JP3601229B2 - Porous spherical cellulose particles - Google Patents

Porous spherical cellulose particles Download PDF

Info

Publication number
JP3601229B2
JP3601229B2 JP01758897A JP1758897A JP3601229B2 JP 3601229 B2 JP3601229 B2 JP 3601229B2 JP 01758897 A JP01758897 A JP 01758897A JP 1758897 A JP1758897 A JP 1758897A JP 3601229 B2 JP3601229 B2 JP 3601229B2
Authority
JP
Japan
Prior art keywords
porous spherical
cellulose particles
spherical cellulose
solution
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01758897A
Other languages
Japanese (ja)
Other versions
JPH10195103A (en
Inventor
英之 畑
博明 石橋
正彦 西川
真一 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP01758897A priority Critical patent/JP3601229B2/en
Publication of JPH10195103A publication Critical patent/JPH10195103A/en
Application granted granted Critical
Publication of JP3601229B2 publication Critical patent/JP3601229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、特定の排除限界分子量、結晶化度を有し、真球度が0.9以上である均一な球状の形態を持った多孔性球状セルロース粒子に関する。本発明の多孔性球状セルロース粒子はクロマトグラフィー用分離剤、検査薬の担体、バイオリアクターの担体、治療用の吸着剤等に極めて好適に使用することができる。近年、化学、医学などの分野で利用されている液体クロマトグラフィーは急速に高性能化し、広範に使用されるようになっている。この液体クロマトグラフィーに用いられる充填剤の機能は細孔径に大きく依存している。例えばゲルクロマトグラフィーでは充填剤を充填したカラムに混合物溶液を流し、溶出する間に分子の大きさに従って篩い分ける原理で分離する。このため細孔の大きさにより分離できる物質が限定されることになり、アミノ酸等の低分子物質から蛋白質などの高分子物質までを分離精製対象にするためには多様な細孔径をもつ充填剤をそろえる必要がある。従って細孔径をコントロールする事が、その分画範囲と性能を決定する上で大きな要因となる。また、充填剤の粒径の均一性、真球度も分離の際の再現性等の性能に大きく影響する。
【0002】
【従来の技術】
セルロースを溶解−再生してゲルビーズとする方法として、酢酸エステルを経由する方法が特公昭55−39565号公報及び特公昭55−40618号公報に開示されており、チオシアン酸カルシウム塩を用いて溶液から造粒する方法が特公昭63−62252号公報に記載されている。また、パラホルムアルデヒド・ジメチルスルホキシド溶液から製造する方法が特公平2−22093号公報に開示されている。
細孔径がコントロールされた多孔性球状セルロース粒子の製造方法としては、セルロース粒子の製造時に▲1▼高級アルコールを希釈剤として添加する方法、▲2▼酸やアルカリを添加する方法、▲3▼結晶化度の異なるセルロースエステルを混合して製造する方法等があるが、▲1▼では希釈剤の洗浄や回収に多くの手間がかかり、また▲2▼では蛋白分子の大きさに対応する細孔径が得られず、▲3▼では特殊な原料を必要とし、非常にコスト高になるなどの問題点があった。
また、これらの方法とは別に、一定の細孔径を持つセルロース粒子を製造したのち、該セルロース粒子を架橋剤で架橋する事で立体的な空間を狭めて細孔径をコントロールしたセルロース粒子の製造法もあるが、この方法では安定した構造のセルロース粒子が架橋反応により破壊されるため、機械的強度が低下していくという問題点があった。
また、これらの造粒法で得られる多孔性球状セルロースには粒径にかなりの幅があり、実際に使用する粒径を得るには篩い分けが必要であるという問題、またポリマーくずや異形粒子が発生しやすく工業的に製造する場合、非常にロスが大きいという問題点があった。
