JPH02105827A - Preparation of hydrophilic polymer particle - Google Patents

Preparation of hydrophilic polymer particle

Info

Publication number
JPH02105827A
JPH02105827A JP25909288A JP25909288A JPH02105827A JP H02105827 A JPH02105827 A JP H02105827A JP 25909288 A JP25909288 A JP 25909288A JP 25909288 A JP25909288 A JP 25909288A JP H02105827 A JPH02105827 A JP H02105827A
Authority
JP
Japan
Prior art keywords
polymer
polymer precursor
precursor
aqueous solution
lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25909288A
Other languages
Japanese (ja)
Other versions
JP2739968B2 (en
Inventor
Satoshi Yuasa
聡 湯浅
Yoshinori Tomita
佳紀 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25909288A priority Critical patent/JP2739968B2/en
Publication of JPH02105827A publication Critical patent/JPH02105827A/en
Application granted granted Critical
Publication of JP2739968B2 publication Critical patent/JP2739968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To prepare the title fine particles with a controlled particle size substantially in the absence of any org. solvent by localizing a polymer precursor in an aq. soln. phase enclosed in a lipid membrane and polymerizing said precursor. CONSTITUTION:A lipid (e.g., dipalmitoylphosphatidylcholine) is pref. added to an aq. soln. contg. a polymer precursor (e.g., acrylamide or N,N- methylenebisacrylamide) and dispersed therein by ultrasonic treatment to form small bubbles of the lipid membrane in said aq. soln. The polymer precursor is localized in the aq. soln. phase enclosed in the lipid membrane by removing the polymer precursor present outside the small bubbles by, e.g., dialysis or gel filtration and said precursor is polymerized pref. by irradiation with a radiation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高分子粒状物の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing polymer granules.

(従来の技術及びその問題点) 従来、粒状の高分子材料を得る方法としては、粒状以外
の形状に合成された高分子材料を、例えば、粉砕等の手
段により粒状物とする方法や初めから粒状の形状で高分
子を生成させる方法がある。いずれの方法も工業的に実
施されているものであるが、特に後者は得られる高分子
材料の粒度や粒形等を揃えることが出来るという特徴が
ある。
(Prior art and its problems) Conventionally, methods for obtaining granular polymer materials include methods for converting polymer materials synthesized into shapes other than granules into granules by means such as pulverization, or methods for obtaining granular polymer materials from the beginning. There is a method of producing polymers in granular form. Both methods are practiced industrially, but the latter is particularly characterized in that the particle size and shape of the resulting polymer material can be made uniform.

高分子を粒状に生成させる後者の方法としては、乳化重
合、懸濁重合及びそれらの変法としてシード重合等が知
られている。
As the latter method of forming a polymer into particles, emulsion polymerization, suspension polymerization, and seed polymerization as variations thereof are known.

これらの方法は互いに混合しない2相を共存させ、その
一方の不連続相中で高分子の生成を起こさせる点で共通
している。これらの方法では、生成する高分子粒子の粒
度は、2相の体積比及び2相界面の広さで決まるもので
あり、それらは2相の夫々の体積、粘度、反応槽の攪拌
条件、界面活性剤等の添加物の濃度等に敏感に影響され
る。
These methods have in common that two immiscible phases are made to coexist and a polymer is produced in one of the discontinuous phases. In these methods, the particle size of the polymer particles produced is determined by the volume ratio of the two phases and the width of the two-phase interface, which is determined by the volume of each of the two phases, viscosity, stirring conditions of the reaction tank, and the interface. It is sensitively affected by the concentration of additives such as activators.

又、2相の界面は正のエネルギーを持つので、特に直径
1μm程度の微小粒状の高分子材料を作る場合には界面
活性剤の選択が重要となる。特に親水性高分子の粒状物
を作る際は、W2O型の逆相系分散状態を安定に保つ必
要かあり、多量の有機溶媒を必要とするうえに、0.1
μm以下の粒状物を製造することが難しいという問題が
ある。
Furthermore, since the interface between the two phases has positive energy, the selection of the surfactant is particularly important when producing a polymer material in the form of microscopic particles with a diameter of about 1 μm. In particular, when making granules of hydrophilic polymers, it is necessary to maintain a stable W2O-type reversed phase dispersion state, which requires a large amount of organic solvent and requires 0.1
There is a problem in that it is difficult to manufacture granular materials with a size of μm or less.

従って本発明の目的の1つは高分子粒状物の製造におい
て、その粒度か高分子生成時の反応条件に影響され難い
製造方法を提供し、粒度制御を容易にすることにある。
Accordingly, one of the objects of the present invention is to provide a method for producing granular polymers in which the particle size is not easily influenced by the reaction conditions during polymer production, thereby facilitating particle size control.

