JPH02106717A - Parts for optical modulation - Google Patents

Parts for optical modulation

Info

Publication number
JPH02106717A
JPH02106717A JP25932088A JP25932088A JPH02106717A JP H02106717 A JPH02106717 A JP H02106717A JP 25932088 A JP25932088 A JP 25932088A JP 25932088 A JP25932088 A JP 25932088A JP H02106717 A JPH02106717 A JP H02106717A
Authority
JP
Japan
Prior art keywords
light
insulating liquid
voltage
electrode pattern
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25932088A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hoshino
星野 坦之
Shinichi Shiwa
志和 新一
Kazutake Kamihira
員丈 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25932088A priority Critical patent/JPH02106717A/en
Publication of JPH02106717A publication Critical patent/JPH02106717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain the parts for optical modulation having an excellent optical modulation characteristic by providing a light transmittable insulating liquid layer on an electrode pattern layer consisting of a pair of light transmittable electrodes provided apart a prescribed spacing from each other on a transparent substrate. CONSTITUTION:The light transmittable comb-shaped electrode pattern layer 3 is provided on the transparent substrate 2 and the light transmittable insulating liquid layer 4 is provided thereon. A nonuniform strong electric field is generated between the two electrodes 3a and 3b of the electrode pattern layer 3 when a voltage is impressed between the electrodes 3a and 3b by a voltage impressing part 5. The dielectric force proportional to the square of the change rate of the electric field is then acted in the insulating liquid (silicone oil) of the insulating liquid layer 4 and the insulating liquid is deformed until this force balances with surface tension. Light is scattered and the modulation of the light is executed when the light is made incident to this deformed region. The original state is restored upon stopping of the voltage impression. The efficient optical modulation characteristic is obtd. in this way with the simple constitution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気的に光を変調できる光変調用部品に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a light modulation component that can electrically modulate light.

(従来の技術) 従来より光を変調する部品としては、種々のものが知ら
れている。
(Prior Art) Various types of components that modulate light have been known.

これらの部品のうち、音響光変調器(A10変調器)は
、TeO2等の光学結晶に数十M Hz程度の音波を伝
播させることにより光学結晶内に粗密波を生じさせ、こ
の光学結晶に入射した光の方向をブラッグの反射原理に
基づいて変向するものであり、例えば、ガスレーザを利
用したレーザプリンタの光オン、オフ制御等に利用され
ている。
Among these parts, the acousto-optic modulator (A10 modulator) generates compression waves in the optical crystal by propagating sound waves of about several tens of MHz through an optical crystal such as TeO2, and This device changes the direction of the reflected light based on the Bragg reflection principle, and is used, for example, to control the light on/off of a laser printer using a gas laser.

また、従来の光変調用部品の他の例としては、複数の電
荷蓄積電極か間隔をおいて配列されてなる回路層上に、
弾性体層、光反射導電層が積層された構成を有するもの
がある。このような構成において、電圧の印加により電
荷が蓄積された電荷蓄積電極の領域では、光反射導電層
と回路層との間の電気引力が強くなり、これにより弾性
体層が局所的に変形する。この変形を利用することによ
って、シュリーレン光学系で光のオン、オフの制御を行
なうものである(特開昭60−253383号公報、あ
るいは特開昭6.1.−148431号公報参照)。
In addition, as another example of a conventional light modulation component, on a circuit layer formed by a plurality of charge storage electrodes arranged at intervals,
Some have a structure in which an elastic layer and a light-reflecting conductive layer are laminated. In such a configuration, the electric attraction between the light-reflecting conductive layer and the circuit layer becomes strong in the region of the charge storage electrode where charges are accumulated due to the application of a voltage, which locally deforms the elastic layer. . By utilizing this deformation, the schlieren optical system controls the on/off of light (see Japanese Patent Application Laid-Open No. 60-253383 or Japanese Patent Application Laid-Open No. 6.1-148431).

(発明が解決しようとする課題) しかしながら、前者の光変調用部品では、光の高速制御
には適しているものの、TeO2等の光学結晶が高価で
あり、回路的にも高い周波数か要求されて、部品の高価
格化並びに複雑化を招くという問題点があった。
(Problem to be Solved by the Invention) However, although the former type of light modulation component is suitable for high-speed control of light, optical crystals such as TeO2 are expensive, and a high frequency circuit is required. However, there were problems in that the parts became more expensive and more complex.

