JPH02106726A - Optical amplifier device - Google Patents

Optical amplifier device

Info

Publication number
JPH02106726A
JPH02106726A JP25947388A JP25947388A JPH02106726A JP H02106726 A JPH02106726 A JP H02106726A JP 25947388 A JP25947388 A JP 25947388A JP 25947388 A JP25947388 A JP 25947388A JP H02106726 A JPH02106726 A JP H02106726A
Authority
JP
Japan
Prior art keywords
light
layer
exciton
electrons
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25947388A
Other languages
Japanese (ja)
Inventor
Takaro Kuroda
崇郎 黒田
Takao Miyazaki
隆雄 宮崎
Toshio Katsuyama
俊夫 勝山
Kensuke Ogawa
憲介 小川
Toshihiro Ono
智弘 大野
Tadashi Fukuzawa
董 福沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25947388A priority Critical patent/JPH02106726A/en
Publication of JPH02106726A publication Critical patent/JPH02106726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable amplification with good S/N ratio by utilizing the exciton- polariton mode arising from interaction of exciton in a semiconductor and light as a mechanism to lower the velocity of light than the velocity of electrons. CONSTITUTION:A light guide consisting of a clad layer 2, a core layer 3 forming multiple quantum well layers and a clad layer 4 is formed on a semi-insulating substrate 1 consisting of GaAs and after a secondary electron layer 5 and a cap layer 6 are formed thereon, ohmic electrodes 7, 8 are formed on the layer 5. Bias is impressed to this device in such a manner that secondary electrons 13 run at a satd. speed. Light is then made incident to the device. Exciton- polariton waves are generated by the coulone interaction of this light and the exciton if the multiple quantum wells are used for the core 3 of the light guide in such a manner and when the light of the wavelength corresponding to the exciton absorption peak is made incident thereto. The waves are then amplified by receiving the energy from the electrons propagating at the satd. speed. The S/N ratio is improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光の増幅装置に関する。特に誘導放出機構を用
いることなく、光導波路中の進行波を増幅する半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical amplification device. In particular, the present invention relates to a semiconductor device that amplifies traveling waves in an optical waveguide without using a stimulated emission mechanism.

〔従来の技術〕[Conventional technology]

光増幅器は、光通信システムにおいて主要な部品である
が、従来は第2図のようなキャリヤ注入による光の誘導
放出を利用したものが主に検討されてきた。これは活性
層3をコアとし、p型ドープされたクラッド層4とn型
ドープされたクラッド層2で先導波路を形成し、順方向
にpn接合をバイアスして活性層3に電子と正孔を注入
する手段を備えている。この状態で光が導波路に入射し
てくると、半導体レーザと同じ誘導放出メカニズムで光
増幅がおこる。この時、レーザ発振が自発的におこるの
を防ぐため、入射面61と出射面62とは共振器を形成
しないようにしておく必要がある。
Optical amplifiers are important components in optical communication systems, and conventionally, those that utilize stimulated emission of light by carrier injection, as shown in FIG. 2, have been mainly studied. This uses the active layer 3 as a core, forms a leading wavepath with a p-type doped cladding layer 4 and an n-type doped cladding layer 2, and biases the pn junction in the forward direction to create electrons and holes in the active layer 3. It has a means to inject. When light enters the waveguide in this state, optical amplification occurs using the same stimulated emission mechanism as in semiconductor lasers. At this time, in order to prevent spontaneous laser oscillation, it is necessary to prevent the entrance surface 61 and the exit surface 62 from forming a resonator.

ところで、この従来装置では、応答時間が活性層中の電
子−正孔の応答時間で律速されるために100〜5. 
Opsecが1つの限界となる。又、導波路中の自然放
出光が常に出力側に出てくるためS/N比が劣化すると
いう問題がある。
By the way, in this conventional device, the response time is determined by the electron-hole response time in the active layer, so the response time is 100 to 5.
Opsec is one limit. Furthermore, since the spontaneously emitted light in the waveguide always comes out on the output side, there is a problem that the S/N ratio deteriorates.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記の光増幅器の応答速度を向上させ
るとともに、自然放出光の混入によるS/N比の劣化を
なくした光増幅器を提供することにある。
An object of the present invention is to provide an optical amplifier that improves the response speed of the optical amplifier and eliminates deterioration of the S/N ratio due to the contamination of spontaneous emission light.

〔課題を解決するための手段〕[Means to solve the problem]

こめために、本発明ではよく知られている波動粒子間の
相互作用による進行波形の増幅機槽を用いる。一般に、
空間的に近接した光(電磁波)と電子が同一方向に進行
しつつ電気的に相互作用する時、電子の速度が波の速度
よりも大きいと、粒子の運動エネルギーの一部が電磁波
にのり移って光の増幅が生起される。これを半導体で実
現するためには、電子を半導体中でできるだけ高速に走
行させ、かつこれに近接した先導波路中を、その電子速
度よりもやや遅い速さで光を伝搬させる必要がある。
To achieve this, the present invention uses a well-known traveling waveform amplifier based on wave-particle interaction. in general,
When light (electromagnetic waves) and electrons that are spatially close to each other travel in the same direction and interact electrically, if the speed of the electrons is greater than the speed of the waves, part of the kinetic energy of the particles is transferred to the electromagnetic waves. light amplification occurs. In order to achieve this in a semiconductor, it is necessary to make electrons travel as fast as possible in the semiconductor, and at the same time, it is necessary to make light propagate at a speed slightly slower than the speed of the electrons through a leading waveguide close to the electrons.

一例として、GaAsやInPに格子整合したT、nG
aAs中の2次元電子の速度は、その最大飽和速度Vs
として、v s ’:: 1〜2 X 107cm/ 
sの速さで走行させることが実測されている。一方、こ
れらの半導体の屈折率nは、3〜4程度であるから、通
常の先導波路では半導体先導波路中の光速はc’ /=
co /n>vs (coは真空中の光速)となり、上
述の相互作用はおこりえない。従って、とすメカニズム
が必要である。
As an example, T, nG lattice matched to GaAs or InP
The velocity of two-dimensional electrons in aAs is its maximum saturation velocity Vs
As, vs':: 1~2 x 107cm/
It has been actually measured that the vehicle is run at a speed of s. On the other hand, since the refractive index n of these semiconductors is about 3 to 4, the speed of light in a normal semiconductor waveguide is c'/=
co /n>vs (co is the speed of light in vacuum), and the above-mentioned interaction cannot occur. Therefore, a mechanism is required.

本発明では光速を電子の速度よりもおそくする機構とし
て、半導体中のエキシトンと、光との相互作用で生ずる
エキシトン−ポラリトンモー1−を利用した。
In the present invention, as a mechanism for making the speed of light slower than the speed of electrons, an exciton-polariton mo1- generated by the interaction between excitons in a semiconductor and light is used.

〔作用〕[Effect]

G’ a A sとGaA Q、Asからなる多重量子
井戸や、InPに格子整合したInGaAsとInA 
Q Asからなる多重量子井戸では、室温でも強い2次
元エキシトン吸収がみられる。この多重量子井戸を光導
波路のコアに用いて、そこにこのエキシトン吸収ピーク
に対応する波長の光を入射させると、この光とエキシト
ンとのクーロン相互作用により、エキシトン・ポラリト
ンと称する波が発生する。イメージ的には、この光は、
少し伝搬すると電子−正孔対に変化してエキシトンとな
り、このエキシトンが少し伝搬しては電子−正孔が再結
合して光にもどるという風に、光とエキシトンの中間的
存在とみることができる。この波の伝搬速度Vpは、電
子の飽和速度v5よりもやや遅い、Vp〜8×1、06
c+n / seeのオーダーである。従ってエキシト
ンーポラリ1−ン波は飽和速度で伝搬する電子からエネ
ルギーをもらって増幅される。
G' a As and GaA Q, multiple quantum wells made of As, InGaAs and InA lattice matched to InP
In a multiple quantum well made of QAs, strong two-dimensional exciton absorption is observed even at room temperature. When this multiple quantum well is used as the core of an optical waveguide and light with a wavelength corresponding to the exciton absorption peak is incident thereon, a wave called exciton-polariton is generated due to Coulomb interaction between this light and excitons. . In terms of image, this light is
When it propagates a little, it changes into an electron-hole pair and becomes an exciton, and after this exciton propagates a little, the electron-hole recombines and returns to light, so it can be seen as an intermediate entity between light and excitons. can. The propagation speed Vp of this wave is slightly slower than the saturation speed v5 of electrons, Vp~8×1,06
It is of the order of c+n/see. Therefore, the exciton-polar 1-wave is amplified by receiving energy from the electrons propagating at the saturation speed.

〔実施例〕〔Example〕

以」二連べてきた本発明の内容を、実施例に基づいて以
下に詳しく説明する。
The contents of the present invention described above will be explained in detail below based on examples.

第1図に本発明の一実施例になる光増幅器の概念図を示
した。
FIG. 1 shows a conceptual diagram of an optical amplifier according to an embodiment of the present invention.

本実施例においては、G a A sの半絶縁性基板1
の上にアンドープA’Q o、gGao、7Asクラッ
ド層2、G a A s 7’ A Q、 xG a 
5−xA s多重量子井戸層を形成するコア層3、アン
ドープA Q o、sG a O,7Asクラット層4
からなる先導波路を形成し、その」二にHEMTど同様
にして2次元゛耐子層5とキャップ層6を形成する。
In this embodiment, a GaAs semi-insulating substrate 1 is used.
Undoped A'Q o, gGao, 7As cladding layer 2, Ga As 7' A Q, xG a
Core layer 3 forming a 5-xAs multiple quantum well layer, undoped A Q o, sGa O, 7As crat layer 4
A leading waveguide is formed, and a two-dimensional shield layer 5 and a cap layer 6 are then formed in the same manner as in HEMT.

