JPH02107030A - Optical communication equipment - Google Patents

Optical communication equipment

Info

Publication number
JPH02107030A
JPH02107030A JP63259376A JP25937688A JPH02107030A JP H02107030 A JPH02107030 A JP H02107030A JP 63259376 A JP63259376 A JP 63259376A JP 25937688 A JP25937688 A JP 25937688A JP H02107030 A JPH02107030 A JP H02107030A
Authority
JP
Japan
Prior art keywords
level
optical
light
light receiving
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63259376A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
国男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63259376A priority Critical patent/JPH02107030A/en
Publication of JPH02107030A publication Critical patent/JPH02107030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To decrease an error rate and pulse width distortion by feeding back the optical level to the a light receiving side, and maintaining a light emitting level at which the light receiving level is optimized. CONSTITUTION:In optical communication equipment A, the optical signal on an optical fiber cable 3B is converted into an electric signal by a light receiving element 2A and a light receiving circuit 9A. Optical level information corresponding to the light receiving level of optical communication equipment B is made into a light emitting level control 6A signal to drive a light emitting element 1A by means of an optical level information detecting circuit 7A, and controls the light emitting level of the light emitting element 1A. In such a way, since the light receiving level is fed back, and the optimum light receiving level can be maintained by a light receiving edge, the error ratio is decreased the pulse width distortion is reduced, and the lives of the light emitting element and light receiving element can be extended.

Description

【発明の詳細な説明】 し発明の目的] (産業上の利用分野) 本発明は光を媒体として信号伝送する光通信装置に間す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an optical communication device that transmits signals using light as a medium.

(従来の技術) 近年、光通信は高倉怜による大容量通信の実現、優れた
耐電磁障害性等から、市場拡大の一途を辿っている。同
時に光ゲープルの延長、発光素子の発光効率低下、光ケ
ーブル損失変化、光コネクタの損失増加等に伴なう光レ
ベル変動に対するパルス幅歪、誤り率を改善する様々な
工夫が施されてきた。光通信におけるパルス幅歪は過大
光入力により本来最大レベルの1/2にあるべきスレッ
ショルドレベルが比率的に低レベル位置となり、立上り
、下降時間変動分だけパルス幅が変化すること及び過大
光入力による増幅器の飽和により、さらに立上り、下降
伝搬時間差が広がり発生するもので、光通信の精度であ
る誤り率に直接影響する。
(Prior Art) In recent years, the market for optical communications has continued to expand due to the realization of large-capacity communications by Rei Takakura and excellent resistance to electromagnetic interference. At the same time, various efforts have been made to improve pulse width distortion and error rate in response to optical level fluctuations caused by elongation of optical gaples, reduction in luminous efficiency of light emitting elements, changes in optical cable loss, increased loss in optical connectors, etc. Pulse width distortion in optical communications is caused by the fact that due to excessive optical input, the threshold level, which should be at 1/2 of the maximum level, becomes a relatively low level position, and the pulse width changes by the rise and fall time fluctuations, and due to excessive optical input. Due to the saturation of the amplifier, the rise and fall propagation time differences further widen, which directly affects the error rate, which is the accuracy of optical communication.

池に受光レベルが不足しても誤り率が増大する。Even if the level of light received by the pond is insufficient, the error rate increases.

従って、安定した光レベルを維持することは、光通信装
置の性能向上に大きく寄与することになる。
Therefore, maintaining a stable optical level greatly contributes to improving the performance of optical communication devices.

第3図、第4図、第5図に従来の光レベル安定化及びパ
ルス幅歪を低減させる構成例を示す。
FIG. 3, FIG. 4, and FIG. 5 show examples of conventional configurations for stabilizing light level and reducing pulse width distortion.

第3図は光伝送装置の基本的構成である。送信信号14
は送信回路4に入力され、発光素子1を駆動する。発光
素子1から出力される光信号は、光ファイバ3を通じ受
光素子2に伝達される。受光回路9では、受光素子2C
入力された光信号を電気信号に変換し、受信信号15と
なって光通信を実現する。ここで光信号の発光レベルは
光コネクターの結合損失、光ゲーブルの損失等が考慮さ
れ、受光素子感度に対し充分応動しパルス幅歪の最小と
なるレベルに初期調整時に固定される。しかし経年変化
に伴なう光ゲーブル3、発光素T工、受光索子2の損失
増加による受光レベル低下及び不足が誤り率を増大させ
る欠点があった。
FIG. 3 shows the basic configuration of an optical transmission device. Transmission signal 14
is input to the transmitting circuit 4 and drives the light emitting element 1. An optical signal output from the light emitting element 1 is transmitted to the light receiving element 2 through the optical fiber 3. In the light receiving circuit 9, the light receiving element 2C
The input optical signal is converted into an electrical signal and becomes a received signal 15 to realize optical communication. Here, the light emission level of the optical signal takes into account the coupling loss of the optical connector, the loss of the optical cable, etc., and is fixed at the time of initial adjustment to a level that sufficiently responds to the sensitivity of the light receiving element and minimizes pulse width distortion. However, there is a drawback that the light receiving level decreases and becomes insufficient due to increased loss of the optical cable 3, the light emitting element T, and the light receiving cable 2 due to aging, which increases the error rate.