又、本発明の別の目的は1μm以下の粒径の高分子粒子
を容易に調製する方法を提供することにある。
Another object of the present invention is to provide a method for easily preparing polymer particles having a particle size of 1 μm or less.

(問題点を解決する為の手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

すなわち、本発明は、脂質膜により閉しられた水溶液相
に高分子前駆物質を局在させる工程と、前記高分子前駆
物質を高分子化させる工程とを有することを特徴とする
親水性高分子粒状物の製造方法である。
That is, the present invention provides a hydrophilic polymer characterized by comprising a step of localizing a polymer precursor in an aqueous solution phase closed by a lipid membrane, and a step of polymerizing the polymer precursor. This is a method for producing granular materials.

(作  用) 本発明の構成により、高分子生成時の反応条件に影響さ
れることなく生成する粒度を制御出来又多量の有機溶剤
を用いることなく1μm以下の粒径の高分子粒子を容易
に提供することが出来る。
(Function) With the structure of the present invention, it is possible to control the particle size produced without being affected by the reaction conditions during polymer production, and it is possible to easily produce polymer particles with a particle size of 1 μm or less without using a large amount of organic solvent. can be provided.

(好ましい実施態様) 次に好ましい実施態様により本発明を更に詳しく説明す
る。
(Preferred Embodiments) Next, the present invention will be explained in more detail with reference to preferred embodiments.

本発明の高分子粒状物の製造方法は、 (+)高分子前駆物質を脂質膜で閉じられた微小胞中に
封じて局在させる工程と (2)前記高分子前駆物質を高分子化する工程とからな
ることを特徴としている。
The method for producing a polymer granule of the present invention includes (+) a step of sealing and localizing a polymer precursor in microvesicles closed with a lipid membrane; and (2) polymerizing the polymer precursor. It is characterized by consisting of a process.

本発明で使用する脂質膜とは、脂質が互いの分子間力と
疎水性相互作用により会合して生ずる2次元構造体であ
る。本発明で使用する脂質はこの様な2次元構造体を形
成し得る両親媒性物質として知られるものであり、公知
のものはいずれも使用出来るが、具体例を挙げるならば
、ジパルミトイルホスファチジルコリン、シミリストイ
ルホスファチジルセリン、ジステアリルジメチルアンモ
ニウムブロマイド等のジアルキル化合物、等の如く剛直
部を有する疎水類と1つ或いは2つの親木基とを有する
化合物等が代表例として挙げられる。又、上記の様な物
質のアルキル鎖の水素原子を一部或いは全部弗素で置換
した物質も好適に用いられる。
The lipid membrane used in the present invention is a two-dimensional structure formed by association of lipids through intermolecular forces and hydrophobic interactions. The lipid used in the present invention is known as an amphipathic substance that can form such a two-dimensional structure, and any known lipid can be used, but specific examples include dipalmitoylphosphatidylcholine, Typical examples include dialkyl compounds such as simyristoylphosphatidylserine and distearyldimethylammonium bromide, and compounds having a hydrophobic group having a rigid portion and one or two parent groups. Further, substances such as those mentioned above in which the hydrogen atoms in the alkyl chains are partially or completely replaced with fluorine are also preferably used.

以上の如き物質は夫々単独でも用いられるが2種以上を
混合して用いてもよい。更に水溶液中で2次元構造体を
形成し得る範囲で各種の高級脂肪酸或いはそのエステル
、アミド誘導体、コレステロール等の中性脂質が混合さ
れてもよい。これらの脂質を高分子前駆物質を含む水溶
液中に適当な手段を用いて分散させると、小胞を形成し
て水溶液の一部を内部に取り込む。
The above substances can be used alone, or two or more types can be used in combination. Furthermore, neutral lipids such as various higher fatty acids or their esters, amide derivatives, and cholesterol may be mixed to the extent that a two-dimensional structure can be formed in an aqueous solution. When these lipids are dispersed in an aqueous solution containing a polymeric precursor using an appropriate means, vesicles are formed and a portion of the aqueous solution is taken up inside.

水溶液に対して加える脂質の量は、全脂質として0.2
mM(ミリモル)から100mMの濃度の範囲が好まし
い。上記範囲を越える量の脂質を用いると脂質の全量を
水溶液中に見掛ト均一に分散することが困難となる。一
方、上記範囲未満の量では、脂質小胞内部に保持される
水溶液の割合が小さいため最後に得られる高分子粒状物
の量が少くなり実用的でない。
The amount of lipid added to the aqueous solution is 0.2 as total lipid.
A concentration range from mM (millimol) to 100 mM is preferred. If an amount of lipid exceeding the above range is used, it becomes difficult to disperse the entire amount of lipid in an aqueous solution in an apparently uniform manner. On the other hand, if the amount is less than the above range, the proportion of the aqueous solution retained inside the lipid vesicles will be small, resulting in a small amount of polymer particles finally obtained, which is not practical.

