JPH02280427A - Infrared ray output device - Google Patents

Infrared ray output device

Info

Publication number
JPH02280427A
JPH02280427A JP1100072A JP10007289A JPH02280427A JP H02280427 A JPH02280427 A JP H02280427A JP 1100072 A JP1100072 A JP 1100072A JP 10007289 A JP10007289 A JP 10007289A JP H02280427 A JPH02280427 A JP H02280427A
Authority
JP
Japan
Prior art keywords
infrared light
reflected
infrared ray
distance
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1100072A
Other languages
Japanese (ja)
Inventor
Keiji Obara
啓二 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1100072A priority Critical patent/JPH02280427A/en
Publication of JPH02280427A publication Critical patent/JPH02280427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To send infrared-ray with an optimum luminous quantity for the distance between a transmission means and a received means by receiving reflected infrared ray sent and reflected to the received section from the transmission means by the reception means, and varying the quantity of light emission of the infrared ray sent from the transmission means by the light quantity variable means based on the quantity of light reception. CONSTITUTION:A reception means 1 receiving a reflected infrared ray light sent and reflected from the transmission means to the reception section and light quantity variable means 2-6 varying the light emission of the infrared ray sent from the transmission means 23 based on the light emission quantity of the reflected infrared ray are provided. Since the infrared ray with the quantity of light emission optimum to the distance between the infrared ray reception section 1 and the infrared ray emission section 23 is sent, accurate data communication is stably executed from a very near distance to a remote distance. Moreover, as the transmission reception distance is reduced, since the power consumed by the transmission means is reduced, the service life of the battery is extended.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、遠隔制御装置等の信号源となる赤外光出力
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an infrared light output device that serves as a signal source for a remote control device or the like.

〔従来の技術〕[Conventional technology]

従来、赤外線リモートコントローラ(赤外線リモコン装
置)等の赤外光出力装置は、第3図に示されるように構
成されている。
Conventionally, an infrared light output device such as an infrared remote controller (infrared remote control device) is configured as shown in FIG.

第3図はこの種の赤外光出力装置の一例を示す回路ブロ
ック図であり、21はコントローラで、出力指示された
制御信号をボートpoから抵抗器R1を介してドライバ
となるトランジスタ22のベースに出力する。トランジ
スタ22はベースに印加される0N10FF信号に基づ
いてスイッチングし、赤外発光ダイオード23を発光さ
せる。
FIG. 3 is a circuit block diagram showing an example of this type of infrared light output device, in which 21 is a controller, and a control signal instructed to be output is sent from the boat po through a resistor R1 to the base of a transistor 22 which serves as a driver. Output to. The transistor 22 switches based on the 0N10FF signal applied to its base, causing the infrared light emitting diode 23 to emit light.

なお、赤外発光ダイオード23のアノード側は抵抗器R
2を介して所定電位が印加されている。
Note that the anode side of the infrared light emitting diode 23 is connected to a resistor R.
A predetermined potential is applied via 2.

このように、従来の赤外光出力装置は赤外発光ダイオー
ド23の赤外先出力をあらかじめ設定された値の存在有
無に起因した光送信制御を行っていた。
In this manner, the conventional infrared light output device performs light transmission control based on whether or not the infrared output of the infrared light emitting diode 23 has a preset value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来では長距離送信を可能とするに
は、第3図に示した赤外発光ダイオード23に対してで
籾るだけ多くの電流を流さなければならない。
However, in the above-described conventional method, in order to enable long-distance transmission, as much current as possible must be passed through the infrared light emitting diode 23 shown in FIG.

しかし、赤外光の強さは、赤外発光ダイオード23に流
す電流に比例するが、受信側に届く赤外光の強さは、送
受信間の距離の2乗に反比例する。よって、10mの距
離の送信を保証するために、赤外発光ダイオード23に
流す電流を100mAとすると、1mの距離で送信する
場合には、1mAで済むこととなる。しかしながら、第
3図に示すような送信回路によると、どんな距離でも1
00mAの電流を消費する結果となり、電力損失率が高
まり、電源として電池使用する場合には寿命が縮んでし
まう問題が発生する。
However, although the intensity of the infrared light is proportional to the current flowing through the infrared light emitting diode 23, the intensity of the infrared light reaching the receiving side is inversely proportional to the square of the distance between the transmitter and the receiver. Therefore, if the current flowing through the infrared light emitting diode 23 is set to 100 mA in order to guarantee transmission over a distance of 10 m, the current required for transmission over a distance of 1 m is 1 mA. However, according to the transmitting circuit shown in Figure 3, 1
As a result, a current of 00 mA is consumed, resulting in an increased power loss rate, and when using a battery as a power source, a problem arises in that the life span is shortened.

