661 A JPH02108661 A JP H02108661A
Authority
JP
Japan
Prior art keywords
reaction
phosphorus oxychloride
stoichiometric amount
sulfonation
chlorosulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26175088A
Other languages
Japanese (ja)
Other versions
JP2607135B2 (en
Inventor
Kenji Harada
原田 謙治
Yoshimitsu Yamawaki
山脇 良円
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiwa Chemical Industries Co Ltd
Original Assignee
Eiwa Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiwa Chemical Industries Co Ltd filed Critical Eiwa Chemical Industries Co Ltd
Priority to JP26175088A priority Critical patent/JP2607135B2/en
Publication of JPH02108661A publication Critical patent/JPH02108661A/en
Application granted granted Critical
Publication of JP2607135B2 publication Critical patent/JP2607135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To economically produce the subject substance as a reaction intermediate with one-pot system at a low cost by combining the sulfonation reaction of an aromatic hydrocarbon with stoichiometric amount of chlorosulfonic acid and the chlorination reaction with stoichiometric amount of phosphorus oxychloride. CONSTITUTION:An aromatic hydrocarbon (e.g. benzene, toluene or 3-chloro-2- methylnitrobenzene) is made to react with nearly stoichiometric amount of chlorosulfonic acid preferably in the presence of a sulfonation assistant of 0-100 deg.C (preferably 5-40 deg.C). The obtained reaction mixture is added with phosphorus oxychloride, heated to about 110 deg.C corresponding to the boiling point of phosphorus oxychloride and reacted under refluxing to obtain the objective compound having a boiling point of <110 deg.C. The amount of phosphorus oxychloride is 1.0-1.5 (preferably 1.0-1.1) times the stoichiometric amount. The sulfonation assistant is preferably ammonium sulfate.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、工業・農業・染料・医薬及び食品添加物など
の反応中間体として有用な芳香族スルボニルクロライド
類の内、融点が110℃未満の化合物の!!遣方法に関
する。 さらに詳しくは、本発明は、芳香族炭化水素類に、スル
ホン化助剤の存在下に、または不存在下に、ほぼ化学f
l論量のクロルスルホン酸を作用させた後、ざらにオキ
シ塩化燐を加えて、還流下に反応させることを特徴とす
る、融点が110℃未満の芳香族スルホニルクロライド
類の製造方法に関するものであり、その目的とするとこ
ろは、芳香族スルホニルクロライド類を工業的に、かつ
経済的に、そして安全に製造する方法を提供することに
ある。 従来技術 従来、芳香族スルホニルクロライド類の製造方法は、芳
香族炭化水素類に大過剰のクロルスルホン酸を作用させ
る方法。芳香族スルホン酸塩に大過剰の塩化チオニル、
三塩化燐、五塩化燐、及びオキシ塩化燐なとでクロル化
する方法があるが、これらは公知であり、化学量論量の
1.5−2゜0倍の薬剤を使っており、経済的に有利な
方法とはいえない。また、安価なりロル化剤として、ホ
スゲン、あるいは硫黄の存在下に塩素を使用する方法が
あるが、ホスゲン、及び塩素はガス状の毒物であり、取
り扱いに問題がある。その上、ホスゲンを作用させる場
合、高価な溶媒を必要とし、また、塩素を作用させる場
合、塩素を大過剰、かつ長時間導入しなければならず、
両者とも、経済性、及び安全性の見地から未だ満足でき
る方法ではない、以下、それらの例を上げる。 (1)ベンゼンに大過剰のクロルスルホン酸を作用させ
、あるいはベンゼンスルホン酸塩に五塩化燐、またはオ
キシ塩化燐を作用させ、ベンゼンスルホニルクロライド
を得る方法は、H,T。 C1arkeらが報告している(Or g−5y−n 
th、、Co l 1.I、pp77)。 (2)ホスゲンを使用するものとしては、特公昭56−
42586や、特開昭54−59251がある。 (3)硫黄の共存下、不活性溶媒の存在、もしくは不存
在下、塩素を作用させるものとして特開昭56−468
60がある。 しかしながら、これらはいずれもほぼ化学量論量の薬剤
を使っての反応ではなく、また芳香族炭化水素類に、−
段階でクロルスルホン酸を作用させるか、もしくは芳香
族スルホン酸塩に、−段階でクロル化剤を作用させる方
法である。 一方、本発明と同様に、スルホン化とクロル化の二段階
反応を、いわゆる「ワン・ポット・システム」で行ない
、芳香族スルホニルクロライド類を製造する方法として
は、 (4)ほぼ化学ffi論屋のクロルスルホン酸でスルホ
ン化後、過剰の塩化チオニルでクロライド化する方法と
して、特開昭54−59250がある。 (5)ほぼ化学1kta量の硫酸でスルホン化後、過剰
のオキシ塩化燐でクロライド化する方法として、特公昭
63−10149がある。 これらについて、(4)では、クロライド化剤として用
いている塩化チオニルの沸点が78.8℃であることか
ら、反応温度が制限され、収率が90%程度に留まって
いる。また、(5)では、スルホン化剤として、濃硫酸
を使用し、副生ずる水を減圧加熱により反応系外に留去
し、平衡反応であるスルホン化反応を進めているが、こ
れは特許に記載されているジフェニルオキサイド(沸点
259℃)のような、高沸点芳香族炭化水素類には適用
できるが、低沸点芳香族炭化水素類では、減圧加熱中に
副生ずる水と共沸留去するため、収率が低下すると言う