上記脂質小胞内部の水相の大きさは用いた脂質や分散手
段等により3μm乃至10nmの範囲で調製可能である
The size of the aqueous phase inside the lipid vesicle can be adjusted within the range of 3 μm to 10 nm depending on the lipid used, dispersion means, etc.

本発明で使用する高分子前駆物質とは、高分子を形成す
ることの出来る単量体、反応活性を有するオリゴマー、
反応活性を有する高分子等であり、水溶液に実質的に溶
解し得るものであればいずれも使用出来る。特に高分子
化の工程で生ずる高分子が水に不溶となる様な高分子前
駆物質を用いると、得られた高分子粒状物から脂質膜を
除去しても水中で安定に存在する高分子粒状物6E得ら
れるので好ましい。
The polymer precursors used in the present invention include monomers that can form polymers, oligomers that have reactive activity,
Any polymer that has reactive activity and can be substantially dissolved in an aqueous solution can be used. In particular, if a polymer precursor is used in which the polymer generated during the polymerization process is insoluble in water, polymer particles that remain stable in water even if the lipid membrane is removed from the resulting polymer particles. This method is preferable because product 6E can be obtained.

上述の様に水に不溶な高分子を生ずる前駆体としては、
単量体やオリゴマーの中で高分子化すると水への溶解性
が特に小さくなるもの、反応活性を存する高分子の場合
は、反応の結果生ずる新な高分子の水への溶解性が特に
小さくなるものを用いることが出来る。又、上記高分子
化の工程で架橋構造を有する高分子が形成される様な高
分子化反応も不溶な高分子を生ずる例の1つである。
As mentioned above, the precursors that produce water-insoluble polymers include:
Among monomers and oligomers, the solubility in water becomes particularly low when polymerized, and in the case of polymers that have reactive activity, the solubility in water of the new polymer produced as a result of the reaction is particularly low. You can use something like this. Further, a polymerization reaction in which a polymer having a crosslinked structure is formed in the above-mentioned polymerization step is also an example of producing an insoluble polymer.

脂質を水溶液中に分散し小胞を形成する方法は、従来よ
り種々のものが知られ”ており、それらの中から目的と
する大きさの小胞を形成するために適当な方法を選ぶこ
とが出来る。特に微小な高分子粒状物を得る目的には超
音波を用いた分散が有効である。他方、比較的大きな粒
状物を得る目的には、水に不溶の有機溶媒に脂質を溶解
し、これを高分子前駆物質の水溶液に加えてから’17
機溶媒を蒸発除去する方法が有効である。
Various methods have been known for forming vesicles by dispersing lipids in an aqueous solution, and it is necessary to select an appropriate method among them to form vesicles of the desired size. Dispersion using ultrasonic waves is particularly effective for obtaining microscopic polymer particles.On the other hand, for obtaining relatively large particles, lipids are dissolved in an organic solvent that is insoluble in water. , after adding this to the aqueous solution of the polymer precursor, '17
An effective method is to remove the organic solvent by evaporation.

上記脂質小胞が形成された状態では、通常は小胞の外側
水相と内側水相とのいずれにも高分子前駆物質が存在す
るので、次に外側水相の高分子前駆物質のみを除去する
。除去は例えば下記の2方法のいずれかの方法で達成出
来る。
When the above-mentioned lipid vesicles are formed, polymer precursors are usually present in both the outer and inner aqueous phases of the vesicles, so next, only the polymer precursors in the outer aqueous phase are removed. do. Removal can be achieved, for example, by either of the following two methods.