第4図は受光レベル変動によるパルス幅歪を改善するた
めに、スレッショルドレベルを変化させる光受信装置で
ある。受光レベルに相当する電気信号の最大値がピーク
ホールド回路18のホールディングキャパシタ<CH)
に保持され、出力に接続した2つの分圧抵抗(R)によ
り、最大値の1/2電覇を得る。この電圧は常に入力光
レベル最大値の1./2電圧となり、スレッショルド電
圧として使用することでパルス幅歪を改善することがで
きる。しかし、この方法は、ホールディングキャパシタ
(C11)が特定の時定数を持つため、入力光レベルが
0゛を維持した場合、自己放電によりスレッショルドレ
ベルが低下し1次の°°1パデータにパルス幅歪を発生
することが最大の欠点であった。従って、この方法はパ
イフェーズ等のデユーティ50%のデータ伝送に制限さ
れてきた。
FIG. 4 shows an optical receiver that changes the threshold level in order to improve pulse width distortion due to fluctuations in the received light level. The maximum value of the electrical signal corresponding to the received light level is the peak hold capacitor of the hold circuit 18 <CH)
The voltage is maintained at 1/2 of the maximum value by two voltage dividing resistors (R) connected to the output. This voltage is always 1.0% of the maximum input light level. /2 voltage, and by using it as a threshold voltage, pulse width distortion can be improved. However, in this method, since the holding capacitor (C11) has a specific time constant, if the input light level is maintained at 0, the threshold level decreases due to self-discharge and pulse width distortion occurs in the 1st-order data. The biggest drawback was that this occurred. Therefore, this method has been limited to 50% duty data transmission such as pi-phase.

第5図は利得制御方法による光受信装置である。FIG. 5 shows an optical receiver using the gain control method.

受光した光レベルは、受光回路9で電気信号に変換され
、利得制御増幅回路16に入力される。この利得制御増
幅回路16は、自動利得制御(^GC)回路17の帰還
により、過大入力時の増幅器の飽和を改善し、パルス幅
歪の低減、ダイナミックレンジの拡大を計るものである
The received light level is converted into an electrical signal by the light receiving circuit 9 and input to the gain control amplifier circuit 16 . This gain control amplifier circuit 16 improves the saturation of the amplifier at the time of excessive input by feedback from the automatic gain control (^GC) circuit 17, and aims to reduce pulse width distortion and expand the dynamic range.

(発明が解決しようとする課題) 以上のように従来の受光レベルを半固定化し、1時的に
誤り率を改善したり、受光レベル変化を電気信号に変換
した後、スレッショルドレベルを変化させたり1.自動
利得@御回路による出力レベルの安定化で増幅回路の飽
和を避け、パルス幅歪を改善した方法では、発光側の光
レベルが過小、過大なることや、必要以上のレベルで発
光することを抑制する効果は無く、誤り率、パルス幅歪
を改善する根本的な対策ではなかった。更に、過大な光
レベル発光による発光素子の発光効率低下、受光素子劣
化を防ぐことらできなかった。
(Problem to be solved by the invention) As described above, it is possible to temporarily improve the error rate by semi-fixing the conventional received light level, or to change the threshold level after converting changes in the received light level into electrical signals. 1. The method of stabilizing the output level using an automatic gain@control circuit to avoid saturation of the amplifier circuit and improving pulse width distortion prevents the light level on the light emitting side from being too low or too high, or emitting light at a level higher than necessary. It had no suppressive effect and was not a fundamental measure to improve the error rate and pulse width distortion. Furthermore, it has not been possible to prevent a decrease in the luminous efficiency of the light emitting element and deterioration of the light receiving element due to excessive light level emission.