問題がある。さらに、クロライド化では、本発明と同様
に、オキシ塩化燐を使用しているが、生成するスルホニ
ルクロライド化物の融点が130.5℃であり、本発明
の請求範囲の110℃より融点が高いので、ほぼ化学量
論量のオキシ塩化燐でクロライド化すると反応中に結晶
が析出し、攪拌不能となり、結果的に反応完結出来ない
ので、大過剰のオキシ塩化燐を使用せざるを得ないと言
う問題がある。 発明の目的 従って、本発明の目的は、無駄な薬剤を使用することな
く、ほぼ化学量論量の薬剤の使用で、経済的に、安全に
、モして高収率で芳香族スルホニルクロライド類を製造
する方法を提供することにある。 発明の構成 本発明者らは、前記目的を達成すべく、鋭意研究した結
果、芳香族炭化水素類の、スルホン化助剤の存在下、も
Industrial Application Field The present invention is directed to aromatic sulfonyl chlorides which are useful as reaction intermediates for industrial, agricultural, dyes, medicines, food additives, etc., and which have a melting point of less than 110°C. ! Regarding the method of sending. More particularly, the present invention provides aromatic hydrocarbons, in the presence or absence of sulfonation coagents, of approximately
This relates to a method for producing aromatic sulfonyl chlorides with a melting point of less than 110° C., which comprises reacting with 1 stoichiometric amount of chlorosulfonic acid, adding phosphorous oxychloride to a colander, and reacting under reflux. The objective is to provide a method for producing aromatic sulfonyl chlorides industrially, economically, and safely. Prior Art Conventionally, the method for producing aromatic sulfonyl chlorides involves reacting aromatic hydrocarbons with a large excess of chlorosulfonic acid. Large excess of thionyl chloride in aromatic sulfonate,
There are methods of chlorination with phosphorus trichloride, phosphorus pentachloride, and phosphorus oxychloride, but these methods are well known and use 1.5-2.0 times the stoichiometric amount of chemicals, making them economical. This cannot be said to be an advantageous method. In addition, there is a method of using phosgene or chlorine in the presence of sulfur as an inexpensive rolating agent, but phosgene and chlorine are gaseous poisons and have problems in handling. Moreover, when using phosgene, an expensive solvent is required, and when using chlorine, a large excess of chlorine must be introduced for a long time.
Both of these methods are not yet satisfactory from the viewpoints of economy and safety, and examples thereof will be given below. (1) A method for obtaining benzenesulfonyl chloride by reacting benzene with a large excess of chlorosulfonic acid or reacting benzenesulfonate with phosphorus pentachloride or phosphorus oxychloride is H,T. C1arke et al. reported (Or g-5y-n
th,, Col 1. I, pp77). (2) For those using phosgene,
42586 and JP-A-54-59251. (3) JP-A-56-468 as a method for applying chlorine in the presence or absence of an inert solvent in the presence of sulfur
There are 60. However, none of these reactions uses approximately stoichiometric amounts of chemicals, and aromatic hydrocarbons -
This is a method in which chlorosulfonic acid is allowed to act in one step, or a chlorinating agent is made to act on an aromatic sulfonate in two steps. On the other hand, as in the present invention, the two-step reaction of sulfonation and chlorination is carried out in a so-called "one-pot system" to produce aromatic sulfonyl chlorides. JP-A-54-59250 discloses a method of sulfonating with chlorosulfonic acid and then chloridating with excess thionyl chloride. (5) Japanese Patent Publication No. 63-10149 describes a method of sulfonating with approximately 1 kta of sulfuric acid and then chloridizing with excess phosphorus