第一の方法は、高分子前駆物質と水相内で相互作用し、
これを選択的に吸着除去する処理剤や、高分子前駆物質
と反応してその高分子形成能を喪失させる処理剤を外側
水相に添加する方法である。使用する処理剤は勿論脂質
膜の内側迄浸透するものであってはならないが、更に使
用する高分子前駆物質との組合せを考慮して選択される
。これらの処理剤としては、例えば、高分子前駆物質が
スチレンスルホン酸、アクリル酸、メタクリル酸等の酸
性単量体やジメチルアミンエチルメタクリレート、2−
ヒドロキシ−3−メタクリルオキシプロピルトリメチル
アンモニウムクロライド等の塩基性単量体に対しては、
夫々、アニオン交換樹脂、カチオン交換樹脂を用いて除
去することができる。高分子前駆物質がオリゴマーやポ
リマーの場合でも解離性の極性基を分子内に有する場合
は同様にイオン交換樹脂が有効であるが、別に解離基と
反対の電荷を有する多価イオン(例えば、八1ff+、
Ca”、PO43−等)を用いても高分子前駆物質を沈
澱除去することが出来る。
The first method involves interacting within the aqueous phase with a polymeric precursor;
This is a method in which a processing agent that selectively adsorbs and removes this or a processing agent that reacts with the polymer precursor and loses its ability to form a polymer is added to the outer aqueous phase. The processing agent used must of course not penetrate into the inside of the lipid membrane, but it is selected in consideration of the combination with the polymer precursor used. These processing agents include, for example, when the polymer precursor is an acidic monomer such as styrene sulfonic acid, acrylic acid, or methacrylic acid, dimethylamine ethyl methacrylate, 2-
For basic monomers such as hydroxy-3-methacryloxypropyltrimethylammonium chloride,
They can be removed using an anion exchange resin and a cation exchange resin, respectively. Even if the polymer precursor is an oligomer or polymer, ion exchange resins are similarly effective when they have dissociative polar groups in the molecule, but multivalent ions with an opposite charge to the dissociative groups (e.g. 1ff+,
It is also possible to precipitate and remove the polymeric precursor by using a compound (e.g., Ca'', PO43-, etc.).

脂質小胞の外側水相の高分子前駆物質を除去する第二の
方法は、高分子前駆物質を含まない水溶液で外側水相を
置換する方法である。この方法は脂質小胞を分離するた
めの公知の手段、例えば、透析やゲル濾過等の操作によ
り目的を容易に達成することが出来る。
A second method for removing macromolecular precursors in the outer aqueous phase of lipid vesicles is to replace the outer aqueous phase with an aqueous solution free of macromolecular precursors. The purpose of this method can be easily achieved by using known means for separating lipid vesicles, such as dialysis and gel filtration.

高分子前駆物質は上述の様な小胞が安定に形成された後
に、用いた前駆物質に応じた手段によって高分子化され
る。この手段としては、高分子化反応の開始触媒作用を
有する物質の添加を用いる事が可能であるが、更に好適
には、可視光線、紫外線、X線、γ線等の輻射線の照射
を用いることが出来る。これらの輻射線を利用する場合
には、高分子化反応を促進するために輻射線に対する増
感作用を有する化合物を高分子前駆物質と共存させても
よい。
After the polymer precursor is stably formed into vesicles as described above, it is polymerized by means depending on the precursor used. As a means for this, it is possible to use the addition of a substance that has a catalytic effect to initiate the polymerization reaction, but more preferably, irradiation with radiation such as visible light, ultraviolet rays, X-rays, and γ-rays is used. I can do it. When these radiations are used, a compound having a sensitizing effect to radiation may be co-existed with the polymer precursor in order to promote the polymerization reaction.

高分子化反応により脂質小胞内の高分子前駆物質は高分
子化され、高分子粒状物が水溶液に分散した状態で得ら
れる。脂質が粒状物の周囲に残りていると分散状態は安
定である。脂質を除去する必要がある場合は、得られた
分散液に界面活性剤を添加して脂質膜を破壊し、粒子を
洗浄することにより除くことが出来る。
The polymer precursor within the lipid vesicles is polymerized by the polymerization reaction, and polymer particles are obtained in a state dispersed in an aqueous solution. If the lipid remains around the particles, the dispersion state is stable. If it is necessary to remove lipids, it can be done by adding a surfactant to the resulting dispersion to destroy the lipid membrane and washing the particles.

上述の粒状高分子の製造方法は、両親媒性物質を用いて
高分子前駆物質を含む水相を分散している点においては
逆相懸濁重合法及び逆相乳化重合法に類似する。しかし
、両親媒性物質層を介して接する2層がいずれも水相で
ある事が本方法に特徴的である。この様な両親媒性物質
層すなわち脂質膜は一旦形成されると安定であり、高分
子前駆物質の高分子化の操作等によっても容易には破壊
されないため、本発明の高分子粒状物の製造方法におい
て高分子の粒度を規制する目的に有効に寄与する。
The method for producing particulate polymers described above is similar to reverse-phase suspension polymerization and reverse-phase emulsion polymerization in that an amphiphilic substance is used to disperse an aqueous phase containing a polymer precursor. However, a feature of this method is that both of the two layers that are in contact with each other via the amphiphilic substance layer are aqueous phases. Once formed, such an amphiphilic material layer, that is, a lipid membrane, is stable and is not easily destroyed even by operations such as polymerization of a polymer precursor, and therefore, it is difficult to produce the polymer granules of the present invention. This effectively contributes to the purpose of controlling the particle size of the polymer in the method.