一方、逆に遠近格差が大きい場合、例えば上記の例で、
誤って10Cmの距離で送信した場合には、受信側の赤
外検出部が飽和してしまい、受信不能となってしまう問
題が発生する恐れがあった。
On the other hand, if the distance difference is large, for example in the above example,
If the signal was accidentally transmitted at a distance of 10 cm, the infrared detection section on the receiving side would become saturated, which could cause a problem in which reception would be impossible.

この発明は、上記の問題点を解決するためになされたも
ので、送信される赤外光出力量を送信された赤外光出力
の反射口に応じて調整することにより、送信機側の電力
消費二を大幅に削減できるとともに、超近距離から遠距
離までのすべての距離関係において安定した最適なレベ
ルでデータ転送を実現できる赤外光出力装置を得ること
を目的とする。
This invention was made to solve the above problems, and by adjusting the amount of infrared light output to be transmitted according to the reflection port of the transmitted infrared light output, the power on the transmitter side is reduced. The purpose of the present invention is to obtain an infrared light output device that can significantly reduce consumption and also realize data transfer at a stable and optimal level in all distance relationships from extremely short distances to long distances.

(課題を解決するための手段) この発明に係る赤外光出力装置は、送信手段から被受信
部に送信されて反射される反射赤外光を受信する受信手
段と、この受信手段により受信された反射赤外光の発光
量に基づいて送信手段から送信される赤外光線の発光量
を可変する光量可変手段とを設けたものである。
(Means for Solving the Problems) An infrared light output device according to the present invention includes a receiving unit that receives reflected infrared light that is transmitted from a transmitting unit to a receiving unit and reflected, and a receiving unit that receives reflected infrared light that is reflected by the receiving unit. and a light amount variable means for varying the amount of infrared light transmitted from the transmitting means based on the amount of reflected infrared light emitted.

〔作用〕[Effect]

この発明においては、送信手段から被受信部に対して赤
外光線が送信されると、その際被受信部に送信されて反
射される反射赤外光を受信手段が受信し、受信した反射
赤外光の発光量に基づいて光量可変手段が送信手段から
送信される赤外光線の発光量を可変し、送信手段と被受
信手段との距離に最適な発光量の赤外光線を被受信部に
送信する。
In this invention, when an infrared ray is transmitted from the transmitting means to the receiving part, the receiving means receives the reflected infrared light that is transmitted to the receiving part and reflected. The light amount variable means varies the amount of infrared light transmitted from the transmitting means based on the amount of external light emitted, and transmits the infrared rays at the optimum amount to the receiving section based on the distance between the transmitting means and the receiving means. Send to.

(実施例) 第1図はこの発明の一実施例を示す赤外光出力量首の構
成を説明するブロック図であり、第3図と同一のものに
は同じ符号を付しである。
(Embodiment) FIG. 1 is a block diagram illustrating the configuration of an infrared light output unit showing an embodiment of the present invention, and the same parts as in FIG. 3 are given the same reference numerals.

図において、1はこの発明の受信手段を構成するフォト
ダイオードで、アノード側がコンデンサ3に接続され、
受信した反射赤外光に応じてコンデンサ3に電荷がチャ
ージされる。、2は高抵抗器で、反射赤外光が入力され
ない場合に、コンデンサ3にチャージされた電荷を放電
する。4はオペアンプで、非反転端子側に印加される光
量電位をインピーダンス変換し、抵抗器6を介してトラ
ンジスタ5のベースへの;流を制御し、赤外発光ダイオ
ード23に流す電流をコントロールする構成となってい
る。
In the figure, 1 is a photodiode constituting the receiving means of the present invention, the anode side of which is connected to a capacitor 3.
The capacitor 3 is charged in accordance with the received reflected infrared light. , 2 are high resistors, which discharge the charge stored in the capacitor 3 when no reflected infrared light is input. 4 is an operational amplifier configured to impedance convert the light amount potential applied to the non-inverting terminal side, control the current flowing to the base of the transistor 5 via the resistor 6, and control the current flowing to the infrared light emitting diode 23. It becomes.