oxychloride. Regarding these, in (4), the boiling point of thionyl chloride used as the chloridating agent is 78.8°C, so the reaction temperature is limited and the yield remains at about 90%. In addition, in (5), concentrated sulfuric acid is used as the sulfonating agent, and by-produced water is distilled out of the reaction system by heating under reduced pressure to proceed with the sulfonation reaction, which is an equilibrium reaction, but this is patented. It can be applied to high-boiling aromatic hydrocarbons such as diphenyl oxide (boiling point 259°C) as described, but for low-boiling aromatic hydrocarbons, it is azeotropically distilled off with the water that is produced as a by-product during heating under reduced pressure. Therefore, there is a problem that the yield decreases. Furthermore, in the chloridation, phosphorus oxychloride is used as in the present invention, but the melting point of the sulfonyl chloride produced is 130.5°C, which is higher than the 110°C claimed in the present invention. , when chloridating with a nearly stoichiometric amount of phosphorus oxychloride, crystals precipitate during the reaction, making it impossible to stir, and as a result, the reaction cannot be completed, so a large excess of phosphorus oxychloride must be used. There's a problem. OBJECTS OF THE INVENTION Therefore, an object of the present invention is to produce aromatic sulfonyl chlorides economically, safely, and in high yields by using approximately stoichiometric amounts of drugs without using unnecessary drugs. The purpose is to provide a method for manufacturing. Structure of the Invention In order to achieve the above object, the present inventors have conducted intensive research and found that if aromatic hydrocarbons are treated in the presence of a sulfonation aid,

【は不存在下に、ほぼ化学量論量のクロルスルホン酸
によるスルホン化と、ほぼ化学量論量のオキシ塩化燐に
よるクロライド化との絹み合わせによる、いわゆる「ワ
ン・ポット・システム」で、融点が110℃未満の芳香
族スルホニルクロライド類が極めて高収率で得られるこ
とを見出し、本発明を完成するに至ったものである。 発明の作用、効果、及び態様 本発明に係わる芳香族スルホニルクロライド類の製造方
法においては、反応は次の2段階で、ほぼ化学量論的に
進行する。 (lr−H+ Cl5OsH−φ−5OsH+ HCI
    (1)2φ−5OsH+ POCIs→2φ−
5OsC1+ HCI + HPO3(2) 但し、式(1)及び(2)において、φは未置換、もし
くは置換芳香環を表す、また、モノスルホニルクロライ
ド化の反応式で表したが、それに限定されるものではな
く、多スルホニルクロライド化も含むことは申すまでも
ない。 上記式(1)において、芳香族炭化水素類のクロルスル
ホン酸によるスルホン化は、塩化水素ガスの発生により
、ほぼ化学量論量のクロルスルホン酸で反応は容易に進
行し、ほぼ定量的に反応する。 逆に、過剰に用いると、スルホンや目的物より多くスル
ホン基の付いた化合物が副生ずる。 式(2)においては、ほぼ化学量論量のオキシ塩化燐を
加えて加熱還流することにより、クロライド化反応を完
結させる。ここにおいて、融点が110℃以上の芳香族
スルホニルクロライド類では、ほぼ化学量論量のオキシ
塩化燐の使用では反応中に結晶が析出してしまい、攪拌
不能になり、反応完結出来ない、しかしながら、本発明
における融点が110℃未満の芳香族スルホニルクロラ
イド類では、反応中に結晶の析出がないので、ほぼ化学
量論量の使用でも、攪拌可能であり、反応も完結するこ
とを見出した。また、副生するメタ燐酸、も加熱還流温
度では同等反応に影響を与えなかった。但し、本発明に
おけるオキシ塩化燐の使用量としては、化学量論量の1
.0−1.5倍量、好ましくは1.O−1,1倍量であ
るが、それに限定されるものではなく、過剰に用いても
同等問題はない、しかし、経済的見地からは意味のない
ことである。また、溶媒を用いることも同様である。 次いで、反応液を冷水に注入して副生メタ燐酸を分解さ
せ、芳香族スルホニルクロライドの結晶を析出させ、ろ
別乾燥させる。結晶析出しない場合は、オイル状物をデ
カンティションか、溶剤抽出で分離する。得られた芳香
族スルホニルクロライドの収率は95%以上であった。 また、本発明に係わる芳香族スルホニルクロライド類の
製造方法においては、ほぼ化学量論量の薬剤で反応させ
、収率が95%以上である為、未反応のオキシ塩化燐が
ほとんど残っていないので、水性時の分解発熱は、過剰
のオキシ塩化燐を使う特許(5)と比べて、はるかに小
さい、また、クロロホルムや四塩化炭素などの溶剤に、
直接反応液を注入し、芳香族スルホニルクロライドと副
生ずるメタ燐酸を分離することも可能である。 本発明方法の実施に当たっての反応条件は、芳香族炭化
水素にスルホン化助剤の存在、もしくは不存在下に、ほ
ぼ化学量論量のクロルスルホン酸を、反応温度0−10
0℃、好ましくは、5−40℃下、攪拌しながら滴下し
反応させ、スルホン化を完結させる。 本発明による方法において、場合により使用するスルホ
ン化助剤の例としては、スルホン生成に対して抑制効果
を持つ、N、N−ジメチルホルムアミド、尿素、硫酸ア
ンモニウムなどが挙げられるが、特に、硫酸アンモニウ
ムはクロルスルホン酸1モルに対して、0.01−0.