また、後者の光変調用部品では、弾性体層上に、経時変
化の少ない光反射導電層を形成するのが困難であるとい
う問題点があった。
In addition, the latter light modulating component has a problem in that it is difficult to form a light-reflecting conductive layer that does not change over time on the elastic layer.

本発明の目的は、上記問題点に鑑み、極めて簡易に、か
つ安価に構成でき、しかも光変調特性の優れた光変調用
部品を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a light modulation component that can be constructed extremely simply and at low cost, and has excellent light modulation characteristics.

(課題を解決するだめの手段) 本発明は上記目的を達成するため、透明基体上に、一対
の所定間隔をおいた光透過性の電極からなる電極パター
ン層を設け、前記電極パターン層上に光透過性の絶縁液
体層を設けた。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an electrode pattern layer consisting of a pair of light-transmitting electrodes spaced apart at a predetermined distance on a transparent substrate. A light-transparent insulating liquid layer was provided.

(作 用) 本発明によれば、電極パターン層の両電極間に電圧を印
加すると、両極間に不均一な強い電界が生じる。これに
より、光透過性の絶縁液体中に電界の変化率の二乗に比
例する誘電体力が働き、この力と表面張力とが釣り合う
所まで光透過性の絶縁液体が変形する。この絶縁液体の
変形領域での光の散乱により、光変調か行なわれる。
(Function) According to the present invention, when a voltage is applied between both electrodes of the electrode pattern layer, a strong non-uniform electric field is generated between the two electrodes. As a result, a dielectric force proportional to the square of the rate of change of the electric field acts in the optically transparent insulating liquid, and the optically transparent insulating liquid is deformed to the point where this force and the surface tension are balanced. Light modulation is performed by scattering light in the deformed region of the insulating liquid.

(実施例) 第1図は、本発明による光変調用部品1の実施例を示す
構成図である。図中、2は透明基体で、厚さ1 mmの
ガラス(例えば、コーニング 7059)を用いて構成
される。3は透明基体2上に配設された光透過性の櫛形
電極パターン層で、第2図に示すように、厚さ1100
nの櫛形ITOパターンよりなる一対の電極3a、3b
の各櫛の歯か交互に等間隔で噛合うように配設されて構
成される。また、その電極ピンチとしては、2μm。
(Example) FIG. 1 is a configuration diagram showing an example of a light modulation component 1 according to the present invention. In the figure, reference numeral 2 denotes a transparent substrate, which is made of glass (for example, Corning 7059) with a thickness of 1 mm. 3 is a light-transmissive comb-shaped electrode pattern layer disposed on the transparent substrate 2, which has a thickness of 1100 mm as shown in FIG.
A pair of electrodes 3a and 3b made of n comb-shaped ITO patterns
The teeth of each comb are arranged so that they mesh with each other at equal intervals. Moreover, the electrode pinch is 2 μm.

4μm、10μm、20μm、40μm、100μm、
200μm等、種々の値が選定される。4は電極パター
ン層3上に配設した光透過性の絶縁液体層で、厚さ3μ
mのシリコーンオイル(例えば、東しシリコーン 5H
200−10C/S)により構成される。5は電圧印加
部で、電極バタン層3の各電極3a、3b間に電圧パル
スを印加する。
4μm, 10μm, 20μm, 40μm, 100μm,
Various values are selected, such as 200 μm. 4 is a light-transmissive insulating liquid layer disposed on the electrode pattern layer 3, with a thickness of 3 μm.
m silicone oil (for example, Toshi Silicone 5H
200-10C/S). Reference numeral 5 denotes a voltage application unit that applies a voltage pulse between each electrode 3a and 3b of the electrode button layer 3.

次に、上記構成による動作を説明する。Next, the operation of the above configuration will be explained.

電極パターン層3の画電極3a、3b間に、電圧印加部
5により電圧を印加(オン)すると、画電極3a、3b
間に不均一な強い電界が生じる。
When a voltage is applied (turned on) by the voltage application unit 5 between the picture electrodes 3a and 3b of the electrode pattern layer 3, the picture electrodes 3a and 3b
A strong, non-uniform electric field is generated between the two.