なお、送信手段を構成する赤外発光ダイオード23から
被受信部(後述する赤外受光部15)に対して赤外光線
が送信されると、その際被受信部に送信されて反射され
る反射赤外光を受信手段を構成するフォトダイオード]
が受信し、受信した反射赤外光の発光量に基づいて光量
可変手段(オペアンプ4.抵抗器6.トランジスタ5等
から構成される)が赤外発光ダイオード23がら送信さ
れる赤外光線の発光量を可変し、赤外発光ダイオード2
3と被受信手段との距離に最適な発光量の赤外光線を被
受信部に送信させる。
Note that when an infrared ray is transmitted from the infrared light emitting diode 23 constituting the transmitting means to the receiving section (the infrared receiving section 15 to be described later), the reflected light is transmitted to the receiving section and reflected. Photodiode that constitutes the means for receiving infrared light]
The light amount variable means (consisting of an operational amplifier 4, a resistor 6, a transistor 5, etc.) receives the reflected infrared light from the infrared light emitting diode 23 based on the amount of the received reflected infrared light. Variable amount, infrared light emitting diode 2
Infrared rays with an amount of light emitted that is optimal for the distance between 3 and the receiving means are transmitted to the receiving section.

第2図は、第1図に示した赤外光送受信状態を説明する
相対関係図であり、10はリモコン送12器で、赤外発
光部11よりコマンドに準じた赤外光線12(第1図に
示した赤外発光ダイオード23から出力される)を受信
器14の赤外受光部15に送信する。13は反射赤外光
線(反射赤外光)で、赤外光線12の反nす先に対応し
、第1図に示したフォトダイオード1に入光する。
FIG. 2 is a relative relationship diagram illustrating the infrared light transmission/reception state shown in FIG. (output from the infrared light emitting diode 23 shown in the figure) is transmitted to the infrared light receiving section 15 of the receiver 14. Reference numeral 13 indicates a reflected infrared light beam (reflected infrared light), which corresponds to the tip of the infrared light beam 12 and enters the photodiode 1 shown in FIG.

次に第2図を参照しながら第1図の動作について説明す
る。
Next, the operation shown in FIG. 1 will be explained with reference to FIG.

リモコン送信器10の赤外発光部11よりコマンドに準
じた赤外光線12が受信器14の赤外受光部15に送信
されると、その一部は赤外受光部15で反射され、反射
赤外光線13が赤外発光部11に設けるフォトダイオー
ド1に入光する。
When the infrared light 12 according to the command is transmitted from the infrared light emitting unit 11 of the remote control transmitter 10 to the infrared light receiving unit 15 of the receiver 14, a part of it is reflected by the infrared light receiving unit 15, and the reflected red light is External light 13 enters the photodiode 1 provided in the infrared light emitting section 11.

この時、フォトダイオード1には反射赤外光線13の光
量に応じた電流が発生(光電変換され)し、コンデンサ
3をチャージアップする。コンデンサ3により平滑され
オペアンプ4の非反転入力側に反射赤外光線13の強さ
に比例した直流電圧を人力する。このため、オペアンプ
4でインピーダンス変換されてトランジスタ5のベース
電流を制御して赤外発光ダイオード23に印加する電圧
を制御し、発光光景を可変する。
At this time, a current corresponding to the amount of reflected infrared light 13 is generated in the photodiode 1 (photoelectrically converted), and the capacitor 3 is charged up. A DC voltage proportional to the intensity of the reflected infrared ray 13 is applied to the non-inverting input side of the operational amplifier 4 after being smoothed by the capacitor 3 . Therefore, the impedance is converted by the operational amplifier 4, and the base current of the transistor 5 is controlled to control the voltage applied to the infrared light emitting diode 23, thereby varying the light emission scene.

このように赤外受光部15と赤外発光部11との距離に
基づく上記赤外受光部15に最適な光量の赤外光線12
を送信できる。
In this way, the amount of infrared light 12 is optimal for the infrared light receiving section 15 based on the distance between the infrared light receiving section 15 and the infrared light emitting section 11.
can be sent.