又、一般の懸濁重合法や乳化重合法では用いられる界面
活性剤分子は界面に存在する状態と、液相に溶存する状
態との間に速い交換があり、分散系が本発明のものに比
べ環境条件に敏感であるため、本発明と同等の効果を得
ることが困難であ(実施例) 以下、具体的実施例により本発明の親水性高分子粒状物
の製造方法を説明する。
In addition, in general suspension polymerization and emulsion polymerization methods, the surfactant molecules used are rapidly exchanged between the state existing at the interface and the state dissolved in the liquid phase, and the dispersion system of the present invention is Since it is more sensitive to environmental conditions, it is difficult to obtain effects equivalent to those of the present invention (Examples).Hereinafter, the method for producing the hydrophilic polymer granules of the present invention will be explained using specific examples.

実施例1 アクリル酸とドロキシエチル4g、アクリルアミドt6
g&び塩化ナトリウム1.8gを水200mfに溶解す
る。卵黄レシチン6gをクロロホルム20mJ2に溶解
し、容量500mILのステンレス容器中で容器を回転
しながらクロロホルムを減圧除去する。この容器に前記
の水溶液を入れて外から5℃に冷却しながらグローブ型
超音波発振装置(28にflz、2001)により20
分間処理する。得られた水溶液を3,000rpmにて
20分間遠心して沈澱物を除去し、ドライアイス/アセ
トン浴で凍結させ、次に15℃の水浴で融解する。この
液を先ず2,0μm孔径のポリカーボネート膜を用いて
加圧濾過し、更に0.4μm孔径のポリカーボネート膜
を用いて加圧濾過する。
Example 1 Acrylic acid and 4g of droxyethyl, acrylamide t6
Dissolve 1.8 g of sodium chloride in 200 mf of water. 6 g of egg yolk lecithin is dissolved in 20 mJ2 of chloroform, and the chloroform is removed under reduced pressure in a stainless steel container with a capacity of 500 ml while rotating the container. The above aqueous solution was placed in this container, and while being cooled from the outside to 5°C, it was heated for 20 minutes using a globe-type ultrasonic oscillator (28 to flz, 2001).
Process for minutes. The resulting aqueous solution is centrifuged at 3,000 rpm for 20 minutes to remove the precipitate, frozen in a dry ice/acetone bath, and then thawed in a 15° C. water bath. This liquid is first filtered under pressure using a polycarbonate membrane with a pore size of 2.0 μm, and then filtered under pressure using a polycarbonate membrane with a pore size of 0.4 μm.

5%塩化ナトリウム水溶液で平衡させた架橋デキストラ
ンケル(ファルマシア■、セファデックスG−50)カ
ラムに前記濾液をチャージしゲル濾過する。カラムより
流出する濾液を濁度計でモニターし、初めに現れる濁度
の高い分画を集める。このものは光散乱法により、平均
350nmの粒子か分散していることか測定された。
The filtrate was charged to a cross-linked dextranchel (Pharmacia ■, Sephadex G-50) column equilibrated with a 5% aqueous sodium chloride solution and subjected to gel filtration. The filtrate flowing out of the column is monitored with a turbidity meter, and the first highly turbid fraction that appears is collected. It was determined by a light scattering method whether particles with an average diameter of 350 nm were dispersed.

面記分画をガラス容器に入れ20℃に保持、攪拌しなか
ら窒気雰囲気下、2 X 10 ’R/hrの線計率の
γ線(線源はC660)を4時間照射する。次にトリト
ンX100(ロームアンドハース社)を液量の2%添加
して脂質小胞を破壊する。この液は25℃において光散
乱法により平均450nmの粒子を含むことが示された
。これを20.000rpn+にて1時間遠心すること
により、半透明ペースト状に沈殿した高分子微粒子か得
られた。ペーストとしての含水率98%重鼠以上(乾燥
法による)であった。
The above-mentioned fraction was placed in a glass container, kept at 20° C., stirred, and irradiated with γ-rays (radiation source: C660) at a radiation rate of 2×10′R/hr for 4 hours under a nitrogen atmosphere. Next, 2% of the liquid volume of Triton X100 (Rohm and Haas) is added to disrupt lipid vesicles. This liquid was shown to contain particles with an average diameter of 450 nm by light scattering at 25°C. By centrifuging this at 20,000 rpm+ for 1 hour, fine polymer particles precipitated in the form of a translucent paste were obtained. The water content as a paste was 98% or more (by drying method).