これにより、絶縁液体層4の絶縁液体(シリコンオイル
)中に電界の変化率の二乗に比例する誘電体力か働き、
この力と表面張力とが釣り合う所まで絶縁液体が変形す
る。この絶縁液体層4の変形領域に光が入射されると、
光は散乱し、光の変調が行なわれる。
As a result, a dielectric force proportional to the square of the rate of change of the electric field acts in the insulating liquid (silicon oil) of the insulating liquid layer 4,
The insulating liquid deforms to the point where this force and surface tension are balanced. When light enters the deformed region of this insulating liquid layer 4,
Light is scattered and light modulation occurs.

一方、電圧印加部5による電圧印加を停止(オフ)する
と、上記した変形領域が元の状態に復帰し、光の散乱が
抑止される。
On the other hand, when the voltage application by the voltage application unit 5 is stopped (turned off), the deformed region described above returns to its original state, and light scattering is suppressed.

第3図は、本発明による光変調用部品の光変調特性の測
定系を示す構成図である。第3図において、1は当該光
変調用部品、5は電圧印加部、6は波長632.8 n
 mのHe−Neレーザからなる光源、7,8はミラー
 9は光デイテクタ(例えば、シリコンディテクタ、浜
松ホトニクス 51227−1010BR) 、10は
シンクロスコープであって、ミラー7で反射した光源6
による光を光変調用部品1に入射し、電圧印加部5によ
る電圧印加状態によって変調された光を、ミラー8て反
射し、この光を光デイテクタ9で検出して、シンクロス
コープ10で観察するようにしたものである。
FIG. 3 is a block diagram showing a system for measuring light modulation characteristics of a light modulation component according to the present invention. In FIG. 3, 1 is the light modulation component, 5 is the voltage application section, and 6 is the wavelength of 632.8 n.
7 and 8 are mirrors; 9 is an optical detector (e.g., silicon detector, Hamamatsu Photonics 51227-1010BR); 10 is a synchroscope; the light source 6 reflected by the mirror 7;
enters the light modulation component 1, the light modulated by the voltage application state by the voltage application unit 5 is reflected by the mirror 8, this light is detected by the optical detector 9, and observed by the synchroscope 10. This is how it was done.

第4図は、上記第3図の測定系の光デイテクタ9付近で
の電圧印加状態で変化する光の散乱状態の測定例を示す
図である(スクリーン上に投影された光散乱分布)。第
4図の(a)は電極ピッチ20μmの光変調用部品1に
電圧を印加する前の光の散乱状態を、第4図の(b)は
電圧]00vを印加したときの光の散乱状態を示してお
り、Aは第0次光、Bは電極ピッチに対応した散乱光、
Cは電圧を印加して新たに生じた散乱光、Dは散乱光C
とBの混合した散乱光を示している。
FIG. 4 is a diagram showing an example of measurement of the light scattering state that changes depending on the voltage application state near the optical detector 9 of the measurement system shown in FIG. 3 (light scattering distribution projected on the screen). Figure 4 (a) shows the light scattering state before applying a voltage to the light modulation component 1 with an electrode pitch of 20 μm, and Figure 4 (b) shows the light scattering state when a voltage of 00 V is applied. , where A is the 0th order light, B is the scattered light corresponding to the electrode pitch,
C is the newly generated scattered light by applying a voltage, D is the scattered light C
This shows the mixed scattered light of B and B.

これら第4図の(a) 、 (b)から、光変調用部品
1に電圧を印加していないときには、中央部に第0次光
Aが強く、この第0次光Aの両脇に電極ピッチに対応し
た散乱光Bか弱く (ITOの透明性が増せば、さらに
弱くなる)観察され、電圧100Vを印加したときには
、中央部の第0次光Aが弱まり、新たに第0次光量の両
脇に強い散乱光Cが生じていることが観察される。この
散乱光Cは、電極ピッチに対応した散乱光Bの間に存在
し、電極ピッチの2倍の同期に対応する散乱光である。
4 (a) and (b), when no voltage is applied to the light modulation component 1, the 0th order light A is strong in the center, and the electrodes are placed on both sides of this 0th order light A. Scattered light B corresponding to the pitch is weakly observed (it becomes even weaker as the transparency of ITO increases), and when a voltage of 100 V is applied, the 0th-order light A in the center weakens, and the 0th-order light intensity is newly increased. It is observed that strong scattered light C is generated on the side. This scattered light C exists between the scattered lights B corresponding to the electrode pitch, and is scattered light corresponding to the synchronization of twice the electrode pitch.