なお、上記実施例では赤外発光ダイオード23に印加す
る電圧制御をアナログ回路により制御する場合について
説明したが、反射赤外光線13を光電変換して得られる
アナログ電位をA/D変換して、その反射光量データに
基づく印加電圧テーブルから赤外発光ダイオード23に
印加する電圧を制御して発光光量を制御しても良い。
Incidentally, in the above embodiment, a case has been described in which the voltage applied to the infrared light emitting diode 23 is controlled by an analog circuit, but the analog potential obtained by photoelectrically converting the reflected infrared light ray 13 is A/D converted, The amount of emitted light may be controlled by controlling the voltage applied to the infrared light emitting diode 23 from an applied voltage table based on the reflected light amount data.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は送信手段から被受信部
に送信されて反射される反射赤外光を受信する受信手段
と、この受信手段により受信された反射赤外光の発光量
に基づいて送信手段から送信される赤外光線の発光量を
可変する光量可変手段とを設けたので、赤外受光部と赤
外発光部との距離に最適な発光光量の赤外線を送信でき
るので、超近距離から遠距離まで正確なデータ通信を安
定に実行できる。
As explained above, the present invention is based on the receiving means for receiving the reflected infrared light transmitted from the transmitting means to the receiving section and reflected, and the amount of emitted light of the reflected infrared light received by the receiving means. Since a light amount variable means is provided to vary the amount of infrared light emitted from the transmitting means, it is possible to transmit infrared light with the optimum amount of emitted light depending on the distance between the infrared receiver and the infrared emitter. Accurate and stable data communication can be performed over long distances.

また、送受信距離が短縮されるに従って送信手段に消費
される電力が少なくなるため、例えば電池駆動型の赤外
光出力装置において、電池寿命を延命できる等の優れた
効果を奏する。
Further, as the transmission/reception distance is shortened, the power consumed by the transmitting means is reduced, so that, for example, in a battery-powered infrared light output device, excellent effects such as prolonging the battery life can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す赤外光出力装置の構
成を説明するブロック図、第2図は、第1図に示した赤
外光送受信状態を説明する相対関係図、第3図はこの種
の赤外光出力装置の一例を示す回路ブロック図である。 図中、1はフォトダイオード、2は高抵抗器、3はコン
デンサ、4はオペアンプ、5はトランジスタである。 第1図 3:コンデンサ 4:オペアンプ 5:トランジスタ
FIG. 1 is a block diagram explaining the configuration of an infrared light output device showing an embodiment of the present invention, FIG. 2 is a relative relationship diagram explaining the infrared light transmission/reception state shown in FIG. 1, and FIG. The figure is a circuit block diagram showing an example of this type of infrared light output device. In the figure, 1 is a photodiode, 2 is a high resistor, 3 is a capacitor, 4 is an operational amplifier, and 5 is a transistor. Figure 1 3: Capacitor 4: Operational amplifier 5: Transistor

Claims (1)

【特許請求の範囲】[Claims] 変調された赤外光線を遠隔した被受信部に送信する送信
手段を有する赤外光出力装置において、前記送信手段か
ら前記被受信部に送信されて反射される反射赤外光を受
信する受信手段と、この受信手段により受信された反射
赤外光量に基づいて前記送信手段から送信される赤外光
線の発光量を可変する光量可変手段とを具備したことを
特徴とする赤外光出力装置。
In an infrared light output device having a transmitting means for transmitting modulated infrared light to a remote receiving section, a receiving means for receiving reflected infrared light transmitted from the transmitting means to the receiving section and reflected. and a light amount variable means for varying the amount of infrared light emitted from the transmitting means based on the amount of reflected infrared light received by the receiving means.
JP1100072A 1989-04-21 1989-04-21 Infrared ray output device Pending JPH02280427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100072A JPH02280427A (en) 1989-04-21 1989-04-21 Infrared ray output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100072A JPH02280427A (en) 1989-04-21 1989-04-21 Infrared ray output device

Publications (1)

Publication Number Publication Date
JPH02280427A true JPH02280427A (en) 1990-11-16

Family

ID=14264255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100072A Pending JPH02280427A (en) 1989-04-21 1989-04-21 Infrared ray output device

Country Status (1)

Country Link
JP (1) JPH02280427A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555683U (en) * 1991-12-24 1993-07-23 アルパイン株式会社 Bidirectional infrared remote control
US6483622B1 (en) 1998-03-30 2002-11-19 Nec Corporation Mobile data terminal with an infrared communication capability
US6525854B1 (en) 1997-12-24 2003-02-25 Fujitsu Limited Portable radio terminal with infrared communication function, infrared emission power controlling method between portable radio terminal and apparatus with infrared communication function
WO2011079063A1 (en) * 2009-12-22 2011-06-30 Motorola Mobility, Inc. Method and system for pairing communication devices by a reflected signal
US8030914B2 (en) 2008-12-29 2011-10-04 Motorola Mobility, Inc. Portable electronic device having self-calibrating proximity sensors
US8963885B2 (en) 2011-11-30 2015-02-24 Google Technology Holdings LLC Mobile device for interacting with an active stylus
US8963845B2 (en) 2010-05-05 2015-02-24 Google Technology Holdings LLC Mobile device with temperature sensing capability and method of operating same
US8970486B2 (en) 2009-05-22 2015-03-03 Google Technology Holdings LLC Mobile device with user interaction capability and method of operating same
US9063591B2 (en) 2011-11-30 2015-06-23 Google Technology Holdings LLC Active styluses for interacting with a mobile device
US9103732B2 (en) 2010-05-25 2015-08-11 Google Technology Holdings LLC User computer device with temperature sensing capabilities and method of operating same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555683U (en) * 1991-12-24 1993-07-23 アルパイン株式会社 Bidirectional infrared remote control
US6525854B1 (en) 1997-12-24 2003-02-25 Fujitsu Limited Portable radio terminal with infrared communication function, infrared emission power controlling method between portable radio terminal and apparatus with infrared communication function
US6483622B1 (en) 1998-03-30 2002-11-19 Nec Corporation Mobile data terminal with an infrared communication capability
US8030914B2 (en) 2008-12-29 2011-10-04 Motorola Mobility, Inc. Portable electronic device having self-calibrating proximity sensors
US8970486B2 (en) 2009-05-22 2015-03-03 Google Technology Holdings LLC Mobile device with user interaction capability and method of operating same
WO2011079063A1 (en) * 2009-12-22 2011-06-30 Motorola Mobility, Inc. Method and system for pairing communication devices by a reflected signal
US8963845B2 (en) 2010-05-05 2015-02-24 Google Technology Holdings LLC Mobile device with temperature sensing capability and method of operating same
US9103732B2 (en) 2010-05-25 2015-08-11 Google Technology Holdings LLC User computer device with temperature sensing capabilities and method of operating same
US8963885B2 (en) 2011-11-30 2015-02-24 Google Technology Holdings LLC Mobile device for interacting with an active stylus
US9063591B2 (en) 2011-11-30 2015-06-23 Google Technology Holdings LLC Active styluses for interacting with a mobile device

Similar Documents

Publication Publication Date Title
US4598198A (en) Automatic power control for modulated LED photoelectric devices
US7424228B1 (en) High dynamic range radio frequency to optical link
EP0221710A2 (en) Apparatus for controlling the power of a laser
JPH02280427A (en) Infrared ray output device
US4662004A (en) Laser communication system
US5027434A (en) Apparatus for bidirectional transmission of optical signals
US20050271099A1 (en) Burst mode transmitter system
JPH10163960A (en) Optical burst transmission/reception circuit
JPH0814501B2 (en) Optical power supply type signal processor
US6002212A (en) Method and device for driving a radiation emitting device
JPS6351421B2 (en)
JPS5922713Y2 (en) Light emitting diode constant brightness drive circuit
JP3023739B2 (en) Optical transmitter
CN2154562Y (en) Synchronous detect type infrared photoelectric switch
JP2997597B2 (en) Optical transceiver
JPS61167231A (en) Drive circuit of laser diode
JPH0847057A (en) Wireless transmitter in remote command system
JPS62159534A (en) Optical transmission and reception equipment
JPH0715310A (en) Bias circuit for optical receiver
JPH04350981A (en) Setting apparatus of driving current for laser diode
JPH0345046A (en) Optical communication system
JPS58171140A (en) Constant current circuit
JPH0541555A (en) Automatic optical output control circuit
JPH10145296A (en) Communication control circuit
JPH01307325A (en) Optical transmission and reception circuit