JPH0210633A - Microwave tube - Google Patents
Microwave tubeInfo
- Publication number
- JPH0210633A JPH0210633A JP15990188A JP15990188A JPH0210633A JP H0210633 A JPH0210633 A JP H0210633A JP 15990188 A JP15990188 A JP 15990188A JP 15990188 A JP15990188 A JP 15990188A JP H0210633 A JPH0210633 A JP H0210633A
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- hole
- wall
- value
- cavity wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000919 ceramic Substances 0.000 description 6
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Microwave Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は多空胴クライストロンや加速器のようなマイ
クロ波管に係り、特にその共振空胴の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) This invention relates to microwave tubes such as multi-cavity klystrons and accelerators, and particularly to improvements in their resonant cavities.
(従来の技術)
例えばビーム直進型多空胴クライストロンは、電子銃と
コレクタとの間に、複数の共振空胴がドリフト管により
連結されてなっている。このような多空胴クライストロ
ンの空胴は、比較的出力が小さい場合には円筒状のセラ
ミックで真空気密を保ち、その外側に取外し可能の空胴
を取付けたいわゆる空胴外付型と、空胴自体で真空気密
を保っ空胴内臓型に分類出来る。そして、クライストロ
ンの出力が概略数10KW以上においては、セラミック
の発熱が甚だしいため、通常、空胴内臓型が用いられて
いる。又、この型では、空胴のQが非常に高いため、ク
ライストロンとしての帯域は非常に狭くなる。(Prior Art) For example, a beam straight-travel type multi-cavity klystron has a plurality of resonant cavities connected between an electron gun and a collector by a drift tube. When the output of such a multi-cavity klystron is relatively small, there are two types of cavities: one is a so-called external cavity type, which is made of cylindrical ceramic to keep it vacuum-tight, and has a removable cavity attached to the outside. The shell itself maintains vacuum tightness and can be classified as a built-in cavity type. When the output of the klystron is approximately several tens of kilowatts or more, the ceramic generates a significant amount of heat, so a built-in cavity type is usually used. Also, in this type, the Q of the cavity is very high, so the band as a klystron is very narrow.
従って、従来は空胴に結合ループを付け、更にそれに負
荷を接続して空胴全体としてのQを下げてクライストロ
ンの帯域特性を広くしていた。この場合、結合ループを
付けるために、この部分に電気的絶縁と真空気密を保つ
セラミックを設けなければならない。そして、普通は外
部に接続される負荷は同軸型のため、真空気密を保つセ
ラミックも内軸と外軸の両方で真空気密を保つ必要があ
る。Therefore, in the past, a coupling loop was attached to the cavity and a load was further connected to it to lower the Q of the cavity as a whole and widen the band characteristics of the klystron. In this case, in order to attach the coupling loop, this part must be provided with electrically insulating and vacuum-tight ceramic. And since the externally connected load is usually of the coaxial type, the vacuum-tight ceramic must also be vacuum-tight on both the inner and outer shafts.
(発明が解決しようとする課題)
以上説明した従来技術によると、次のような不都合があ
る。(Problems to be Solved by the Invention) The conventional techniques described above have the following disadvantages.
セラミックは、上述のように内袖と外輪の両方で真空気
密を保たなければならない。従って、構造も複雑となり
、リークの可能性も増大し、又、部品点数も多くなる。The ceramic must be vacuum tight in both the inner sleeve and outer ring as described above. Therefore, the structure becomes complicated, the possibility of leakage increases, and the number of parts increases.
更に、組立て工程も長くなる。又、万一この部分でリー
クした場合には、部品を殆ど捨てることになるので、損
失が大きい。Furthermore, the assembly process becomes longer. Furthermore, if a leak were to occur in this part, most of the parts would have to be thrown away, resulting in a large loss.
更に、工程の遅れも生じ、タイムリに製品を供給・する
ことが不可能となる。Furthermore, delays occur in the process, making it impossible to supply products in a timely manner.
この発明は、以上のような不都合を解決するものであり
、構造が簡単で、空胴のQ値を比較的任意に設定出来る
マイクロ波管を提供することを目的とする。The present invention solves the above-mentioned disadvantages, and aims to provide a microwave tube that has a simple structure and allows the Q value of the cavity to be set relatively arbitrarily.
[発明の構成コ
(課題を解決するための手段)
この発明は、共振空胴の気密封止外周壁の内側に内側空
胴壁が設けられ、この内側空胴壁に少なくとも1個のQ
調整用透孔が穿設されてなるマイクロ波管である。[Structure of the Invention (Means for Solving the Problems) This invention provides an inner cavity wall provided inside the hermetically sealed outer peripheral wall of a resonant cavity, and at least one Q
This is a microwave tube with a through hole for adjustment.
(作用)
この発明によれば、構造簡単にしてQ値を任意に設定出
来、且つ堅固なマイクロ波管が得られる。(Function) According to the present invention, it is possible to obtain a microwave tube that has a simple structure, allows the Q value to be arbitrarily set, and is robust.