実施例2 アクリル酸ヒドロキシエチル4g、N、N−メチレンビ
スアクリルアミド1,5g、アクリルアミド20g、塩
化カリウム1.8g及びリホフラビン70mgを水20
0muに加え攪拌する。以下、実施例1と同様にして平
均粒径350nmの脂質小胞を形成する。溶られた水溶
液を10℃に保ち窒素をバブルさせながら穏やかに攪拌
し、白色蛍光灯(6W4本)の光を5cmの距離から4
0分間照射する。以下実施例1と同様の処理を行って平
均粒径360nm(光散乱法)の粒子が得られた。
Example 2 4 g of hydroxyethyl acrylate, 1.5 g of N,N-methylenebisacrylamide, 20 g of acrylamide, 1.8 g of potassium chloride and 70 mg of rifoflavin were added to 20 g of water.
Add to 0 mu and stir. Thereafter, lipid vesicles having an average particle size of 350 nm are formed in the same manner as in Example 1. The dissolved aqueous solution was kept at 10℃ and stirred gently while bubbling nitrogen.
Irradiate for 0 minutes. Thereafter, the same treatment as in Example 1 was performed to obtain particles with an average particle size of 360 nm (light scattering method).

実施例3 2度目の加圧濾過に用いるポリカーボネート膜の孔径を
0.2μmとする以外は、実施例1と同様の操作を行っ
て平均粒径220μmの高分子粒子か得られた。
Example 3 Polymer particles with an average particle size of 220 μm were obtained by carrying out the same operation as in Example 1, except that the pore size of the polycarbonate membrane used for the second pressure filtration was 0.2 μm.

実施例4 アクリルアミド10g、N、N−メチレンビスアクリル
アミド2.5g及び塩化ナトリウム0.9gを水100
mILに溶解する。ジパルミトイルホスファチジルコリ
ン2,6g及びコレステロール0.2gをエタノール2
0ml1に溶解し、ガラス容器内で穏やかな空気気流に
より乾燥する。この容器に前記水溶液を加え、50℃に
加温し、グローブ型超音波発振装置(28KHz、 1
20W)により30分間処理する。得られた水溶液を5
℃に冷却し、3,000rpmにて20分間遠心して沈
澱物を除去する。この液を6%塩化ナトリウム水溶液で
平衡させた架橋デキストランゲルカラムによりゲル濾過
し、実施例1と同様にして濁度の高い分画を集める。
Example 4 10 g of acrylamide, 2.5 g of N,N-methylenebisacrylamide and 0.9 g of sodium chloride were added to 100 g of water.
Dissolve in mIL. Add 2.6 g of dipalmitoylphosphatidylcholine and 0.2 g of cholesterol to 2.2 g of ethanol.
Dissolve in 0 ml 1 and dry in a glass container with a gentle stream of air. The aqueous solution was added to this container, heated to 50°C, and a globe-type ultrasonic oscillator (28 KHz, 1
20W) for 30 minutes. The obtained aqueous solution was
Cool to 0.degree. C. and centrifuge at 3,000 rpm for 20 minutes to remove the precipitate. This solution is gel-filtered through a cross-linked dextran gel column equilibrated with a 6% aqueous sodium chloride solution, and the highly turbid fraction is collected in the same manner as in Example 1.

前記液を5℃に冷却及び攪拌し、実施例1と同様の条件
でγ線を照射し、平均粒径18nmの高分子粒子が得ら
れた。
The liquid was cooled to 5° C. and stirred, and irradiated with gamma rays under the same conditions as in Example 1 to obtain polymer particles with an average particle size of 18 nm.

実施例5 アクリル酸ナトリウム0.2gを水2mlに溶解する。Example 5 Dissolve 0.2 g of sodium acrylate in 2 ml of water.

シミリストイルホスファチジルグリセロール7mg、シ
ミリストイルホスファチジルコリン36mg及びコレス
テロール24mgをジエチルエーテル7mJ2に溶解し
、上記水溶液を加え超音波処理して乳濁液とする。減圧
してエーテルを溜去する。溜去の途中で液の流動性が無
くなワたら液を振り混ぜて溜去を続ける。
7 mg of simyristoylphosphatidylglycerol, 36 mg of simyristoylphosphatidylcholine, and 24 mg of cholesterol are dissolved in 7 mJ2 of diethyl ether, and the above aqueous solution is added and treated with ultrasound to form an emulsion. The ether is distilled off under reduced pressure. During distillation, the liquid loses its fluidity and is shaken to continue distillation.