2モル量、好ましくは、0.05−0.1モル量添加す
ることにより、高いスルホン抑制効果を示した。 また、スルホン化中に発生する塩化水素ガスは、吸収塔
で水に吸収すれば、塩酸として回収出来る。 上記のようにしてスルホン化した後、さらに、ほぼ化学
量論量のオキシ塩化燐を加えて、オキシ塩化燐の沸点で
ある約110℃まで昇温させ、還流下、反応させ、スル
ホニルクロライド化を完結させる。その後、冷水中に反
応液を注入し結晶を析出させる。結晶析出しない場合は
オイル状物として得られる。 スルホン化中と同様に、クロライド化反応中に発生する
塩化水素ガスは、塩酸として回収出来る。 また、副生ずるメタ燐酸は水性時、分解してオルト燐酸
となるので、芳香族スルホニルクロライドの分離廃液は
高湿度の燐酸水iIl液として回収される。 このように、本発明による方法においては、製造する芳
香族スルホニルクロライドは、融点が110℃未満の化
合物に限定されるが、溶剤を全く使用することなく、ほ
ぼ化学量論量の薬剤のみで、96%以上の高収率で目的
物を得ることが出来、かつ副生ずる化合物も塩酸、燐酸
として回収出来る。その上、2段階反応を「ワン・ポッ
ト・プロセス」として遂行出来るので、装置的に経済性
も高い。 本発明の方法を適用出来る芳香族炭化水素の例を挙げる
と、次のようになる。 ベンゼン、トルエン、0・・■−・及びp−キシレン、
1.3.4−及び1,3.5−トリメチルベンゼン、ク
ロルベンゼン、ブロムベンゼン、フルオルベンゼン、2
−.3−、及び4−メチルクロルベンゼン、2−3−及
び4−メチルブロムベンゼン、1.2−、l、3−、及
び1.4−ジブロムベンゼン、2.3−.2.4−.2
.6−.3゜4−及び3,5−ジクロルメチルベンゼン
、2゜5−トリクロルベンゼン、1.3−ジメトキシベ
ンゼン、2−クロルメトキシベンゼン、3−クロルニト
ロベンゼン、3−クロル4−メチルニトロベンゼン、4
−クロル3−メチルニトロベンゼン、4−クロル5−メ
チルニトロベンゼン、3−クロル2−メチルニトロベン
ゼンなどがある。 実施例 以下、実施例及び比較例を示して具体的に説明するが、
本発明が下記実施例の範囲に限定されるものではないこ
とはもとよりである。 (実施例1) 攪拌機、温度計、滴下漏斗、及び塔頂に排ガス、誘導管
を付した還流冷却器を備えた容JIILの4ツロフラス
コに、トルエン92.0g (1,0モル)を入れ、ク
ロルスルホン酸116.5g (1゜0モル)を滴下漏
斗を使って、5℃下、攪拌しながら1時間で滴下し、そ
の後、2時間はと攪拌を続け、そして反応温度を90℃
まで昇温させた。 それにオキシ塩化燐76.7g (0,5モル)を滴下
し、さらに還流温度である110℃まで昇温し、3時間
反応させた。反応液を5℃の冷水500gに注入して、
結晶を析出させた。析出結晶は1ろ別、水洗、乾燥した
後、粗製p−)ルエンスルホニルクロライド181.3
g’(収率95.1%)を得た。この結晶を分析した結
果、0−トルエンスルホニルクロライドが14.1%、
ジ(p−トリル)スルホンが5.9%含まれていた。 (実施例2) 実施例1のクロルスルホン酸116.5g (1゜0モ
ル)に代えて、硫酸アンモニウム11.2g(0,08
5モル)をクロルスルホンN! 11 G 。 5g (1,0モル)に加えた、硫酸アンモニウム添加
クロルスルホン酸(以下、硫安添加クロスルとする)を
使用した以外は、実施例1と同様に反応させたところ、
p−トルエンスルホニルクロライドがyuaとして、1
83.5g(収率96.3%)得られた。この結晶を分
析した結果、o−トルエンスルホニルクロライドは10
.9%含まれていたが、ジ(p−トリル)スルホンは痕
跡量しか検出されなかった。 (実施例3) 実施例2のオキシ塩化燐使用量76.7g (0゜5モ
ル)に代えて、オキシ塩化燐115.1’g(0,75
モル)を使用した以外は、実施例2と一様に反応させた
ところ、p−トルエンスルホニルクロライドが粗製とし
て、1B−9,5g(収率99.4%) 得られた。この結晶を分析した結果、0−トルエンスル
ホニルクロライドは9.5%含まれていたが、ジ(p−
)リル)スルホンは痕跡量しか検出されなかった。 (実施例4) 実施例1のトルエン及びクロルスルホン酸に代えて、ベ
ンゼン78.1 g (1,0モル)及び硫安添加クロ
スルを使用した以外は、実施例1と同様に反応させたと
ころ、ベンゼンスルホニルクロライドがvnvaとして
、173.6g (収率98゜3%)得られた。 (実施例5) 実施例1のトルエン及びクロルスルホン酸に代えて、ク
ロルベンゼン112.6g (1,0モル)及び硫安添
加クロスルを使用した以外は、実施例1と同様に反応さ
せたところ、p−クロルベンゼンスルホニルクロライド
が粗製として、204.1g (96,7%)得られた
。 (比較例1) 攪拌機、温度計、滴下漏斗、及び排ガス誘導管を備えた
容fllLの4ツロフラスコに、トルエン92.0g 
(1,0モル〉を入れ、クロルスルホン酸174.8g
 (1,5モル)を5℃下、攪拌しながら滴下漏斗を使
って、1時間で滴下した。 その後、2時間はど攪拌を続け、さらにクロルスルホン
酸174.8g (1,5モル)を40℃下、滴下し、
その後、6時閏攪拌反応した6反応液を水性して、結晶
を析出させた。析出結晶をろ別、水洗、乾燥した後、粗
製p−)ルエンスルホニルクロライド158.2g(収
率83.0%)を得た。 この結晶を分析した結果、0−)ルエンスルホニルクロ
ライドが13.4%、ジ(p−トリル)スルホンが9.
2%含まれていた。 (比較例2) 比較例1(D’)ロル7.ルホ”/#1174.8g 
(1゜5モル)を2回滴下したことに代えて、化学量論
量のクロルスルホン酸116.5g (1,0モル)を
2回滴下した以外は、比較例】と同様に反応させたとこ
ろ、p−トルエンスルホニルクロライド粗製物が144
.0g (収率75.6%)しか得られず、この結晶を
分析した結果、0−トルエンスルホニルクロライドが1
2.7%、ジ(p−トリル)スルホンが10.7%含ま
れていた。 (比較例3) 攪拌機、温度計、滴下漏斗、及び塔頂に排ガス誘導管を
付した還流冷却器を備えた容量ILの4ツロフラスコに
、トルエン92.0g (1,0モル)を入れ、硫酸ア
ンモニウム11.2g (0゜085モル)をクロルス
ルホン酸116.5g(1,0モル)に加えた、硫酸ア
ンモニウム添加クロルスルホン酸を滴下漏斗を使って、
5℃下、攪拌しながら1時間で滴下し、その後、2時間
はと攪拌を続け、そして反応温度を75℃まで昇温させ
た。それに塩化チオニル11’9.0g(1゜0モル)
を滴下し、さらに還流温度である79℃まで昇温し、3
時間反応させた。反応液を5℃の冷水500gに注入し
て、結晶を析出させた。析出結晶はる別、水洗、乾燥し
た後、粗製ρ−トルエンスルホニルクロライド160.
3g(収率84.1%〉を得た。この結晶を分析した結
果、0−トルエンスルホニルクロライドは11.2%、
ジ(p−トリル)スルホンは痕跡置台まれていな。 特許出願人  永和化成工業株式会社
In the so-called "one-pot system", sulfonation with a nearly stoichiometric amount of chlorosulfonic acid and chloridation with a nearly stoichiometric amount of phosphorus oxychloride are combined in the absence of [. It was discovered that aromatic sulfonyl chlorides having a melting point of less than 110°C can be obtained in extremely high yields, and the present invention was completed. Functions, Effects, and Modes of the Invention In the method for producing aromatic sulfonyl chlorides according to the present invention, the reaction proceeds approximately stoichiometrically in the following two steps. (lr-H+ Cl5OsH-φ-5OsH+ HCI
(1) 2φ-5OsH+ POCIs → 2φ-
5OsC1+ HCI + HPO3 (2) However, in formulas (1) and (2), φ represents an unsubstituted or substituted aromatic ring, and is expressed in the reaction formula of monosulfonyl chloride, but is not limited thereto. Needless to say, it also includes polysulfonyl chloride. In the above formula (1), the sulfonation of aromatic hydrocarbons with chlorosulfonic acid progresses easily with a nearly stoichiometric amount of chlorosulfonic acid due to the generation of hydrogen chloride gas, and the reaction is almost quantitative. do. On the other hand, if it is used in excess, sulfone or a compound with more sulfone groups than the target product is produced as a by-product. In formula (2), the chloridation reaction is completed by adding approximately stoichiometric amount of phosphorus oxychloride and heating to reflux. Here, for aromatic sulfonyl chlorides with a melting point of 110°C or higher, if a nearly stoichiometric amount of phosphorus oxychloride is used, crystals will precipitate during the reaction, making stirring impossible and making it impossible to complete the reaction. It has been found that in the present invention, the aromatic sulfonyl chloride having a melting point of less than 110° C. does not precipitate crystals during the reaction, so that even when used in a substantially stoichiometric amount, stirring is possible and the reaction is completed. Furthermore, metaphosphoric acid produced as a by-product did not affect the equivalent reaction when heated to reflux temperature. However, the amount of phosphorus oxychloride used in the present invention is 1 of the stoichiometric amount.
.. 0-1.5 times the amount, preferably 1. Although the amount is O-1.1 times, it is not limited thereto, and there is no problem even if it is used in excess, but it is meaningless from an economic standpoint. The same applies to the use of a solvent. Next, the reaction solution is poured into cold water to decompose by-product metaphosphoric acid, crystals of aromatic sulfonyl chloride are precipitated, and the crystals are filtered and dried. If no crystals precipitate, separate the oil by decantation or solvent extraction. The yield of the aromatic sulfonyl chloride obtained was 95% or more. In addition, in the method for producing aromatic sulfonyl chlorides according to the present invention, the reaction is performed with a nearly stoichiometric amount of the chemical, and the yield is 95% or more, so there is almost no unreacted phosphorus oxychloride left. , the heat of decomposition when aqueous is much smaller than that of the patent (5) which uses excess phosphorous oxychloride;
It is also possible to directly inject the reaction solution and separate aromatic sulfonyl chloride and metaphosphoric acid produced as a by-product. The reaction conditions for carrying out the method of the present invention are as follows: a nearly stoichiometric amount of chlorosulfonic acid is added to an aromatic hydrocarbon in the presence or absence of a sulfonation auxiliary agent at a reaction temperature of 0-10.
The reaction is carried out dropwise at 0°C, preferably 5-40°C, with stirring, to complete the sulfonation. Examples of sulfonation auxiliaries optionally used in the process according to the invention include N,N-dimethylformamide, urea, ammonium sulfate, etc., which have an inhibitory effect on sulfone formation, but in particular ammonium sulfate is 0.01-0.0 for 1 mole of sulfonic acid.
Addition of 2 molar amount, preferably 0.05-0.1 molar amount, showed a high sulfone suppressing effect. Further, hydrogen chloride gas generated during sulfonation can be recovered as hydrochloric acid by absorbing it into water in an absorption tower. After sulfonation as described above, a nearly stoichiometric amount of phosphorus oxychloride is added, the temperature is raised to about 110°C, which is the boiling point of phosphorus oxychloride, and the reaction is carried out under reflux to convert sulfonyl chloride. complete it. Thereafter, the reaction solution is poured into cold water to precipitate crystals. If crystals do not precipitate, it is obtained as an oily substance. As during sulfonation, hydrogen chloride gas generated during the chloridation reaction can be recovered as hydrochloric acid. Further, metaphosphoric acid produced as a by-product is decomposed into orthophosphoric acid when it is aqueous, so the separated waste liquid of aromatic sulfonyl chloride is recovered as a highly humid phosphoric acid water solution. As described above, in the method according to the present invention, the aromatic sulfonyl chloride produced is limited to a compound with a melting point of less than 110°C, but without using any solvent and using only a nearly stoichiometric amount of the drug, The target product can be obtained with a high yield of 96% or more, and by-product compounds can also be recovered as hydrochloric acid and phosphoric acid. Furthermore, since the two-step reaction can be carried out as a "one-pot process," it is highly economical in terms of equipment. Examples of aromatic hydrocarbons to which the method of the present invention can be applied are as follows. Benzene, toluene, 0...■-... and p-xylene,
1.3.4- and 1,3.5-trimethylbenzene, chlorobenzene, bromobenzene, fluorobenzene, 2
−. 3- and 4-methylchlorobenzene, 2-3- and 4-methylbromobenzene, 1.2-, 1, 3-, and 1.4-dibromobenzene, 2.3-. 2.4-. 2
.. 6-. 3゜4- and 3,5-dichloromethylbenzene, 2゜5-trichlorobenzene, 1,3-dimethoxybenzene, 2-chloromethoxybenzene, 3-chloronitrobenzene, 3-chloro4-methylnitrobenzene, 4
Examples include -chloro-3-methylnitrobenzene, 4-chloro-5-methylnitrobenzene, and 3-chloro-2-methylnitrobenzene. Examples Hereinafter, specific explanations will be given by showing examples and comparative examples.
It goes without saying that the present invention is not limited to the scope of the following examples. (Example 1) 92.0 g (1.0 mol) of toluene was placed in a JIIL 4-volume flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser with an exhaust gas and induction tube attached to the top of the tower. Using a dropping funnel, 116.5 g (1°0 mol) of chlorosulfonic acid was added dropwise at 5°C with stirring over 1 hour, then stirring was continued for 2 hours, and the reaction temperature was increased to 90°C.
The temperature was raised to . 76.7 g (0.5 mol) of phosphorus oxychloride was added dropwise thereto, and the temperature was further raised to 110° C., which is the reflux temperature, and the mixture was reacted for 3 hours. Pour the reaction solution into 500g of cold water at 5℃,
Crystals were precipitated. The precipitated crystals were separated by filtration, washed with water, and dried to give crude p-)luenesulfonyl chloride 181.3
g' (yield 95.1%) was obtained. Analysis of this crystal revealed that 0-toluenesulfonyl chloride was 14.1%.
It contained 5.9% di(p-tolyl)sulfone. (Example 2) In place of 116.5 g (1°0 mol) of chlorosulfonic acid in Example 1, 11.2 g (0.08 mol) of ammonium sulfate was added.
5 mol) to chlorsulfone N! 11G. The reaction was carried out in the same manner as in Example 1, except that ammonium sulfate-added chlorsulfonic acid (hereinafter referred to as ammonium sulfate-added chlorsulfonic acid) added to 5 g (1.0 mol) was used.
p-toluenesulfonyl chloride as yua, 1
83.5 g (yield 96.3%) was obtained. As a result of analyzing this crystal, o-toluenesulfonyl chloride was found to be 10
.. Although it contained 9%, only trace amounts of di(p-tolyl)sulfone were detected. (Example 3) In place of 76.7 g (0.5 mol) of phosphorus oxychloride used in Example 2, 115.1 g (0.75 mol) of phosphorus oxychloride was used.
The reaction was carried out in the same manner as in Example 2 except that 1B-1B-9.5g (yield 99.4%) was obtained as crude p-toluenesulfonyl chloride. Analysis of this crystal revealed that it contained 9.5% 0-toluenesulfonyl chloride, but di(p-
)Ril) Sulfone was only detected in trace amounts. (Example 4) The reaction was carried out in the same manner as in Example 1, except that 78.1 g (1.0 mol) of benzene and ammonium sulfate-added chlorosul were used in place of toluene and chlorosulfonic acid in Example 1. 173.6 g (yield: 98.3%) of benzenesulfonyl chloride was obtained as vnva. (Example 5) The reaction was carried out in the same manner as in Example 1, except that 112.6 g (1.0 mol) of chlorobenzene and ammonium sulfate-added chlorosul were used in place of toluene and chlorosulfonic acid in Example 1. 204.1 g (96.7%) of p-chlorobenzenesulfonyl chloride was obtained as crude. (Comparative Example 1) 92.0 g of toluene was placed in a 4-volume flask equipped with a stirrer, thermometer, dropping funnel, and exhaust gas guide tube.
(1.0 mol), 174.8 g of chlorosulfonic acid
(1.5 mol) was added dropwise over 1 hour at 5° C. using a dropping funnel while stirring. After that, stirring was continued for 2 hours, and 174.8 g (1.5 mol) of chlorosulfonic acid was added dropwise at 40°C.
Thereafter, the 6 reaction mixtures subjected to interstitial stirring for 6 hours were aqueous to precipitate crystals. The precipitated crystals were filtered, washed with water, and dried to obtain 158.2 g (yield: 83.0%) of crude p-)luenesulfonyl chloride. Analysis of this crystal revealed that 0-)luenesulfonyl chloride was 13.4% and di(p-tolyl)sulfone was 9%.
It contained 2%. (Comparative Example 2) Comparative Example 1 (D') Roll7. Lujo”/#1174.8g
The reaction was carried out in the same manner as in Comparative Example, except that instead of dropping chlorosulfonic acid (1°5 mol) twice, 116.5 g (1.0 mol) of chlorosulfonic acid was added dropwise twice in a stoichiometric amount. However, the crude p-toluenesulfonyl chloride was 144
.. Only 0g (yield 75.6%) was obtained, and analysis of this crystal revealed that 0-toluenesulfonyl chloride was 1.
It contained 2.7% and di(p-tolyl)sulfone 10.7%. (Comparative Example 3) 92.0 g (1.0 mol) of toluene was put into a 4-hour flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser with an exhaust gas guide pipe attached to the top of the column, and ammonium sulfate was added. 11.2 g (0°085 mol) of chlorsulfonic acid was added to 116.5 g (1.0 mol) of chlorsulfonic acid using a dropping funnel with ammonium sulfate added.
The mixture was added dropwise at 5°C with stirring over 1 hour, and stirring was continued for 2 hours, and the reaction temperature was raised to 75°C. Plus thionyl chloride 11'9.0g (1゜0mol)
was added dropwise, and the temperature was further raised to the reflux temperature of 79°C.
Allowed time to react. The reaction solution was poured into 500 g of cold water at 5° C. to precipitate crystals. After separating the precipitated crystals, washing with water, and drying, the crude ρ-toluenesulfonyl chloride 160.
3 g (yield: 84.1%) was obtained. Analysis of this crystal revealed that 0-toluenesulfonyl chloride was 11.2%;
No trace of di(p-tolyl) sulfone was found. Patent applicant: Eiwa Kasei Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、芳香族炭化水素類に、ほぼ化学量論量のクロルスル
ホン酸を反応させた後、さらに、オキシ塩化燐を加えて
反応を行なわせることを特徴とする、融点が110℃未
満の芳香族スルホニルクロライド類の製造方法。 2、スルホン化助剤の存在下に反応させる、特許請求の
範囲第1項記載の方法。
[Claims] 1. A method with a melting point characterized by reacting an aromatic hydrocarbon with a nearly stoichiometric amount of chlorosulfonic acid and then further adding phosphorus oxychloride to carry out the reaction. A method for producing aromatic sulfonyl chlorides at temperatures below 110°C. 2. The method according to claim 1, wherein the reaction is carried out in the presence of a sulfonation auxiliary agent.