(実施例)
以下、図面を参照して、この発明の一実施例を詳細に説
明する。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
この発明を多空胴クライストロンの基本波空胴に適用し
た場合の要部は、第1図に示すように構成され、複数の
共振空胴1がドリフト管2により連結されている。そし
て、共振空胴1の気密封止外周壁3の内側には、内側空
胴壁4が設けられている。この内側空胴壁4の内側の空
胴が電気的な空胴を形成している。更に、この内側空胴
壁4には、Qを適切な値に調整するためのQ調整用透孔
5が少なくとも1個穿設されている。尚、この透孔5に
より共振空胴1及び外側空間Sは真空領域となる。When this invention is applied to the fundamental wave cavity of a multi-cavity klystron, the main part is constructed as shown in FIG. 1, in which a plurality of resonant cavities 1 are connected by a drift tube 2. An inner cavity wall 4 is provided inside the hermetically sealed outer peripheral wall 3 of the resonant cavity 1 . The cavity inside this inner cavity wall 4 forms an electrical cavity. Furthermore, this inner cavity wall 4 is provided with at least one Q adjustment hole 5 for adjusting Q to an appropriate value. Note that this through hole 5 makes the resonance cavity 1 and the outer space S a vacuum region.
この場合、透孔5の数とQの値を一度実験的に求めてお
けば、求めるQの値に対応する透孔5の数は、−意に正
確に求められる。又、従来のようなセラミックなども不
要なので、部品点数も少なく、製作も容易である。In this case, once the number of through holes 5 and the value of Q are determined experimentally, the number of through holes 5 corresponding to the determined value of Q can be determined accurately. Furthermore, since there is no need for conventional ceramics, the number of parts is small and manufacturing is easy.
尚、図中の3a% 3bは空胴の両端板、6はドリフト
管ギャップ、7は溶接用リング、8.9は補強用フラン
ジ、10は共振周波数調整用ねじ、11は水路、12は
共振周波数微調用薄肉部である。In the figure, 3a% and 3b are both end plates of the cavity, 6 is the drift pipe gap, 7 is a welding ring, 8.9 is a reinforcing flange, 10 is a screw for adjusting the resonance frequency, 11 is a water channel, and 12 is a resonance This is a thin section for frequency fine tuning.
(他の実施例)
第2図はこの発明の他の実施例を示したもので、上記実
施例と同様効果が得られる。即ち、この他の実施例は、
この発明を第2高調波空胴に適用した例であり、共振空
胴1の気密封止外周壁3の内側に設けられた内側空胴壁
4は上記実施例の場合よりもドリフト管2側に位置し、
この内側空胴壁4の内側の空胴が第2高調波空胴を形成
している。(Other Embodiments) FIG. 2 shows another embodiment of the present invention, which provides the same effects as the above embodiments. That is, in this other embodiment,
This is an example in which this invention is applied to a second harmonic cavity, and the inner cavity wall 4 provided inside the hermetically sealed outer peripheral wall 3 of the resonant cavity 1 is closer to the drift tube 2 than in the above embodiment. Located in
The cavity inside this inner cavity wall 4 forms a second harmonic cavity.
そして、内側空胴壁4の外側の空胴が基本波空胴と同じ
外直径寸法になっている。The outer cavity of the inner cavity wall 4 has the same outer diameter as the fundamental wave cavity.
クライストロンの場合、第2高調波空胴を用いると、こ
の部分のみ外径が小さくなるので、機械的に弱くなり易
い。従って、従来は機械的強度を増すために、この部分
は上下に付いているフランジ8.9を支えるように、支
持用の棒などを用いている。この時、複数個の棒の長さ
を精度良く製作する必要がある。もし、そうでない場合
には、鑞接された時に空胴に非均−の力が働き、クライ
ストロンが曲がる可能性があった。しかし、この他の実
施例のような形状にすれば、従来の不都合は解決する。In the case of a klystron, if a second harmonic cavity is used, the outer diameter of only this part becomes small, so it tends to become mechanically weak. Therefore, conventionally, in order to increase the mechanical strength, a support rod or the like is used in this part to support the flanges 8.9 attached above and below. At this time, it is necessary to manufacture the lengths of the plurality of rods with high precision. If this were not the case, a non-uniform force would be applied to the cavity when soldered, potentially causing the klystron to bend. However, if the shape of this other embodiment is adopted, the conventional disadvantages can be solved.
そして、第2高調波空胴の外側に基本波空胴と同じ外径
の円筒を配置するので、又、部品の共通化も図れる。Since a cylinder having the same outer diameter as the fundamental wave cavity is placed outside the second harmonic cavity, it is also possible to use common parts.
第3図に示す実施例は、内側空胴壁4の内周壁に凹み1
5を適当個数形成したものである。この凹み15の大き
さや数により、空胴のQ値を任意に設定することが出来
る。尚、この実施例の場合、内側空胴壁4を両端板3a
s 3bに真空気密に接合し、外周壁は単に機械的に強
固に固定すればよい。The embodiment shown in FIG.