得られた液に6.5%塩化ナトリウム水溶液を加え、D
EAEセファロース(ファルマシア■)を用いてイオン
交換して外側水相中のアクリル酸イオンを除く。
A 6.5% aqueous sodium chloride solution was added to the resulting solution, and D
Acrylic acid ions in the outer aqueous phase are removed by ion exchange using EAE Sepharose (Pharmacia ■).

得られた液を5℃に冷却し、窒素雰囲気下で2x106
R/hrのγ線(Co”)を2時間照射して平均0.6
2μm径の粒子が得られた。
The resulting liquid was cooled to 5°C and 2x106
An average of 0.6 after 2 hours of irradiation with R/hr of γ-rays (Co”)
Particles with a diameter of 2 μm were obtained.

実施例6 N−ビニルピロリドン2g、アクリルアミド4g、エチ
レングリコールジアクリレート0.3g及び塩化ナトリ
ウム0.6gを水70mkに溶解する。卵黄レシチン4
5mgをジエチルエーテル35m2に溶解する。上記の
水溶液を35℃に加温し、弱く減圧しながらF記エーテ
ル溶液をゆっくり注入する。以下実施例1と同様にして
ゲル濾過及びγ線照射を行って平均粒径0.22μmの
粒子が得られた。
Example 6 2 g of N-vinylpyrrolidone, 4 g of acrylamide, 0.3 g of ethylene glycol diacrylate and 0.6 g of sodium chloride are dissolved in 70 mk of water. egg yolk lecithin 4
5 mg is dissolved in 35 m2 of diethyl ether. The above aqueous solution is heated to 35°C, and the ether solution F is slowly injected while the pressure is slightly reduced. Thereafter, gel filtration and γ-ray irradiation were performed in the same manner as in Example 1 to obtain particles with an average particle size of 0.22 μm.

(効  果) 以北説明した様に、本発明の方法に従うと。(effect) Following the method of the present invention as further described.

(1)親水性高分子粒状物の粒度は、高分子生成工程の
反応条件とは独立に脂質小胞形成工程で決まるのて、粒
度制御が容易である。
(1) The particle size of the hydrophilic polymer particles is determined in the lipid vesicle formation step independently of the reaction conditions of the polymer production step, so particle size control is easy.

(2)0.1μm以下の微小な親水性高分子粒状物を製
造することか出来る。
(2) It is possible to produce minute hydrophilic polymer particles of 0.1 μm or less.

(3)W10型分散状態を利用しないので、有機溶媒は
殆ど使用せず、水溶液系で親水性高分子粒状物を製造す
ることが出来る。
(3) Since the W10 type dispersion state is not utilized, hydrophilic polymer particles can be produced in an aqueous solution system with almost no organic solvent used.

等の点において従来の方法に無い効果が得られた。Effects not found in conventional methods were obtained in these respects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高分子前駆物質の分散した水溶液内に脂質膜よ
りなる小室が形成された状態を示す模式図てあり、第2
図は高分子@駆物質が脂質膜より成る小胞の内側に局在
した状態を示す模式図てあり、第3図は第2図における
高分子前駆物質が高分子化した状態を示す模式図である
。 !、3:高分子前駆物質の分散した水溶液2;脂質膜 4:高分子前駆物質を含まない水溶液 5:親水性高分子粒状物
Figure 1 is a schematic diagram showing the state in which a small chamber consisting of a lipid membrane is formed in an aqueous solution in which a polymer precursor is dispersed.
The figure is a schematic diagram showing the state in which the polymer @ precursor is localized inside a vesicle made of a lipid membrane, and Figure 3 is a schematic diagram showing the state in which the polymer precursor in Figure 2 has been polymerized. It is. ! , 3: Aqueous solution containing dispersed polymer precursor 2; Lipid membrane 4: Aqueous solution not containing polymer precursor 5: Hydrophilic polymer particles

Claims (3)