【0003】
【発明が解決しようとする課題】
本発明者らは、このような問題点を解決するために鋭意検討した。その結果、特定の平均分子量のセルロースの特定量をチオシアン酸カルシウム水溶液に溶解した溶液(以下、R液という)を分散媒液(以下、D液という)中に滴下し、加熱しながら撹拌、造粒したのち、特定速度以上で冷却することにより、真球状で特定の結晶化度を有する多孔性セルロース粒子が狭い粒度分布をもって得られる事を見い出した。すなわち、本発明の目的は特殊な原料や添加物を使用せず、また架橋処理などの二次的な操作を行わずに製造される、一定のコントロールされた細孔径、すなわち、一定範囲の排除限界分子量を持ち、真球状で結晶化度が低く、粒度分布の狭い多孔性セルロース粒子を提供することである。
【0004】
【課題を解決するための手段】
本発明は下記から構成される。
(1)平均分子量が1千〜10万である原料セルロースをチオシアン酸カルシウム水溶液に溶解させた溶解濃度が 3 重量 % 15 重量 % の溶液(以下、R液という)を、分散溶液(以下、D液という)にR液/D液の体積比が 0.5 以下となるように滴下し、撹拌、造粒したのち、冷却速度 0.5 ℃/分以上で該反応液を冷却させて製造された、ポリエチレンオキサイドによる排除限界分子量が50万〜500万で、X線回折法により求めた結晶化度が3〜15%、真球度が0.9以上であることを特徴とする多孔性球状セルロース粒子。
(2)ポリエチレンオキサイドによる排除限界分子量が80万〜300万である前記第1項記載の多孔性球状セルロース粒子。
(3)ポリエチレンオキサイドによる排除限界分子量が100万〜200万である前記第1項記載の多孔性球状セルロース粒子。
(4)結晶化度が6〜8%である前記第1項記載の多孔性球状セルロース粒子。
(5)R液/D液の体積比が 0.3 以下である前記第1〜4項のいずれか1項記載の多孔性球状セルロース粒子。
(6)D液がハロゲン化炭化水素化合物である前記第1〜5項のいずれか1項記載の多孔性球状セルロース粒子。
(7)ハロゲン化炭化水素化合物がジクロロエタンもしくはジクロロベンゼンである前記第6項記載の多孔性球状セルロース粒子。
(8)冷却速度が 2 ℃/分以上である前記第1〜7項のいずれか1項記載の多孔性球状セルロース粒子。
(9)多孔性球状セルロース粒子が、平均粒径が 50 2000 μmであり、 70 %以上が平均粒径の± 10% の粒径範囲である前記第1〜8項のいずれか1項記載の多孔性球状セルロース粒子。
(10)原料セルロースの平均分子量が 1 万〜 4 万である前記第1〜9項のいずれか1項記載の多孔性球状セルロース粒子。
【0005】
以下、本発明を詳細に説明する。本発明の多孔性球状セルロース粒子は、ポリエチレンオキサイドによる排除限界分子量が50〜500万の細孔径を有し、X線回折法により求めた結晶化度が3〜15%、真球度が0.9以上の多孔性球状セルロース粒子であり、該多孔性球状セルロース粒子は次のような製造方法で製造することができる。すなわち、原料セルロースをチオシアン酸カルシウム水溶液に溶解させた溶液の溶解濃度をある一定範囲に調節したセルロース溶液(以下、R液という)をジクロロベンゼン等の分散媒液(以下、D液という)に滴下し、撹拌、造粒したのち、冷却速度0.5℃/分以上で該反応液を冷却させる方法により本発明の多孔性球状セルロース粒子が得られる。
【0006】
本発明の多孔性球状セルロース粒子の原料セルロースとしては、結晶性セルロース粉末などセルロースを主成分とするものであり、また、チオシアン酸カルシウム水溶液に溶解したあとの溶液の取り扱いの容易さの点から、カドキセン法で求められた平均分子量が1千〜10万のセルロースが好ましく、1万〜4万のものがより好ましい。該原料セルロースを該チオシアン酸カルシウム水溶液に溶解させた溶液すなわちR液のセルロース濃度は3〜15重量%、好ましくは6〜10重量%である。該セルロース濃度が15重量%を大幅に越えると、溶液の粘度が高くなり、取り扱いが困難になり、該濃度が3重量%を大きく下回ると、溶液は低粘度で流動性は良くなるが、異形粒子が発生しやすくなる。
【0007】
原料セルロースの平均分子量とチオシアン酸カルシウム水溶液への溶解濃度を上記の範囲内に調節することにより、得られるセルロース粒子の細孔径を、ポリエチレンオキサイド(以下、PEOという)による排除限界分子量が50万〜500万にコントロールする事が可能になる。原料セルロースの分子量が大きいほど、得られる球状セルロースの細孔径は大きくなり、また溶解濃度が低いほど得られる多孔性球状セルロース粒子の細孔径が大きくなる傾向がある。この性質を利用すれば造粒に支障のないセルロース濃度の範囲内で任意の細孔径の球状セルロース粒子を調製することが可能である。本発明の製造方法では、PEOによる排除限界分子量が上述したように50万〜500万の範囲の粒子が得られる。