5 is formed in an appropriate number. Depending on the size and number of the recesses 15, the Q value of the cavity can be set arbitrarily. In this embodiment, the inner cavity wall 4 is connected to both end plates 3a.
s 3b in a vacuum-tight manner, and the outer peripheral wall may be simply mechanically and firmly fixed.
又、内側空胴壁4に少なくとも1個の貫通孔と、少なく
とも1個の凹みを任意箇所に形成してもよい。特に貫通
孔を形成して内側空胴と外側空調とを共に真空にすれば
、内側空胴壁4には外圧が加わらず、従ってこれを比較
的薄い金属円筒で構成することも出来る。Furthermore, at least one through hole and at least one recess may be formed in the inner cavity wall 4 at any desired location. In particular, if a through hole is formed and both the inner cavity and the outer air conditioner are evacuated, no external pressure is applied to the inner cavity wall 4, and therefore it can be constructed from a relatively thin metal cylinder.
[発明の効果コ
この発明によれば、共振空胴の気密封止外周壁の内側に
内側空胴壁が設けられ、この内側空胴壁に複数のQ調整
用透孔が穿設されているので、構造簡単にしてQ値を比
較的任意に設定出来る。[Effects of the Invention] According to this invention, an inner cavity wall is provided inside the hermetically sealed outer peripheral wall of the resonant cavity, and a plurality of Q adjustment through holes are bored in this inner cavity wall. Therefore, the structure can be simplified and the Q value can be set relatively arbitrarily.
第1図はこの発明の一実施例に係る多空胴クライストロ
ンの要部を示す半縦断面図、第2図及び第3図は各々こ
の発明の他の実施例に係る多空胴クライストロンの要部
を示す半縦断面図である。
1・・・共振空胴、2・・・ドリフト管、3・・・気密
封止外周壁、4・・・内側空胴壁、5・・・Q値調整用
透孔、15・・・Q値調整用凹み。
出願人代理人 弁理士 鈴江武彦FIG. 1 is a half-longitudinal cross-sectional view showing essential parts of a multi-cavity klystron according to one embodiment of the present invention, and FIGS. 2 and 3 are main parts of multi-cavity klystrons according to other embodiments of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Resonance cavity, 2... Drift tube, 3... Hermetically sealed outer peripheral wall, 4... Inner cavity wall, 5... Through hole for Q value adjustment, 15... Q Recess for value adjustment. Applicant's agent Patent attorney Takehiko Suzue
Claims (1)
クロ波管において、 上記共振空胴の気密封止外周壁の内側に内側空胴壁が設
けられ、この内側空胴壁に少なくとも1個のQ調整用の
透孔又は凹みが穿設されてなることを特徴とするマイク
ロ波管。[Claims] In a microwave tube in which a plurality of resonant cavities are connected by a drift tube, an inner cavity wall is provided inside the hermetically sealed outer peripheral wall of the resonant cavity, and the inner cavity wall A microwave tube characterized in that at least one through hole or recess for Q adjustment is bored in the tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15990188A JPH0210633A (en) | 1988-06-28 | 1988-06-28 | Microwave tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15990188A JPH0210633A (en) | 1988-06-28 | 1988-06-28 | Microwave tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0210633A true JPH0210633A (en) | 1990-01-16 |
Family
ID=15703647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15990188A Pending JPH0210633A (en) | 1988-06-28 | 1988-06-28 | Microwave tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0210633A (en) |
-
1988
- 1988-06-28 JP JP15990188A patent/JPH0210633A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07192639A (en) | Line type electron beam tube structure | |
EP0264127A2 (en) | Magnetron device | |
US2492996A (en) | Tunable high-frequency cavity resonator | |
US3078385A (en) | Klystron | |
JPH02183939A (en) | Vacuum airtight window of microwave tube and progressive wave tube with said window | |
US3325671A (en) | Klystron device having fluid cooled tunable cavities and output window mode suppression means | |
US2644908A (en) | Microwave frequency cavity resonator structure | |
JPH0210633A (en) | Microwave tube | |
US2473827A (en) | Electronic discharge device of the cavity resonator type | |
US2698421A (en) | Wave guide seal and filter structure | |
US3227917A (en) | Cavity resonator with flexible means forming both hermetic seal and pivot point | |
US2768327A (en) | Wave guide output circuit for a magnetron | |
US4683401A (en) | Microwave tube output section | |
US2423161A (en) | Electron discharge device of the plural cavity resonator type | |
JPH0232731B2 (en) | ||
US2576702A (en) | Velocity modulation electron discharge device | |
US2559506A (en) | Magnetron | |
US2904719A (en) | Electron discharge devices and electrical resonators therefor | |
KR100320566B1 (en) | magnetron | |
JPH0427082Y2 (en) | ||
US3475645A (en) | Gap tuned reflex klystron having an enlarged movable diaphragm disposed in r.f. isolation with respect to the r.f. cavity | |
US3305802A (en) | Electron tube with resonator tuning by deformation of an internal tubular member | |
JPH08129960A (en) | Multiple cavity klystron | |
JP2902030B2 (en) | Electron gun assembly for hollow electron beam emission | |
US2933643A (en) | Travelling wave magnetrons |