この一連の動作時の光変調用部品lを顕微鏡で観察した
結果、電圧印加前の光透過性の絶縁液体層4のシリコー
ンオイルは、第5図の(a)に示すように均一な状態を
保持しているが、電圧100Vを印加した後は、第5図
の(b)に示すように、櫛形電極パターン層3の電極の
櫛1本おきに移動し、変形領域を形成していることがわ
かった。これにより、前記第4図の(b)に示すように
、電極ピッチの2倍に対応する散乱光Cが発生すること
になる。
As a result of observing the light modulation component l during this series of operations using a microscope, it was found that the silicone oil in the optically transparent insulating liquid layer 4 was in a uniform state as shown in FIG. 5(a) before the voltage was applied. However, after applying a voltage of 100 V, the electrodes of the comb-shaped electrode pattern layer 3 move every other comb, forming a deformed region, as shown in FIG. 5(b). I understand. As a result, as shown in FIG. 4(b), scattered light C corresponding to twice the electrode pitch is generated.

第6図は、光変調用部品1の電極ピッチが20μmの場
合と100μmの場合の、第0次光量の印加電圧依存性
を示すグラフである。横軸は印加電圧、縦軸は光散乱率
を表しており、実線■は電極ピッチ20μmの場合の第
0次光の光散乱率の印加電圧依存性、実線■は電極ピッ
チ100μmの場合の第0次光の光散乱率の印加電圧依
存性を示している。
FIG. 6 is a graph showing the dependence of the 0th-order light amount on applied voltage when the electrode pitch of the light modulation component 1 is 20 μm and 100 μm. The horizontal axis represents the applied voltage, and the vertical axis represents the light scattering rate. The solid line ■ is the dependence of the light scattering rate of the 0th order light on the applied voltage when the electrode pitch is 20 μm, and the solid line ■ is the dependence of the light scattering rate on the applied voltage when the electrode pitch is 100 μm. It shows the dependence of the light scattering rate of zero-order light on applied voltage.

第6図から、光の散乱は、印加電圧が30V付近から立
ち上かり、電極ピッチ20μmの場合では印加電圧10
0V、電極ピッチ100μmの場合では印加電圧60V
て光をほぼ100%近く散乱できることがわかる。この
ように、当該光変調用部品1は、散乱率が極めて高く、
かつ、散乱に電圧の閾値が存在するという特徴点を有す
る。また、電圧印加により発生した新しい散乱光は、電
圧を印加しない場合には測定限界以下であるので、極め
て高いS/N比を有する。
From Fig. 6, light scattering starts at an applied voltage of around 30 V, and when the electrode pitch is 20 μm, the applied voltage is 10 V.
0V, applied voltage 60V when electrode pitch is 100μm
It can be seen that almost 100% of the light can be scattered. In this way, the light modulation component 1 has an extremely high scattering rate,
In addition, it has a feature that a voltage threshold exists for scattering. Further, the new scattered light generated by applying a voltage is below the measurement limit when no voltage is applied, so it has an extremely high S/N ratio.

第7図は、電極ピッチ20μmの光変調用部品への印加
電圧をオン、オフした場合の光応答特性を示す波形図で
ある。第7図の(a)は印加電圧をオンした場合、第7
図の(b)は印加電圧をオフした場合の光応答特性を示
しており、図中、VOnは電圧印加(オン)波形、Ad
nは第0次光の立ち下がり波形、Voffは電圧オフ波
形、Aupは第0次光の立ち上がり波形である。また、
第7図においては、横軸を時間とし、−目盛(−枠)を
、同図の(a)では10 m S %同図の(b)では
5msとしている。
FIG. 7 is a waveform chart showing the optical response characteristics when the voltage applied to the optical modulation component with an electrode pitch of 20 μm is turned on and off. Figure 7(a) shows that when the applied voltage is turned on, the 7th
(b) of the figure shows the photoresponse characteristics when the applied voltage is turned off, and in the figure, VOn is the voltage application (on) waveform, Ad
n is a falling waveform of the 0th-order light, Voff is a voltage-off waveform, and Aup is a rising waveform of the 0th-order light. Also,
In FIG. 7, the horizontal axis is time, and the - scale (-frame) is 10 mS% in (a) of the same figure and 5 ms in (b) of the same figure.