2次元電子はアン1く−ブG a A s層5の中に存
在するが、そのための電子供給用ドナーは、クララド層
4の、2次元電子層5との界面あるいはキャップ層6の
、2次元電子層5との界面にドーピングする。そのあと
、2次元電子層5上にオーミック電極7,8を形成する
。この電極は、通常、A u G e / N i/A
 uを用い、400’C5分間H2中アロイしてアロイ
電極とした。
Two-dimensional electrons exist in the annular GaAs layer 5, and electron supply donors for this exist at the interface of the Clarado layer 4 with the two-dimensional electron layer 5 or at the two-dimensional electron layer 6 of the cap layer 6. The interface with the dimensional electronic layer 5 is doped. After that, ohmic electrodes 7 and 8 are formed on the two-dimensional electronic layer 5. This electrode is usually A u G e / N i / A
An alloy electrode was prepared by alloying in H2 at 400'C for 5 minutes.

このあと2次元電子が光と同一方向に走行する向きに直
流バイアスを与えて2次元電子が飽和速度Vsで走るよ
うにする。この状態でエキシトンピークに対応する約7
80nmの波長の光を入射したところ、光の増幅作用が
確認された。
Thereafter, a DC bias is applied in a direction in which the two-dimensional electrons travel in the same direction as the light, so that the two-dimensional electrons travel at the saturation speed Vs. In this state, about 7
When light with a wavelength of 80 nm was incident, a light amplification effect was confirmed.

第2の実施例では、半絶縁性LnP&板1の上に、基板
と格子整合したアンドープInAn Asクラッド層2
と、InGaAs / InA Q As多重量子井戸
層・3のコア層、ア゛ンドープInA (l Asクラ
ッド層4からなる光導波路を珍成し、その上にHEMT
と同様しこして2次元電子層5とキャップ層6を形成す
る。
In the second embodiment, an undoped InAn As cladding layer 2 lattice-matched to the substrate is deposited on the semi-insulating LnP&plate 1.
An optical waveguide consisting of a core layer of an InGaAs/InA QAs multiple quantum well layer 3 and an undoped InA (l As cladding layer 4) is fabricated, and a HEMT is
A two-dimensional electronic layer 5 and a cap layer 6 are formed in the same manner as described above.

2込元電子はアンドープInGaAs層5の中に存在し
、そのためのドナーは、クラッド層4あるいはキャする
。このあと、A u G e / N i / A u
金属を300℃5分間、H2中で熱処理してアロイ電極
とした。この状態で2次元電子が飽和速度V5〜2 X
 107■/sBで走るようにバイアスを印加したのち
、エキシトンピークに対応する約1.3μmの波長の光
を入射したところ光の増幅が確認された。
Two elementary electrons exist in the undoped InGaAs layer 5, and donors therefor exist in the cladding layer 4 or the carrier. After this, A u G e / N i / A u
The metal was heat treated in H2 at 300°C for 5 minutes to form an alloy electrode. In this state, the two-dimensional electron has a saturation velocity V5~2
After applying a bias so as to run at 107 .mu./sB, light having a wavelength of approximately 1.3 .mu.m corresponding to the exciton peak was incident, and light amplification was confirmed.

以上の実施例1,2のいずれにおいても、光増幅率を増
すためには光導波モードの一部が2次元電子ガスと重な
っている重なりの割合を少なくとも5〜20%に保つ必
要があった。
In both Examples 1 and 2 above, in order to increase the optical amplification factor, it was necessary to maintain the overlap ratio in which a part of the optical waveguide mode overlaps with the two-dimensional electron gas to at least 5 to 20%. .

また第3図に模式図に示す如く、光導波路中の光12は
ジグザグ運動をしながら伝搬しているため、本来横波の
光であるが、一部の電界が電子13の走行方向と平行な
成分を有するようになる。
Furthermore, as shown in the schematic diagram in FIG. 3, the light 12 in the optical waveguide propagates in a zigzag motion, so although it is originally transverse wave light, a part of the electric field is parallel to the traveling direction of the electrons 13. It comes to have a component.

この成分が大きいほど電子とポラリトン波との相互作用
がつよくなるため、コアの厚さを厚くし、クラッドとコ
アの屈折率差を大きくして、ジグザグ伝搬の角度をより
大きくすることにより、相互本光増幅器では、光導波路
中には本来自然放出光は存在しないからS/N比のよい
増幅が可能である。
The larger this component is, the stronger the interaction between electrons and polariton waves becomes. Therefore, by increasing the core thickness, increasing the refractive index difference between the cladding and the core, and increasing the angle of zigzag propagation, the interaction between electrons and polariton waves becomes stronger. In this optical amplifier, since spontaneous emission light does not originally exist in the optical waveguide, amplification with a good S/N ratio is possible.

又、用いる波長は多重量子井戸を構成する量子井戸の厚
さLwと、障壁層の厚さLsを変えることによりある程
度変化させることができる。
Further, the wavelength used can be changed to some extent by changing the thickness Lw of the quantum well constituting the multiple quantum well and the thickness Ls of the barrier layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光増幅器の概念図、第2図
は従来の光増幅器の概念図、第3図は導波路中のポラリ
トンモードの光と2次元電子との相互作用の模式図であ
る。
Fig. 1 is a conceptual diagram of an optical amplifier according to an embodiment of the present invention, Fig. 2 is a conceptual diagram of a conventional optical amplifier, and Fig. 3 is a conceptual diagram of the interaction between polariton mode light and two-dimensional electrons in a waveguide. It is a schematic diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、室温でエキシトン吸収が顕著な多重量子井戸層をコ
アとし、より屈折率の小さい半導体をクラッド層とする
光導波路に近接して、この導波路中の光モードが到達し
うる距離内に、2次元電子層を形成し、この2次元電子
を飽和速度で走行せしめることにより上記光導波路中を
伝搬するエキシトン−ポラリトンモードの光を増幅する
ことを特徴とする光増幅装置。
1. Close to an optical waveguide whose core is a multi-quantum well layer with remarkable exciton absorption at room temperature and whose cladding layer is a semiconductor with a lower refractive index, within a distance that the optical mode in this waveguide can reach. An optical amplification device characterized by forming a two-dimensional electron layer and causing the two-dimensional electrons to travel at a saturation speed to amplify exciton-polariton mode light propagating in the optical waveguide.
JP25947388A 1988-10-17 1988-10-17 Optical amplifier device Pending JPH02106726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25947388A JPH02106726A (en) 1988-10-17 1988-10-17 Optical amplifier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25947388A JPH02106726A (en) 1988-10-17 1988-10-17 Optical amplifier device

Publications (1)

Publication Number Publication Date
JPH02106726A true JPH02106726A (en) 1990-04-18

Family

ID=17334566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25947388A Pending JPH02106726A (en) 1988-10-17 1988-10-17 Optical amplifier device

Country Status (1)

Country Link
JP (1) JPH02106726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021734A1 (en) * 2001-09-04 2003-03-13 Massachusetts Institute Of Technology On-chip optical amplifier
US6924925B2 (en) * 2003-02-07 2005-08-02 The Boeing Company Stimulated polariton scattering optical amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021734A1 (en) * 2001-09-04 2003-03-13 Massachusetts Institute Of Technology On-chip optical amplifier
US7787176B2 (en) 2001-09-04 2010-08-31 Massachusetts Institute Of Technology On-chip optical amplifier
US6924925B2 (en) * 2003-02-07 2005-08-02 The Boeing Company Stimulated polariton scattering optical amplifier

Similar Documents

Publication Publication Date Title
EP0340779B1 (en) Optical quantum interference device
US7595508B2 (en) Optical semiconductor device and method for fabricating the same
Zhang et al. Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells
JPH05235470A (en) Laser diode
US5191630A (en) Nonlinear optical device for controlling a signal light by a control light
JPH05226789A (en) Product including distortion layer quantum well laser
JP5505226B2 (en) Semiconductor optical amplifier
JP2817710B2 (en) Semiconductor laser
Yi et al. Temperature dependence of threshold current density Jth and differential efficiency ηd of high‐power InGaAsP/GaAs (λ= 0.8 μm) lasers
JPH02106726A (en) Optical amplifier device
JP2004266095A (en) Semiconductor optical amplifier
JP6893591B1 (en) Laser module
WO2021125240A1 (en) Laser module
JP3566365B2 (en) Optical semiconductor device
US4955036A (en) Semiconductor arrangement for producing a periodic refractive index distribution and/or a periodic gain distribution
JPH0358490A (en) Quantum well laser
JPH04247676A (en) Surface light-emitting semiconductor mode lock laser
JPH06181366A (en) Optical semiconductor device
JPH01179488A (en) Optical amplifier
JPS6184891A (en) Semiconductor laser element
JP2814943B2 (en) Semiconductor laser
Zhang et al. GaAs‐based multiple quantum well tunneling injection lasers
JP2000305055A (en) Electric field absorption optical modulator
WO2002056379A2 (en) Semiconductor optical amplifier
JP3208157B2 (en) Coherent light generator