本発明は上記事情に鑑みてなされたものであり、受光部
の光レベル量を発光側にフィードバックすることで発光
レベルを制御し、過大な光レベルによるパルス幅歪を削
減し、発光素子、受光素子劣化から保護することのでき
る光通信装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and controls the light emission level by feeding back the light level amount of the light receiving section to the light emitting side, reduces pulse width distortion due to excessive light level, and improves the light emitting element and light receiving side. It is an object of the present invention to provide an optical communication device that can be protected from element deterioration.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明では光送信器の発光素
子にて電気信号を光信号に変換し、光ファイバケーブル
を介して光受信器の受光素子にて光レベルに対応した電
気信号に変換する光通信装置において、送信側の光通信
装置から出力した光信号を受信側の光通信装置にて受信
し、前記受信しな光信号を平滑した後アナログ、/ディ
ジタル変換してディジタル符号化すると共に送信端側へ
戻すことにより、受信端である光受信器に到達する光レ
ベルをディジタル符号で認識し、このディジタル符号を
使用して送信端の発光素子が最適レベルで発光するよう
に制御するよう構成した。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention converts an electrical signal into an optical signal in a light emitting element of an optical transmitter, and transmits the signal to an optical receiver via an optical fiber cable. In an optical communication device that converts an optical signal into an electrical signal corresponding to a light level using a light-receiving element, the optical communication device on the receiving side receives an optical signal output from the optical communication device on the transmitting side, and converts the unreceived optical signal into an electrical signal corresponding to the optical level. After smoothing, the signal is converted from analog to digital and digitally encoded, and then returned to the transmitting end to recognize the light level reaching the optical receiver at the receiving end as a digital code, and this digital code is used for transmission. The structure is such that the light emitting elements at the ends are controlled so that they emit light at an optimal level.

(作 用) 送信側及び受信側の両光通信装置は相互に受光レベルの
状態をフィードバックし、最適な光受信レベルを維持す
ることができ、受光レベル過小による誤り率低下、過大
パルス発生、光ファイバケーブル、発光素子、受光素子
の劣化に伴なうパルス幅歪を削減できる。
(Function) The optical communication devices on the transmitting side and the receiving side can mutually feed back the status of the received light level and maintain the optimum optical reception level, reducing the error rate due to insufficient received light level, excessive pulse generation, and optical Pulse width distortion caused by deterioration of fiber cables, light emitting elements, and light receiving elements can be reduced.

(実施例) 本発明の実施例を第1図を参照しながら説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

第1図は2つの同一機能を有する光通信装置A。FIG. 1 shows an optical communication device A having two identical functions.

Bが光送信器12A(12B)、光受信器13B(73
^)を光フアイバゲープル3A(3B)で相互に接続し
たブロック図である。光通信装置Aの動作について説明
する。光フアイバケーブル3Bの光信号は受光素子2A
、受光回路9Aによって電気信号に変換される。この電
気信号レベルは光レベルに比例している2通常の伝送信
号は増幅回路8^で増幅した後、受信信号15^として
使用する。一方、光通信装置Bの受光レベルに相当する
光レベル情報は、光レベル情報検出回路7Aにより、発
光素子1^を駆動する発光レベル制御6^の信号となり
、発光素子1^の発光レベルをする。以上のように受光
レベルをフィードバックし、受光端が最適な受光レベル
を維持できる作用を説明する。
B is the optical transmitter 12A (12B) and the optical receiver 13B (73
^) are connected to each other by optical fiber cables 3A (3B). The operation of optical communication device A will be explained. The optical signal of the optical fiber cable 3B is transmitted to the light receiving element 2A.
, is converted into an electrical signal by the light receiving circuit 9A. This electrical signal level is proportional to the optical level.2 The normal transmission signal is amplified by an amplifier circuit 8^ and then used as a received signal 15^. On the other hand, the light level information corresponding to the light reception level of the optical communication device B becomes a signal for the light emission level control 6^ that drives the light emitting element 1^ by the light level information detection circuit 7A, and changes the light emission level of the light emitting element 1^. . The operation of feeding back the light receiving level as described above and maintaining the optimum light receiving level at the light receiving end will be explained.

光通信装置A及びBが停止状態から光通信装置Aが起動
すると、光送信器12Aは、発光素子1^、受光索子2
Bの特性劣化に影響しない程度に予め設定された最大発
光レベルの光信号を光レベル情報として一定時間出力し
て停止する。
When the optical communication device A starts up from the stopped state of the optical communication devices A and B, the optical transmitter 12A connects the light emitting element 1^ and the light receiving cable 2.
An optical signal with a maximum light emission level preset to an extent that does not affect the deterioration of the characteristics of B is outputted as optical level information for a certain period of time, and then stopped.

次に光通信装置Bが起動すると、光通信装置へが起動し
な場合と同様に、最大発光レベルの光レベル情報を出力
する。この光信号は光ファイバケーブル3Bを通し、光
通信装置への受光素子2Aに達する。
Next, when the optical communication device B starts up, it outputs light level information of the maximum light emission level, as in the case where the optical communication device B does not start up. This optical signal passes through the optical fiber cable 3B and reaches the light receiving element 2A for the optical communication device.

第2図に発光素子1Bの最大発光レベル「イ」と、光コ
ネクターの結合損失、光ファイバケーブルの損失等を合
わせた光伝送損失Wにより減衰した受光索子2Aの受光
レベル「ハ」の間係を示す。光伝送損失Wにより減衰し
た光信号を受光回路9A″c電気信号に変換後、積分回
R111^で平滑されて受光レベルに比例したものとな
った直流成分は、A/D変換器10Aで受光レベルに相
当したディジタル符号となる。このディジタル符号は送
信切換器5Aにより発光素子1Aを駆動し、光信号とし
て光フアイバケーブル3^に出力される。光通信装置B
ではディジタル符号を受光し、受光回路9Bで電気変換
し、増幅回路8Bで増幅した後、光レベル情報検出口1
7Bに入力する。光レベル+L?l出回路7Bでは、デ
ィジタル符号から光送信器12Bが光レベル情報を最大
発光レベルで出力した場合に、受光素子2^に到達する
光レベルを解読し、出力した最大発光レベルとの比較に
より、光伝送損失Wを検出することができる。これで光
送信器12Bは受光素子2^の最適受光レベルと光伝送
損失Wを加えた定常発光レベル1口」で、発光素子1B
を駆動するものである。この動作が完了した後光通信装
置Aについても同様の動作を行ない、相互に最良状態の
光伝送を可能とする。よって誤り率低下パルス幅歪の削
減、発光素子、受光素子の長寿命化を実現できる。また
本動作を発光素子、受光素子の劣化特性を予測して定期
的に実施することでより一層の効果を奏する。
Figure 2 shows the difference between the maximum light emitting level "A" of the light emitting element 1B and the light receiving level "C" of the light receiving cable 2A which is attenuated by the optical transmission loss W which is a combination of the coupling loss of the optical connector, the loss of the optical fiber cable, etc. Indicates the person in charge. After converting the optical signal attenuated by the optical transmission loss W into an electrical signal in the light receiving circuit 9A''c, the DC component, which has been smoothed by the integration circuit R111^ and becomes proportional to the received light level, is received by the A/D converter 10A. It becomes a digital code corresponding to the level.This digital code drives the light emitting element 1A by the transmission switch 5A and is outputted to the optical fiber cable 3^ as an optical signal.Optical communication device B
Then, the digital code is received, electrically converted by the light receiving circuit 9B, and amplified by the amplifier circuit 8B.
Enter in 7B. Light level +L? The l output circuit 7B decodes the light level reaching the light receiving element 2^ when the optical transmitter 12B outputs light level information at the maximum light emission level from the digital code, and compares it with the output maximum light emission level. Optical transmission loss W can be detected. Now, the optical transmitter 12B is at a steady light emission level of 1 unit, which is the optimum light reception level of the light receiving element 2^ and the optical transmission loss W, and the light emitting element 1B
It is what drives the. After this operation is completed, the optical communication device A also performs the same operation, thereby enabling mutual optical transmission in the best condition. Therefore, it is possible to reduce the error rate, reduce pulse width distortion, and extend the life of the light emitting element and the light receiving element. Moreover, further effects can be obtained by performing this operation periodically after predicting the deterioration characteristics of the light emitting element and the light receiving element.

[発明の効果] 本発明は受光端の光レベルを発光側にフィードバックし
、受光レベルが最適となる発光レベルを維持することを
可能としたことで、光伝送における最大の難点であった
誤り率、パルス幅歪を殆ど皆無にすることができる効果
がある。
[Effects of the Invention] The present invention makes it possible to feed back the light level at the light receiving end to the light emitting side and maintain the light emitting level at which the light receiving level is optimal, thereby reducing the error rate, which was the biggest drawback in optical transmission. This has the effect of almost eliminating pulse width distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光通信装置の一実施例の構成図、
第2図は本発明の光レベルを示す図、第3図は従#1.
装πの一例図、第4図は従来装置の他の一例図、第5図
は従来装置の更に他の一例図である。
FIG. 1 is a configuration diagram of an embodiment of an optical communication device according to the present invention;
FIG. 2 is a diagram showing the light level of the present invention, and FIG. 3 is a diagram showing the light level of the sub-#1.
FIG. 4 is a diagram showing another example of the conventional device, and FIG. 5 is a diagram showing still another example of the conventional device.

Claims (1)

【特許請求の範囲】[Claims] 光送信器の発光索子にて電気信号を光信号に変換し、光
ファイバケーブルを介して光受信器の受光素子にて光レ
ベルに対応した電気信号に変換する光通信装置において
、送信側の光通信装置から出力した光信号を受信側の光
通信装置にて受信し、前記受信した光信号を平滑した後
アナログ/ディジタル変換してディジタル符号化すると
共に送信端側へ戻すことにより、受信端である光受信器
に到達する光レベルをディジタル符号で認識し、このデ
ィジタル符号を使用して送信端の発光素子が最適レベル
で発光するように制御することを特徴とする光通信装置
In an optical communication device, an electrical signal is converted into an optical signal by a light emitting cable of an optical transmitter, and then converted into an electrical signal corresponding to the light level by a light receiving element of an optical receiver via an optical fiber cable. An optical communication device on the receiving side receives an optical signal output from an optical communication device, smooths the received optical signal, converts it from analog to digital, and returns it to the transmitting end. An optical communication device characterized in that the level of light reaching an optical receiver is recognized by a digital code, and the digital code is used to control a light emitting element at a transmitting end so that it emits light at an optimum level.
JP63259376A 1988-10-17 1988-10-17 Optical communication equipment Pending JPH02107030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63259376A JPH02107030A (en) 1988-10-17 1988-10-17 Optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63259376A JPH02107030A (en) 1988-10-17 1988-10-17 Optical communication equipment

Publications (1)

Publication Number Publication Date
JPH02107030A true JPH02107030A (en) 1990-04-19

Family

ID=17333266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63259376A Pending JPH02107030A (en) 1988-10-17 1988-10-17 Optical communication equipment

Country Status (1)

Country Link
JP (1) JPH02107030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993199A (en) * 1995-09-26 1997-04-04 Nec Shizuoka Ltd Optical transmission reception level adjustment circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112138A (en) * 1984-06-27 1986-01-20 Nec Corp Optical fiber data link
JPS6220435A (en) * 1985-07-19 1987-01-29 Hitachi Ltd Luminous intensity remote control system
JPS62159533A (en) * 1986-01-07 1987-07-15 Matsushita Electric Ind Co Ltd Two-way optical transmitter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112138A (en) * 1984-06-27 1986-01-20 Nec Corp Optical fiber data link
JPS6220435A (en) * 1985-07-19 1987-01-29 Hitachi Ltd Luminous intensity remote control system
JPS62159533A (en) * 1986-01-07 1987-07-15 Matsushita Electric Ind Co Ltd Two-way optical transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993199A (en) * 1995-09-26 1997-04-04 Nec Shizuoka Ltd Optical transmission reception level adjustment circuit

Similar Documents

Publication Publication Date Title
US20090279897A1 (en) Transmission method, transmitter-receiver, and transmitting-receiving system
KR100941704B1 (en) Data transmitter, photoelectric transducer circuit, and test instrument
JPH02107030A (en) Optical communication equipment
KR100545589B1 (en) Apparatus for compensating charateristics of laser diode and optical transmitter comprising it
US4543664A (en) Direct current coupled data transmission
KR20210028816A (en) Active Optical Cable Device for One-way optical communication
JPH02280427A (en) Infrared ray output device
JP3105779B2 (en) Infrared communication device
US10812190B1 (en) Active optical cable (AOC) device and operation control method thereof
JP2713126B2 (en) Optical receiver
US11323182B2 (en) Transmitting and receiving device, terminal device, and transmitting and receiving system
KR102665205B1 (en) Active Optical Cable Device for Two-way optical communication
KR102665189B1 (en) Active Optical Cable Device for One-way optical communication
KR102665188B1 (en) Active Optical Cable Device for Two-way optical communication
CN1265475A (en) Gain control optical amplifier
JPS60169248A (en) Optical fiber communication system
JPH05145360A (en) Optical reception circuit and optical transformation circuit
JP2755273B2 (en) Optical bidirectional transceiver circuit
JPH1117618A (en) Optical communication equipment
CN2154562Y (en) Synchronous detect type infrared photoelectric switch
JPH02271727A (en) Optical transmission/reception level adjusting circuit
JPH08288913A (en) Optical receiver
CN115396014A (en) Controllable backup light receiving device
JPH0275232A (en) Optical fiber parallel transmission module
JPH0345046A (en) Optical communication system