【特許請求の範囲】[Claims] (1)脂質膜により閉じられた水溶液相に高分子前駆物
質を局在させる工程と、前記高分子前駆物質を高分子化
させる工程とを有することを特徴とする親水性高分子粒
状物の製造方法。
(1) Production of hydrophilic polymer granules characterized by comprising a step of localizing a polymer precursor in an aqueous solution phase closed by a lipid membrane, and a step of polymerizing the polymer precursor. Method.
(2)脂質膜により閉じられた水溶液相に高分子前駆物
質を局在させる工程が、高分子前駆物質の水溶液中に脂
質膜よりなる小胞を形成する工程と、これに続く前記小
胞外に存在する高分子前駆物質を除去する工程とから構
成される請求項1に記載の親水性高分子粒状物の製造方
法。
(2) The step of localizing the polymer precursor in the aqueous solution phase closed by a lipid membrane includes the step of forming a vesicle made of a lipid membrane in the aqueous solution of the polymer precursor, and the subsequent step of forming a vesicle made of a lipid membrane in the aqueous solution of the polymer precursor, and then 2. The method for producing a hydrophilic polymer granule according to claim 1, comprising the step of removing a polymer precursor present in the hydrophilic polymer granules.
(3)高分子化工程が輻射線の照射による請求項1及び
2に記載の親水性高分子粒状物の製造方法。
(3) The method for producing hydrophilic polymer particles according to claims 1 and 2, wherein the polymerization step involves irradiation with radiation.
JP25909288A 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles Expired - Fee Related JP2739968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25909288A JP2739968B2 (en) 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25909288A JP2739968B2 (en) 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles

Publications (2)

Publication Number Publication Date
JPH02105827A true JPH02105827A (en) 1990-04-18
JP2739968B2 JP2739968B2 (en) 1998-04-15

Family

ID=17329204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25909288A Expired - Fee Related JP2739968B2 (en) 1988-10-14 1988-10-14 Method for producing hydrophilic polymer particles

Country Status (1)

Country Link
JP (1) JP2739968B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677897A1 (en) * 1991-06-24 1992-12-24 Oreal PROCESS FOR THE PREPARATION OF SUBMICRONIC PARTICLES IN THE PRESENCE OF LIPID VESICLES AND CORRESPONDING COMPOSITIONS.
JP2007083213A (en) * 2005-09-26 2007-04-05 Sumitomo Electric Ind Ltd Particle classifying apparatus, and adhesive containing particle classified by the apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677897A1 (en) * 1991-06-24 1992-12-24 Oreal PROCESS FOR THE PREPARATION OF SUBMICRONIC PARTICLES IN THE PRESENCE OF LIPID VESICLES AND CORRESPONDING COMPOSITIONS.
US5425993A (en) * 1991-06-24 1995-06-20 L'oreal Process for preparing submicron particles in the presence of lipid vesicles, and corresponding compositions
US5670099A (en) * 1991-06-24 1997-09-23 L'oreal Process for preparing submicron particles in the presence of lipid vesicles, and corresponding compositions
JP2007083213A (en) * 2005-09-26 2007-04-05 Sumitomo Electric Ind Ltd Particle classifying apparatus, and adhesive containing particle classified by the apparatus

Also Published As

Publication number Publication date
JP2739968B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
Ekman et al. Improved stability of proteins immobilized in microparticles prepared by a modified emulsion polymerization technique
RU2561035C2 (en) Carriers for mpv-regulated delivery of medication, sensitive to stimulating factor
DK173397B1 (en) Methods for preparing liposomes as well as methods for increasing the homogeneity of a population of liposomes
KR850000333B1 (en) Flocs for filteration of deionixation prepared from cationic & anionic emulsion
US4170590A (en) Ion exchanger treatment of citrate-stabilized plasma
Farzaneh et al. Molecularly imprinted polymer nanoparticles for olanzapine recognition: application for solid phase extraction and sustained release
JPS61353A (en) Drug administration apparatus
KR850000344B1 (en) Ion exchange process involving emulsion ion exchange resins
JP3601229B2 (en) Porous spherical cellulose particles
CN114939186A (en) Ti-MOF/chitosan scaffold and preparation method and application thereof
JPH02105827A (en) Preparation of hydrophilic polymer particle
Chretien et al. Indomethacin release from ion-exchange microspheres: impregnation with alginate reduces release rate
JPH0556761B2 (en)
JP2739967B2 (en) Method for producing hydrophilic polymer particles
JP3285441B2 (en) Adsorbent for lowering plasma viscosity of vasoocclusive disease plasma and apparatus for lowering plasma viscosity
Yoshida et al. Drug entrapment for controlled release in radiation-polymerized beads
US5670636A (en) Fractionated agaroid compositions, their preparation and use
JPH03261729A (en) Separating material for optical isomer
RU2102400C1 (en) Method for production of hualyronic acid
RU2067617C1 (en) Method of lysozyme dimer preparing
RU2041885C1 (en) Process for sodium preparing salt powder of deoxyribonucleic acid from milt
EP2381962A1 (en) Composition for prolonged release of heparin and use of the alginate-hydroxypropylcellulose gel for prolonged release of heparin
JPS589686A (en) Purifying method of superoxide dismutase
JPH08100006A (en) Production of monodisperse polymer particle
JPH0363354B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees