JPH02107546A - Production of cement-based moldings having dense structure and high heat resistance - Google Patents

Production of cement-based moldings having dense structure and high heat resistance

Info

Publication number
JPH02107546A
JPH02107546A JP25586788A JP25586788A JPH02107546A JP H02107546 A JPH02107546 A JP H02107546A JP 25586788 A JP25586788 A JP 25586788A JP 25586788 A JP25586788 A JP 25586788A JP H02107546 A JPH02107546 A JP H02107546A
Authority
JP
Japan
Prior art keywords
cement
water
heat resistance
organic fiber
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25586788A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuboi
窪井 洋
Hideo Saori
佐織 英雄
Nobuyuki Nakamura
信行 中村
Hisaya Kamura
久哉 加村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
JFE Engineering Corp
Original Assignee
Showa Shell Sekiyu KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK, NKK Corp, Nippon Kokan Ltd filed Critical Showa Shell Sekiyu KK
Priority to JP25586788A priority Critical patent/JPH02107546A/en
Publication of JPH02107546A publication Critical patent/JPH02107546A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Abstract

PURPOSE:To obtain moldings which have high hardness and a dense structure and are high in heat resistance by adding a specified liquid mixture to a powder mixture consisting of cement, an aggregate, ultrafine powder and a thickener and molding this mixture and curing the moldings in the prescribed conditions. CONSTITUTION:Low-m.p. organic fiber is added to a powder mixture consisting of cement, an aggregate, ultrafine powder and a thickener. A liquid mixture consisting of a water reducing agent, polymer dispersion and water is added thereto and this mixture is mixed, kneaded and thereafter molded by press or extrusion and pressurizing injection and the like. Then after this molded body is cured at saturated vapor pressure at 40-100 deg.C for 2-12 hours, it is dried and cured while lowing the temp. When the above-mentioned organic fiber is heated, it is melted at low temp. (<=200 deg.C) and immediately lost and thereby the air holes becoming evaporation route of water are formed in the structure of the molded body. Therefore preventive effect of crack and explosive breakage is exhibited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、外壁、内壁、天井、床など建物材料として有
用な高強度、緻密構造で、しかも耐熱性の高いセメント
系成形物の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for producing a cement-based molded product that has a high strength, dense structure, and high heat resistance and is useful as a building material for external walls, internal walls, ceilings, floors, etc. It is related to.

〔従来技術と発明が解決しようとする課題〕最近セメン
ト系成形物の緻密化、高強度化の研究が盛んに行われて
いる。これは土木および建築用に使用するパネル、角柱
、パイル、セグメント。
[Prior art and problems to be solved by the invention] Recently, research has been actively conducted on making cement-based molded products denser and stronger. These are panels, prisms, piles, and segments used in civil engineering and construction.

バイブ等のセメント系成形物に対して、強度、とくに引
張り、曲げ強度の高いもの、凍結融解、中性化、酸性物
質や硫酸塩などに対する抵抗性が高く、長年月にわたっ
て高耐久性を有するものが要求されているからである。
For cement-based molded products such as vibrators, products with high strength, especially tensile and bending strength, high resistance to freeze-thaw, neutralization, acidic substances and sulfates, and high durability for many years. This is because it is required.

セメント系成形物の緻密化、高強度化は特願昭63−7
1905号明細書に記載したように、セメント。
Patent application 1986-7 for densification and high strength of cement-based molded products
Cement, as described in No. 1905.

骨材に超微粉のシリカフニームあるいは水砕スラグ粉末
を混合し、合成ゴムまたは合成構脂の水性ディスバージ
ョンを添加して真空下で混練し、成形、養生することに
より達成される。
This is achieved by mixing ultrafine silica hneem or granulated slag powder with aggregate, adding an aqueous dispersion of synthetic rubber or synthetic resin, kneading under vacuum, shaping, and curing.

しかし組織の緻密化に伴って耐熱性の問題が生じる。例
えば、JIS A−1304r建築構造部分の耐火試験
方法j 、 JIS^−1321r建築物の内装材料及
び工法の難燃性試験方法」に準拠した加熱試験の際に、
急激な加熱によりセメント成形体試験片に亀裂の発生や
爆裂などの欠陥が生じる。したがって、建築材料として
使用されるセメント系成形物が火災時に高温に達して、
著るしい亀裂や爆裂を生して破損に敗ることがないよう
に材料の耐熱性を改良する方法を見出すことが重要であ
る。
However, problems with heat resistance arise as the structure becomes denser. For example, during a heating test in accordance with JIS A-1304r Fire resistance test method for building structural parts, JIS^-1321r Fire retardant test method for building interior materials and construction methods,
Rapid heating causes defects such as cracks and explosions in cement compact test pieces. Therefore, cement-based moldings used as building materials reach high temperatures during a fire,
It is important to find ways to improve the heat resistance of materials so that they do not succumb to failure through significant cracking or explosion.

そこで本発明は緻密な組織構造を有し、しかも高い耐熱
性を持つセメント系成形物の製造方法を提供しようとす
るものである。
Therefore, the present invention aims to provide a method for producing a cement-based molded product having a dense microstructure and high heat resistance.

〔課題を解決するための手段〕[Means to solve the problem]

セメント成形体が急激に加熱される場合、成形体中の水
分が水蒸気に変化し、温度の上昇とともに大きな水蒸気
圧を呈する。成形体の組織が緻密である程発生した水蒸
気の成形体外への拡散が遅れ、成形体内部で大きな圧力
を発生し亀裂、爆裂を生じる原因となる。
When a cement molded body is rapidly heated, moisture in the molded body changes to water vapor, and as the temperature rises, a large water vapor pressure is exhibited. The denser the structure of the molded body, the slower the generated water vapor diffuses out of the molded body, causing greater pressure to be generated inside the molded body and causing cracks and explosions.

したがって、この爆裂を防止し耐熱性を改良するために
は成形体内部に水分の蒸発経路となる通気孔を形成すれ
ば、上記の問題を解決することができる。
Therefore, in order to prevent this explosion and improve heat resistance, the above-mentioned problems can be solved by forming vents that serve as evaporation paths for moisture inside the molded body.

本発明者らは種々実験研究の結果、新しい2つの手段を
付加することにより成形体の緻密性、強度などの物性を
損うことなく上記の問題を解決することに成功したもの
である。
As a result of various experimental studies, the present inventors have succeeded in solving the above problem without impairing the physical properties such as compactness and strength of the molded product by adding two new means.

すなわち第1の手段は、セメント、骨材、超微粉末およ
び増粘剤からなる粉体混合物に対し、減水剤、ポリマー
ディスバージョンおよび水からなる液体混合物を添加し
て混練、成形、養生することにより緻密構造のセメント
系成形体をうるに際して、粉体混合物に対して低融点の
有機繊維を添加するようにしたことである。
That is, the first method is to add a liquid mixture consisting of a water reducing agent, polymer dispersion, and water to a powder mixture consisting of cement, aggregate, ultrafine powder, and thickener, and then kneading, molding, and curing the mixture. When preparing a cement-based molded body having a more dense structure, organic fibers having a low melting point are added to the powder mixture.

第2の手段は、成形体を飽和水蒸気圧下40〜100℃
で2〜12時間加熱養生した後、湿度を次第に低下させ
乍ら乾燥・養生するという養生方法を採った点である。
The second method is to mold the molded product at 40 to 100°C under saturated steam pressure.
The curing method used was to heat and cure for 2 to 12 hours, then dry and cure while gradually lowering the humidity.

この2つの手段を併用することにより、高い耐熱性を有
するセメント系成形体を製造することができる。
By using these two means in combination, a cement-based molded body having high heat resistance can be manufactured.

な、お、有機繊維は融点が200 ’C以下のもの、例
えばビニロン、ナイロン、ポリエステル、塩化ビニル、
塩化ビニリデン、ポリエチレン、ポリプロピレン等が用
いられ、形状は、長さ1〜20鴫、径1〜100μ、添
加量は粉体温合物に対して0.1〜3、OwL%が適す
る。
Incidentally, organic fibers include those with a melting point of 200'C or less, such as vinylon, nylon, polyester, vinyl chloride,
Vinylidene chloride, polyethylene, polypropylene, etc. are used, and the suitable shape is 1 to 20 mm in length, 1 to 100 μm in diameter, and the amount added is 0.1 to 3 OwL% with respect to the powder mixture.

〔作用・効果〕[Action/Effect]

セメント系成形物において、混練水として加えられた水
は、セメントとの水和反応が進むにつれて成形体中で状
態の違う水になる。すなわち、消石灰Ca (Oll)
 Zやアルミネート余水和物の結晶水、セメントゲル中
の結合水、ゲルポアやキャピラリーポア壁に強く吸着さ
れる水、キャピラリーポア中に凝縮したり、もっと大き
なくぼみや割れ目にたまる水などである。
In a cement-based molded product, water added as kneading water becomes in a different state within the molded product as the hydration reaction with cement progresses. That is, slaked lime Ca (Oll)
These include water of crystallization in Z and aluminate cohydrates, bound water in cement gel, water that is strongly adsorbed to the walls of gel pores and capillary pores, and water that condenses in capillary pores or accumulates in larger depressions and cracks. .

これらの水は、加熱によって成形体から脱水される。そ
うして、成形体中の吸着水、毛細管凝縮水、付着水など
蒸発可能な水は100℃までに脱水され、セメントゲル
の脱水は100〜300℃で、消石灰の脱水は500〜
600℃で起こり、成形体の脱水は700℃まででほと
んど終了する。
These waters are dehydrated from the molded body by heating. In this way, evaporable water such as adsorbed water, capillary condensed water, and attached water in the molded body is dehydrated to 100℃, cement gel is dehydrated at 100 to 300℃, and slaked lime is dehydrated to 500 to 300℃.
This occurs at 600°C, and dehydration of the molded body is almost completed at 700°C.

成形体が急激に加熱されるとき、これらの成形体中の水
分は水蒸気に変わり圧力を呈する。温度の上昇とともに
水蒸気圧は増大するが、200℃付近からの上昇が大き
い。200℃での水蒸気圧は約16kg/ cIaテア
ル。
When the molded bodies are heated rapidly, the moisture in these molded bodies turns into water vapor and exhibits pressure. The water vapor pressure increases as the temperature rises, but the increase is large from around 200°C. The water vapor pressure at 200℃ is approximately 16 kg/cIa teal.

本発明において、新たに添加した有機繊維は、加熱され
たとき、低温度(200℃以下)で溶融して直ちに溶失
し、水分の蒸発経路となる通気孔を成形体組織中に形成
する。これによって亀裂や爆裂の防止効果が発揮される
In the present invention, when the newly added organic fiber is heated, it melts at a low temperature (200° C. or lower) and immediately dissolves, forming vents in the structure of the molded product that serve as routes for moisture evaporation. This helps prevent cracks and explosions.

また、上記した本発明にか−る養生方法を採ると、成形
体内部に極めて微細な通気孔が形成され、前述の有機繊
維の溶失によって生じる通気孔と相俟って水分を蒸発さ
れ、亀裂や爆裂を効果的に防止する。
Furthermore, when the above-mentioned curing method according to the present invention is adopted, extremely fine ventilation holes are formed inside the molded body, and together with the ventilation holes created by the dissolution of the organic fibers mentioned above, moisture is evaporated. Effectively prevent cracks and explosions.

微細孔隙を有する組織において、内部の水分が表面に移
動する速度は こ〜でC0:温血の水濃度 C2:乾燥面の水濃度 に:常数 l:拡散の距離 P:材料の透過性 η:水の粘度 水分の移動速度は、本発明の養生条件のうち湿度と温度
を適切に選ぶことによって、調節できる。
In a tissue with micropores, the speed at which internal water moves to the surface is: C0: Warm-blooded water concentration C2: Water concentration on a dry surface: Constant l: Diffusion distance P: Material permeability η: The viscosity of water and the rate of movement of moisture can be adjusted by appropriately selecting humidity and temperature among the curing conditions of the present invention.

セメントの水和反応を阻害するような範囲は避けねばな
らない。養生の温度は40〜100℃とするが、好まし
くは60〜80℃である。湿度は最低30%R11、好
ましくは50%R11までである。
Ranges that inhibit the hydration reaction of cement must be avoided. The curing temperature is 40 to 100°C, preferably 60 to 80°C. The humidity is at least 30% R11, preferably up to 50% R11.

有機繊維の加熱により生成する比較的大きい通気孔と、
本発明の養生により形成される微細な孔路が一連になっ
て、恰も、肺の気管と気胞の様な状態となって有効な爆
裂防止が可能になると考えられる。
Relatively large vents created by heating organic fibers,
It is thought that the fine pores formed by the curing of the present invention become a series, resembling the trachea and air sacs of the lungs, making it possible to effectively prevent explosions.