第7図から、第0次光の立ち下がりは約3ms。From Figure 7, the fall of the 0th order light is about 3ms.

立ち上がりは約2msであり、本発明による光変調用部
品は数msオーダーの良好な光応答特性を有しているこ
とがわかる。このことは、例えば、動画用の投影型デイ
スプレィの光変調用部品としでも十分に応用可能なこと
を意味している。
The rise time is about 2 ms, and it can be seen that the optical modulation component according to the present invention has good optical response characteristics on the order of several ms. This means that it can be fully applied, for example, as a light modulation component for a projection display for moving images.

第8図の(a)は、上記したような構成並びに特性を有
する、本発明による光変調用部品1を2次元マトリクス
状に配置した構成例を示す図であり、第8図の(b)は
、同図の(a)のDで示す一電極部の拡大図である。図
中、20は第1層配線、21は第2層配線、22はスル
ーホールであり、電極パターン層3の電極3aはスルー
ホール22を介して第1層配線20に、電極3bは第2
層配線21に接続している。このような構成においては
、縦及び横電極部を任意に選択することにより、各櫛形
電極を指定(アドレス)可能となる。また、TFT素子
を各櫛形電極に配設すれば、指定した箇所の光の散乱状
態を次のリフレッシュ時まで継続して保持することがで
きる。さらに、シュリレン光学系と組み合わせることに
より、光源からの光を制御できる効率の良い投影型デイ
スプレィを構成することができる。
FIG. 8(a) is a diagram showing an example of a configuration in which light modulation components 1 according to the present invention having the above-described configuration and characteristics are arranged in a two-dimensional matrix, and FIG. 8(b) This is an enlarged view of one electrode section indicated by D in (a) of the same figure. In the figure, 20 is the first layer wiring, 21 is the second layer wiring, and 22 is a through hole.
It is connected to the layer wiring 21. In such a configuration, each comb-shaped electrode can be specified (addressed) by arbitrarily selecting the vertical and horizontal electrode portions. Furthermore, by disposing a TFT element on each comb-shaped electrode, the light scattering state at a designated location can be maintained continuously until the next refresh time. Furthermore, by combining it with a Schrillen optical system, it is possible to construct an efficient projection display that can control the light from the light source.

以上のように本実施例によれば、光変調用部品1を、透
明基体2上に、光透過性の櫛形電極パターン層3、光透
過性の絶縁液体層4の順に配設して構成し、電圧印加部
5より電極パターン層3へ電圧を印加して絶縁液体層4
の絶縁液体を変形させて光を変調するようにしたので、
極めて簡易な構成を有し、しかもS/N比の高い優れた
光変調用部品を実現している。
As described above, according to this embodiment, the light modulation component 1 is constructed by disposing the light-transmitting comb-shaped electrode pattern layer 3 and the light-transmitting insulating liquid layer 4 on the transparent substrate 2 in this order. , a voltage is applied from the voltage application unit 5 to the electrode pattern layer 3 to form the insulating liquid layer 4.
By changing the shape of the insulating liquid, we modulated the light.
An excellent optical modulation component with an extremely simple configuration and high S/N ratio has been realized.

なお、本実施例において、透明基体2としては光を透過
するものであれば使用できるが、電極作製時の耐熱性、
安定性の点からガラスが好ましい。
In this example, any material that transmits light can be used as the transparent substrate 2, but the heat resistance during electrode production,
Glass is preferred from the viewpoint of stability.

また、シリコンデバイス作製時のような1000°C程
度の高温を必要としないので、安価なガラスを使用でき
る。
Furthermore, since high temperatures of about 1000° C., which are required when manufacturing silicon devices, are not required, inexpensive glass can be used.

また、本実施例では光透過性の櫛形電極パタン層3とし
てITOを用いて構成したが、これに限定されるもので
はなく、微細加工が可能で光を透過するものであれば使
用可能である。例えば、” 209 、S n O2が
好ましいが、八ΩやAu等の光半透膜でも動作可能であ
る。さらに、電極パターンとして櫛形のものを用いて構
成したが、これに限定されるものではなく、第9図に示
すように、同心円状の複数の枝状電極部を有する一対の
電極パターン’30a、30bを組み合わせることによ
り構成することも可能である。また、電極パターン層3
の厚さとしては、10nm程度でも電流が通じれば動作
させることができ、光透過性の点からは薄いほうが好ま
しい。
Furthermore, in this example, the light-transmissive comb-shaped electrode pattern layer 3 was constructed using ITO, but it is not limited to this, and any material that can be microfabricated and transmits light can be used. . For example, ``209'' and S n O2 are preferable, but it is also possible to operate with an optical semi-transparent film such as 8Ω or Au.Furthermore, although the electrode pattern is constructed using a comb-shaped one, the present invention is not limited to this. However, as shown in FIG.
Even if the thickness is about 10 nm, it can be operated as long as a current is passed through it, and from the viewpoint of optical transparency, a thinner one is preferable.

また、本実施例では光透過性の絶縁液体として、安定性
等の点からシリコーンオイルを用いて構成したが、これ
に限定されるものではなく、光が透過する絶縁性の液体
であれば使用可能である。例えば、パラフィン系オイル
(エクソン:アイツバ系等)、アルキルベンゼン等の芳
香族系オイル]1 等の各種オイルでも使用可能である。また粘度としては
、少ないほうが応答性の点から好ましい。
In addition, in this example, silicone oil was used as the light-transmitting insulating liquid from the viewpoint of stability, but the invention is not limited to this, and any insulating liquid that allows light to pass through can be used. It is possible. For example, various oils such as paraffin oil (Exxon: Aitsuba type, etc.), aromatic oil such as alkylbenzene] 1 can also be used. Further, as for the viscosity, a lower value is preferable from the viewpoint of responsiveness.

さらに、前述した動作原理から絶縁液体の代わりに、変
形しやすいエラストマーを用いても同様の光散乱能力を
得られることが推察される。この場合、エラストマーの
材料としてシリコーンゲル(ダウコーニング:シルポッ
ト300A&B、あるいは東しシリコーン:、5E18
80GEL)等が使用できる。厚さについては、光の波
長の半分程度から効果を生じるが、電極ピッチに比べて
あまり厚いと変形のモードが変化し、散乱効率か低下す
る恐れがある。
Furthermore, based on the above-mentioned operating principle, it is inferred that similar light scattering ability can be obtained by using a deformable elastomer instead of the insulating liquid. In this case, silicone gel (Dow Corning: Silpot 300A&B, or Toshi Silicone: 5E18) is used as the elastomer material.
80GEL) etc. can be used. As for the thickness, the effect is produced when it is about half the wavelength of the light, but if it is too thick compared to the electrode pitch, the mode of deformation changes and the scattering efficiency may decrease.

(発明の効果) 以上説明したように、本発明によれば、透明基体上に、
一対の所定間隔をおいた光透過性の電極からなる電極パ
ターン層を設け、前記電極ノくターン層上に光透過性の
絶縁液体層を設けたので、電極パターン層に電圧を印加
することにより光透過性の絶縁液体を変形させて光を変
調することができ、極めて簡易な構成で効率の良い光変
調特性を実現できる利点がある。
(Effects of the Invention) As explained above, according to the present invention, on a transparent substrate,
An electrode pattern layer consisting of a pair of light-transparent electrodes spaced apart at a predetermined distance is provided, and a light-transparent insulating liquid layer is provided on the electrode pattern layer, so that by applying a voltage to the electrode pattern layer, It is possible to modulate light by deforming a light-transmissive insulating liquid, and has the advantage of realizing efficient light modulation characteristics with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光変調用部品の実施例を示す構成
図、第2図は本発明に係る櫛形電極パタンを示す図、第
3図は本発明による光変調用部品の光変調特性の測定系
を示す構成図、第4図は電圧印加状態で変化する光の散
乱状態の測定例を示す図、第5図は本発明による光変調
用部品の電圧印加による絶縁液体の変形の説明図、第6
図は本発明による光変調用部品の光散乱特性の印加電圧
依存性を示すグラフ、第7図は本発明による光変調用部
品への印加電圧をオン、オフした場合の光応答特性を示
す波形図、第8図は本発明による光変調用部品を2次元
マトリクス状に配置した構成例を示す図、第9図は本発
明に係る電極パタンの他の例を示す図である。 図中、1・・・光変調用部品、2・・・透明基体、3・
・・光透過性の電極パターン層、4・・・光透過性の絶
縁液体層、5・・・電圧印加部。 (、,1) (b) 電/i印加t”−、、I分縣象ミ引本の変形の説明図第
5図
FIG. 1 is a block diagram showing an embodiment of the light modulation component according to the present invention, FIG. 2 is a diagram showing a comb-shaped electrode pattern according to the present invention, and FIG. 3 is a diagram showing the light modulation characteristics of the light modulation component according to the present invention. FIG. 4 is a diagram showing a measurement example of the state of scattering of light that changes depending on the state of voltage application. FIG. 5 is an explanatory diagram of the deformation of the insulating liquid due to the application of voltage in the light modulation component according to the present invention. , 6th
The figure is a graph showing the applied voltage dependence of the light scattering characteristics of the light modulation component according to the present invention, and FIG. 7 is the waveform showing the optical response characteristics when the applied voltage to the light modulation component according to the present invention is turned on and off. 8 are diagrams showing a configuration example in which light modulation components according to the present invention are arranged in a two-dimensional matrix, and FIG. 9 is a diagram showing another example of an electrode pattern according to the present invention. In the figure, 1... light modulation component, 2... transparent substrate, 3...
... Light-transparent electrode pattern layer, 4... Light-transparent insulating liquid layer, 5... Voltage application section. (,,1) (b) Explanatory diagram of the transformation of electric current/i application t''-,,I divisional image Figure 5