JP26175088A 1988-10-18 1988-10-18 Method for producing aromatic sulfonyl chlorides Expired - Lifetime JP2607135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26175088A JP2607135B2 (en) 1988-10-18 1988-10-18 Method for producing aromatic sulfonyl chlorides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26175088A JP2607135B2 (en) 1988-10-18 1988-10-18 Method for producing aromatic sulfonyl chlorides

Publications (2)

Publication Number Publication Date
JPH02108661A true JPH02108661A (en) 1990-04-20
JP2607135B2 JP2607135B2 (en) 1997-05-07

Family

ID=17366188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26175088A Expired - Lifetime JP2607135B2 (en) 1988-10-18 1988-10-18 Method for producing aromatic sulfonyl chlorides

Country Status (1)

Country Link
JP (1) JP2607135B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436370A (en) * 1990-03-03 1995-07-25 Hoechst Ag Process for the preparation of 3-nitrobenzenesulfonyl chloride
CN102408364A (en) * 2010-09-26 2012-04-11 中化蓝天集团有限公司 Method for preparing paratoluensulfonyl chloride
CN103588683A (en) * 2013-10-14 2014-02-19 青岛文创科技有限公司 Synthesis technique of paratoluensulfonyl chloride
CN107089935A (en) * 2017-05-23 2017-08-25 淮海工学院 A kind of preparation method to methylsulfonyltoluene
CN114088797A (en) * 2021-11-09 2022-02-25 中国石油大学(北京) Sulfonation method and analysis method of aromatic hydrocarbon compounds in petroleum oil products

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436370A (en) * 1990-03-03 1995-07-25 Hoechst Ag Process for the preparation of 3-nitrobenzenesulfonyl chloride
CN102408364A (en) * 2010-09-26 2012-04-11 中化蓝天集团有限公司 Method for preparing paratoluensulfonyl chloride
CN103588683A (en) * 2013-10-14 2014-02-19 青岛文创科技有限公司 Synthesis technique of paratoluensulfonyl chloride
CN103588683B (en) * 2013-10-14 2016-02-10 青岛文创科技有限公司 A kind of synthesis technique of Tosyl chloride
CN107089935A (en) * 2017-05-23 2017-08-25 淮海工学院 A kind of preparation method to methylsulfonyltoluene
CN114088797A (en) * 2021-11-09 2022-02-25 中国石油大学(北京) Sulfonation method and analysis method of aromatic hydrocarbon compounds in petroleum oil products
CN114088797B (en) * 2021-11-09 2024-06-11 中国石油大学(北京) Sulfonation method and analysis method of aromatic hydrocarbon compounds in petroleum products

Also Published As

Publication number Publication date
JP2607135B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US4970337A (en) Process for the preparation of trifluoromethanesulphonyl chloride
JPH02108661A (en) Production of aromatic sulfonyl chlorides
EP2578567B1 (en) Process for preparation of fluorine-containing imide compounds
GB2135666A (en) Preparation of 4-chlorobenzenesulfonyl chloride and 4,4&#39;-dichlorodiphenyl sulfone
EP0062736A1 (en) Process for preparing 4-4&#39;-dichlorodiphenyl sulphone
JP2590246B2 (en) Process for producing 3-trifluoromethylbenzenesulfonyl chlorides
US10717707B2 (en) Synthesis of 2,2,2-trifluoroethanethiol
JPS5842865B2 (en) Production method of benzenesulfonyl chloride
JPH0390057A (en) Chlorofluorobenzonitrile and production thereof
EP0151835B1 (en) Process for producing pentachloronitrobenzene from hexachlorobenzene
JPS61171467A (en) Production of n-(alpha-alkoxyethyl)pyrrolidone
JP3115520B2 (en) Method for producing aromatic sulfone
JPS58208265A (en) Preparation of chloroalkylphenylsulfones
JPH057383B2 (en)
JP2637202B2 (en) Method for producing 3-trifluoromethylbenzenesulfonyl chlorides
JPH0316340B2 (en)
US4454362A (en) Process for producing pentachloronitrobenzene
KR920004601B1 (en) Process for producing allyl bromides
JPS6029703B2 (en) Method for producing 4,4&#39;-dichlorodiphenyl sulfone
JP3653779B2 (en) Process for producing 1,2,3-trichloro-4,6-dinitrobenzene
JP2004509100A (en) Process for producing alkane sulfonyl chloride
CA1056851A (en) Process for producing chlorosulfonylbenzoyl chloride
US5329027A (en) Oxidative dehalogenation process for the production of perchlorinated quinones
EP0020800B1 (en) Improved process for preparing a mixture of aromatic sulfones and aromatic sulfonyl chlorides
RU2131870C1 (en) Method of preparing halogen- and/or alkyl substituted diaryl-sulfones