有機繊維の添加量は、粉体混合物に対して0.1〜3.
0wt%とする。0.1 wt%以下では効果がなく、
3、0wt%以上では成形体の加工法が損われる。好ま
しくは0.25%〜L、0wt%である。
The amount of organic fiber added is 0.1 to 3.
It is set to 0wt%. There is no effect below 0.1 wt%,
If it exceeds 3.0 wt%, the processing method of the molded article will be impaired. Preferably it is 0.25% to L, 0wt%.

繊維の形状については微細なほど効果が期待できる。径
は1〜100μとするが1〜10μが好ましく、10μ
以上では繊維数が少なく効果が少ない。
Regarding the shape of the fibers, the finer the shape, the more effective the effect can be expected. The diameter is 1 to 100μ, preferably 1 to 10μ, and 10μ
Above that, the number of fibers is small and the effect is low.

〔実施例] 以下本発明を実施例で具体的に説明する。〔Example] The present invention will be specifically explained below with reference to Examples.

第1表の実施例に示す配合の粉体混合物に繊維を加え混
合した後、液体混合物を添加し真空下で混合・混練した
、ビニロン繊維は長さ4mm、径6μで融点は200℃
であり、ポリエチレン合成パルプは平均繊維長211I
I11、融点130℃である。
The fibers were added to the powder mixture of the composition shown in the examples in Table 1 and mixed, and then the liquid mixture was added and mixed and kneaded under vacuum.The vinylon fibers had a length of 4 mm, a diameter of 6μ, and a melting point of 200°C.
The polyethylene synthetic pulp has an average fiber length of 211I.
I11, melting point is 130°C.

次いで真空脱気付押出し成形機により、断面が4 cm
 X 4 cmの角柱に成形した。実施例の養生条件A
は次の通りであった。えられた角柱状成形物を水で濡ら
した布で覆い、20℃で24時間静置した後60℃飽和
蒸気圧下で4時間加熱養生し、次いで湿度を低下させな
がら(40%R1+まで)60℃で44時間養生した。
Then, a vacuum degassing extrusion molding machine was used to reduce the cross section to 4 cm.
It was molded into a rectangular column measuring 4 cm x 4 cm. Curing conditions A of the example
was as follows. The resulting prismatic molded product was covered with a cloth moistened with water, left to stand at 20°C for 24 hours, then heated and cured at 60°C for 4 hours under saturated steam pressure, and then heated to 60°C while lowering the humidity (up to 40% R1+). It was cured at ℃ for 44 hours.

比較例についても、同様にして真空下で混合・混練、押
出し成型により角柱状成形物をえた。繊維を使用しない
側、ガラス繊維を使用した例を示した。ガラス繊維は長
さ3印、径15μである。
For comparative examples, prismatic molded products were similarly obtained by mixing, kneading, and extrusion molding under vacuum. The side that does not use fibers and the example that uses glass fibers are shown. The glass fiber has a length of 3 marks and a diameter of 15 μm.

比較例中の養生条件Bは次の通りであった。えられた角
柱状成形物をポリエチレンシートで包み、20℃で24
時間静置した後、60℃飽和水蒸気圧下で48時間養生
した。
The curing conditions B in the comparative example were as follows. The resulting prismatic molded product was wrapped in a polyethylene sheet and heated at 20°C for 24 hours.
After being allowed to stand for an hour, it was cured for 48 hours at 60° C. under saturated steam pressure.

物性測定試験、耐熱性評価試験は、上記養生後室点に4
週間放置した角柱状成形物をテストピースとして行った
The physical property measurement test and heat resistance evaluation test were conducted at the room temperature after curing.
A prismatic molded product that had been left for a week was used as a test piece.

耐熱性評価試験は、40 X 40 X 50mmの試
験片を1000’Cに保った電気炉内に挿入し、試験片
の温度が750℃に達するまで(約20分間)保持して
爆裂、小剥離、亀裂発生の程度と観察して次の様に評価
した。
In the heat resistance evaluation test, a 40 x 40 x 50 mm test piece was inserted into an electric furnace kept at 1000'C, and held until the temperature of the test piece reached 750°C (approximately 20 minutes) to detect any explosions or small flakes. The degree of crack occurrence was observed and evaluated as follows.

第1表から明らかなように、本発明実施例はいずれも耐
熱性は良好で、曲げ強度等の諸物性にすぐれたものであ
った。比較例から、本発明の2方法、低融点lir機繊
維の使用と成型体の養生を組み合わせて使用することが
必要であることがわかる。
As is clear from Table 1, all of the examples of the present invention had good heat resistance and excellent physical properties such as bending strength. The comparative examples show that it is necessary to use a combination of the two methods of the present invention, the use of low melting point LIR machine fibers and the curing of the molded body.

(発明の効果) 以上の様に本発明によれば、緻密な組8M構造を有する
セメント系成形体の耐熱性を向上することができ、外壁
、内壁パネル等の建築材料として要望される優れた強度
と耐久性を有する材料を製造することが可能となる。
(Effects of the Invention) As described above, according to the present invention, it is possible to improve the heat resistance of a cement-based molded product having a dense 8M structure, and it is possible to improve the heat resistance of a cement-based molded product having a dense 8M structure. It becomes possible to manufacture materials with strength and durability.

特許出願人 昭和シェル石油株式会社 同   日本鋼管株式会社 同 代理人 服  部  修Patent applicant: Showa Shell Sekiyu Co., Ltd. Nippon Kokan Co., Ltd. Same agent clothing department repair

Claims (2)

【特許請求の範囲】[Claims] (1)セメント、骨材、超微粉末および増粘剤からなる
粉体混合物に低融点の有機繊維を加え、減水剤、ポリマ
ーディスパージョンおよび水からなる液体混合物を添加
し、混合・混練した後、プレス、押出し加圧注入等によ
り、成型し、その成型体を飽和水蒸気圧下40〜100
℃で2〜12時間養生した後、湿度を低下させながら乾
燥・養生することを特徴とする緻密構造でかつ耐熱性の
高いセメント系成形物の製造方法。
(1) After adding low melting point organic fiber to a powder mixture consisting of cement, aggregate, ultrafine powder and thickener, and adding a liquid mixture consisting of water reducing agent, polymer dispersion and water, mixing and kneading. , press, extrusion, pressurized injection, etc., and mold the molded body under saturated water vapor pressure of 40 to 100
A method for producing a cement-based molded product having a dense structure and high heat resistance, which comprises curing at ℃ for 2 to 12 hours, followed by drying and curing while reducing humidity.
(2)有機繊維の融点は200℃以下であり、形状は長
さ1〜20mm、径1〜100μであり、有機繊維の添
加量は粉体混合物に対して0.1〜3.0wt%である
ことを特徴とする請求項1記載の緻密構造でかつ耐熱性
の高いセメント系成形物の製造方法。
(2) The melting point of the organic fiber is 200°C or less, the shape is 1 to 20 mm in length, and 1 to 100 μ in diameter, and the amount of organic fiber added is 0.1 to 3.0 wt% based on the powder mixture. 2. The method for producing a cement-based molded product having a dense structure and high heat resistance according to claim 1.
JP25586788A 1988-10-13 1988-10-13 Production of cement-based moldings having dense structure and high heat resistance Pending JPH02107546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25586788A JPH02107546A (en) 1988-10-13 1988-10-13 Production of cement-based moldings having dense structure and high heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25586788A JPH02107546A (en) 1988-10-13 1988-10-13 Production of cement-based moldings having dense structure and high heat resistance

Publications (1)

Publication Number Publication Date
JPH02107546A true JPH02107546A (en) 1990-04-19

Family

ID=17284680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25586788A Pending JPH02107546A (en) 1988-10-13 1988-10-13 Production of cement-based moldings having dense structure and high heat resistance

Country Status (1)

Country Link
JP (1) JPH02107546A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058468A1 (en) * 1998-05-14 1999-11-18 Bouygues Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes
WO2001085641A1 (en) * 2000-05-10 2001-11-15 Takenaka Corporation Concrete being resistant to rupture
GB2379928A (en) * 2000-05-10 2003-03-26 Takenaka Corp Concrete being resistant to rupture
JP2003089561A (en) * 2001-09-14 2003-03-28 Taiheiyo Cement Corp Method for producing bursting resistant high strength cement hardened body
JP2003112958A (en) * 2001-10-09 2003-04-18 Taiheiyo Cement Corp Method for producing explosion resistant high strength cement hardened body
JP2004331450A (en) * 2003-05-07 2004-11-25 Fujita Corp Rupture resistant cement mortar, concrete-repairing material using it and repairing method
JP2005112695A (en) * 2003-10-10 2005-04-28 Dps Bridge Works Co Ltd Concrete bar member
JP2012153584A (en) * 2011-01-27 2012-08-16 Kuraray Co Ltd Explosion-resistant hydraulic hardening body
JP2018108909A (en) * 2017-01-05 2018-07-12 デンカ株式会社 Fire-resistant mortar composition
CN110642661A (en) * 2019-10-25 2020-01-03 中国工程物理研究院化工材料研究所 Nano energetic material based on thermal solvent molecule induction controllable growth and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058468A1 (en) * 1998-05-14 1999-11-18 Bouygues Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes
FR2778654A1 (en) * 1998-05-14 1999-11-19 Bouygues Sa Concrete comprising organic fibers in cement matrix
CN1325426C (en) * 1998-05-14 2007-07-11 布伊格斯公司 Concrete comprising organic fibres dispersed in cement matrix, concrete cement matrix and premixes
WO2001085641A1 (en) * 2000-05-10 2001-11-15 Takenaka Corporation Concrete being resistant to rupture
GB2379928A (en) * 2000-05-10 2003-03-26 Takenaka Corp Concrete being resistant to rupture
JP2003089561A (en) * 2001-09-14 2003-03-28 Taiheiyo Cement Corp Method for producing bursting resistant high strength cement hardened body
JP2003112958A (en) * 2001-10-09 2003-04-18 Taiheiyo Cement Corp Method for producing explosion resistant high strength cement hardened body
JP2004331450A (en) * 2003-05-07 2004-11-25 Fujita Corp Rupture resistant cement mortar, concrete-repairing material using it and repairing method
JP2005112695A (en) * 2003-10-10 2005-04-28 Dps Bridge Works Co Ltd Concrete bar member
JP2012153584A (en) * 2011-01-27 2012-08-16 Kuraray Co Ltd Explosion-resistant hydraulic hardening body
JP2018108909A (en) * 2017-01-05 2018-07-12 デンカ株式会社 Fire-resistant mortar composition
CN110642661A (en) * 2019-10-25 2020-01-03 中国工程物理研究院化工材料研究所 Nano energetic material based on thermal solvent molecule induction controllable growth and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH02107546A (en) Production of cement-based moldings having dense structure and high heat resistance
EP0261971B1 (en) Fiber-reinforced cement material and molded article comprising hardened product thereof
JP3108431B2 (en) Molding
JPWO2019131321A1 (en) Mold formed from curable composition
KR100745175B1 (en) Process for continuously producing magnesium oxide-based inflammable interior finish materials for buildings, and apparatus therefor
US2000338A (en) Method of indurating clay and product formed therefrom
Bulewicz et al. Intumescent silicate‐based materials: Mechanism of swelling in contact with fire
JP3908292B2 (en) Method for producing asbestos material sintered body
KR102174793B1 (en) Fire retardant and fireproof board
ES2385392T3 (en) Compositions of fiber cement products and shaped products obtained from said compositions
KR20180138079A (en) Mortar composition for preventing explosion of high strength concrete and method for manufacturing mortar for preventing explosion of high strength concrete comprising there of
JPS59128245A (en) Inorganic construction material
CN103382123A (en) A-grade cement foaming fireproof thermal-insulation plate and preparation method thereof
RU2777311C1 (en) Fire-resistant heat insulation composition
JPS609055B2 (en) Manufacturing method of plastic flame-resistant foam
EP1462424B1 (en) Fibre-reinforced building article and manufacturing method thereof
RU2777310C1 (en) Method for producing a fire-resistant heat insulation composition
JPH1025171A (en) Ceramic composite plate having high strength
KR100885202B1 (en) Preparation method of slag board having no asbestos
JPH01119554A (en) Aqueous slurry for calcium silicate hydrate and calcium silicate molded article made from slurry
JPH04173891A (en) Fire-resistant sealing material
JPS5913656A (en) Asbestos cement product forming composition
JPH11314979A (en) Production of cement hardened body
JPS61251550A (en) Fiber reinforced cement composite material and formed article
US2757168A (en) Acid resisting silicate cements containing thermoplastic resin