Claims (1)

【特許請求の範囲】  透明基体上に、一対の所定間隔をおいた光透過性の電
極からなる電極パターン層を設け、 前記電極パターン層上に光透過性の絶縁液体層を設けた ことを特徴とする光変調用部品。
[Scope of Claims] An electrode pattern layer consisting of a pair of light-transmitting electrodes spaced apart at a predetermined distance is provided on a transparent substrate, and a light-transmitting insulating liquid layer is provided on the electrode pattern layer. Components for light modulation.
JP25932088A 1988-10-17 1988-10-17 Parts for optical modulation Pending JPH02106717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25932088A JPH02106717A (en) 1988-10-17 1988-10-17 Parts for optical modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25932088A JPH02106717A (en) 1988-10-17 1988-10-17 Parts for optical modulation

Publications (1)

Publication Number Publication Date
JPH02106717A true JPH02106717A (en) 1990-04-18

Family

ID=17332444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25932088A Pending JPH02106717A (en) 1988-10-17 1988-10-17 Parts for optical modulation

Country Status (1)

Country Link
JP (1) JPH02106717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601989A1 (en) * 1992-12-09 1994-06-15 Telefonaktiebolaget Lm Ericsson Electrically controllable filter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601989A1 (en) * 1992-12-09 1994-06-15 Telefonaktiebolaget Lm Ericsson Electrically controllable filter device

Similar Documents

Publication Publication Date Title
CN106464857B (en) Compact 3D depth capture systems
JP4392970B2 (en) Display element using interferometric modulation element
JP2000098269A (en) Array type optical modulation element and flat display drive method
JP2002503351A (en) Modulation of light beam
KR970048702A (en) Capacitive Drive Optical Modulation Devices and Displays
KR20010031568A (en) Discrete element light modulating microstructure devices
CN101681078A (en) Light source device, lighting device and image display device
US6259550B1 (en) Phase-modulating microstructures for highly integrated surface light modulators
JPS63194285A (en) Color display device
KR101015458B1 (en) Electro-optical transducer and jelly layer therefor, method for producing a jelly layer and a compound for carrying out said method
KR100835014B1 (en) Light modulator with two drive signals
JP2960783B2 (en) Tunable optical waveguide device
JPH02106717A (en) Parts for optical modulation
KR970071076A (en) Spatial light modulation device and projection device
JPH1090730A (en) Optical element, its drive method and display device
JP2007147833A (en) Optical switching element and image display apparatus using the same
Kartashov et al. Image improvement in a laser projection display with a spatial light modulator with a deformable polymer
JPH0357455B2 (en)
RU2787935C1 (en) Electricly controlled liquid-crystal element for obtaining dynamic speckle structures
JP4485773B2 (en) Optical deflection device and image display device
JPH10239703A (en) Space light modulation system and projection type display system
JPS638635A (en) Driving method for liquid crystal cell
JPH02289827A (en) Space optical modulating element and space optical modulator
JPH0439620A (en) Liquid crystal display element and its driving method
JPH02131218A (en) Liquid crystal electrooptic device