【0008】
本発明における排除限界分子量とは、ゲル濾過法においてゲルのもつ細孔に入り込めない分子のうち最小の分子の分子量である。この排除限界分子量の値は、測定に用いた試料分子の立体構造が大きく関与する。例えば、デキストランのように繊維状に伸びた分子を用いた場合と、球状蛋白質のように緻密な分子を用いた場合では排除限界点は異なってくるので、何を用いて測定した値かを明示しておく必要がある。本発明で使用した試料分子はPEOであり、これらの試料を用いて得られた本発明の多孔性球状セルロース粒子の排除限界分子量の値は50万〜500万である。
【0009】
チオシアン酸カルシウム水溶液に溶解させて得られた特定濃度のR液を分散法により球状に成形する。分散法により球状セルロースを得る方法としては、例えば、該R液を、界面活性剤を含むセルロース溶液の溶剤と相溶性の低いD液に加え、撹拌などの操作により乳化を行なう。本発明に用いる界面活性剤の性質としては、セルロース溶液を内油層O1とし、この界面活性剤を含むセルロース溶液の分散媒液を外油層O2とするO1/O2型乳化物を作るのに適する親水基、疎水基の割合を持った界面活性剤が好ましい。
乳化操作としては公知の分散法、例えば、プロペラ型撹拌機あるいはタービン型撹拌機などのミキサーによる方法、コロイドミル法、ホモジナイザー法、超音波照射法等が用いられる。この乳化操作により球状セルロースの粒子径を制御する事ができる。
【0010】
本発明に用いるD液としては、セルロース溶液すなわちR液と任意の割合で混合し、乳化作用を行なった際、該R液を内油層O1とし、該D液をO2とするO1/O2型乳化物を形成するものであれば特に限定されないが、好ましくは、ハロゲン化炭化水素類等が挙げられ、ジクロロエタン、ジクロロベンゼン等を例示できるが、ジクロロベンゼンが特に好ましい。
また、内油層O1と外油層O2の体積比(O1/O2)は乳化操作を行なった際にR液を内油層O1とするO1/O2型乳化物を形成する値であれば特に限定はされないが、この値が0.5以上になると異形粒子が発生しやすくなる。好ましくは0.3以下である。
本発明の造粒時における反応温度はセルロースの分解が生じない温度であれば特に限定されないが、好ましくは100℃〜130℃である。上記温度で撹拌時間を調節し、その後、急激に冷却することによりゲルの凝固を行う。この冷却時間が長くかかると異形粒子が発生したり、ゲルが着色したりする。好ましい冷却速度は0.5℃/分 以上である。さらに好ましくは2℃/分以上である。
上記のO1/O2比で反応後の冷却速度を速めることで、一定の撹拌速度で分散したR液が短時間で凝固し、均一な粒径をもつ真球に近い粒子になる。また、セルロースの再生も短時間で完了するため、結晶化の進行が押さえられ、結晶化度の低い粒子が得られる。結晶化度は冷却速度を調節することでコントロールできる。
【0011】
以上の製造方法により得られる多孔性球状セルロース粒子の結晶化度は3〜15%である。結晶化度が高すぎると、付加反応や架橋反応等の反応性が低くなる。しかし、結晶化度が低すぎるとゲルの立体的安定性を損なう恐れがある。好ましい結晶化度としては6〜8%である。
本発明でいう真球度とは、粒子の短径/長径を意味する。真球度が0.8より低いとクロマト剤として用いたとき、均一に充填することができず、再現性が低く、担体としての性能が悪くなる。本発明の多孔性球状セルロース粒子の真球度は0.9以上である。
また、得られた多孔性球状セルロースの粒径範囲は平均粒径の±10%のものが70%以上を占め、狭い粒径範囲のものが篩い分けなどの操作なしで高収率で得られる。
【0012】
ジクロロベンゼンのように水と相溶性の無い有機溶媒はR液を溶解しないので、D液としてこの溶液を用いた場合には、次の段階でセルロース塩を除去する必要がある。分散粒子からカルシウム塩を除去(脱塩)してセルロースをゲル状に再生させるためには、D液と混合し、かつカルシウム塩を溶解する溶媒(以下、脱塩溶媒という)を用いて洗浄する。該脱塩溶媒としては、低級アルコール例えばエタノール、特にメタノール、ケトン例えばアセトン、エステル例えば酢酸エチルエステル等が好ましい。これらの溶媒は単独でまたは2種以上の混合物として用いられ、水を含んでいてもよい。脱塩再生操作は、分散液をそのまま脱塩溶媒中に注いで静かに撹拌することにより行なう事ができるが、例えばデカンテーション、ろ過などにより分散溶媒の大部分を除去した後、脱塩溶媒を用いて洗浄してもよい。いずれの場合にも脱塩溶媒は分散溶媒と混合し、同時にゲル粒子からカルシウム塩を抽出するのでセルロース粒子として安定化される。有機溶媒、カルシウム塩及び場合により分散剤を充分に除去するため、最後によく水洗する事が好ましい。
【0013】
【実施例】
次に、本発明について実施例及び比較例を用いて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例で製造した多孔性球状セルロース粒子における(1)結晶化度、(2)真球度及び粒径、(3)原料セルロースの平均分子量の測定法(4)排除限界分子量の測定法は次の通りである。
【0014】
(1)結晶化度の測定法
微粉砕したセルロース粒子または再生セルロース0.2gをアルミホルダーに押し付け、X線回折の回折角度を5〜30°まで操作して測定する。図1に示すように結晶性セルロースにはA1,A2の結晶散乱ピークがある。これに対し非結晶部分はバックグラウンド散乱となりBの部分となる。
従って結晶化度は次式
(A1+A2)×100/(A1+A2+B) (%)で表される。
A1,A2,Bの面積は5゜および30゜の点1と2を直線で結び、更に18.5゜での散乱点3と1−3、2−3のように結んで求める。
【0015】
(2)真球度及び粒径の測定法
本発明によって得られた球状セルロースを顕微鏡観察し、図2に示すように、各粒子の長径(R1)及び短径(R2)を測定する。
真球度=R2/R1
粒径=(R1+R2)/2
粒子1000個について真球度及び粒径を求めその平均を平均真球度、平均粒径とした。
【0016】
(3)原料セルロースの平均分子量の測定法
粘度測定法を用いて原料セルロースの分子量を求めた。
○方法
▲1▼カドキセンの調整
1.エチレンジアミン(EDA)90gに蒸留水231.4gを0℃にて徐々に加える。
2.酸化カドミウム31.8gをEDA溶液に0℃に徐々に加える。(乳白色又は透明)
3.−15℃で一昼夜放置
4.上澄み液190mlにEDA12ml+H2O 31ml+NaOH 2.8gを0℃にて加える。
5.4〜6℃の暗所にて密栓保存
▲2▼粘度測定
1.カドキセン50mlにセルロース0.5gを6℃以下にて溶解する。
2.オストワルド粘度計により25℃で流下時間を測定した。濃度勾配は原液(1.で調製したもの)に対し、2倍、3倍希釈液を作って設定する。これらのプロットから極限粘度[η]を求める。
3.平均分子量 M を次式から求める。
[η]=KMa
ここで、K,aは光散乱法により求められた係数で、K=1.8×10−2、a=0.77を用いた。
【0017】
(4)排除限界分子量の測定法
本発明で得られたセルロース粒子の細孔は液体クロマトグラフィーによって排除限界分子量を測定して評価した。測定法を以下に示す。
○Kav:直径2.2 cmのカラムにゲルを高さ50cmに詰め、ブルーデキストラン、及び以下に示した各種分子量のPEO(ポリエチレンオキサイド)を添加し、流速100ml/hでゲル濾過クロマトグラフィーを行い溶出位置をRI検出器で求める。
Kavは次式で求められる。
Kav=(Ve−Vo)/(Vt−Vo)
ここでVeは各種PEOの溶出量(ml)、Voはセルロース粒子外の溶媒容量であり、粒子から完全に排除される高分子性物質であるブルーデキストランの溶出量(ml)として求める。Vtはゲルベッド容量であり、カラムの横断面積とゲル床の高さの式として求める。
○Kavグラフ:片対数グラフの対数目盛り側にPEOの分子量を、通常目盛り側にKavをプロットして得られたグラフ。
本発明における排除限界分子量は、プロットして得られたKav曲線の延長線上のX軸との接点部の分子量とした。
【0018】
<各種PEO>
1.PEO SE−70 (東ソー TSK 標準ポリエチレンオキサイド)分子量:57万
2.PEO SE−15 (東ソー TSK 同上 )分子量:16万
3.PEO SE−2 (東ソー TSK 同上 )分子量:2.1万
4.ブルーデキストラン(Blue Dextran 2000)(ファルマシア LKB ファインケミカル)
【0019】
実施例1
平均分子量が1万のセルロース粉末35.0gをチオシアン酸カルシウム水溶液0.5Lに加え、100℃に加熱して溶解した。得られた液を130℃に加熱したソルビタンモノオレート3.1gを含むO−ジクロロベンゼン2.5Lに滴下し、撹拌数200rpmで造粒した。その後冷却速度2.0℃/minで常温まで冷却し、1.8Lのメタノールを数回にわけて滴下して洗浄したのち、大量の水で洗浄し、多孔性球状セルロース420g(乾燥重量42g)を得た。その結果、平均真球度が0.96、排除限界分子量が240万、結晶化度が8%、粒径85〜100μm の粒子が71%得られた。
【0020】
実施例2〜6
原料セルロースの分子量とセルロース溶液濃度を後述の表1のように変える以外は実施例1に準拠して多孔性球状セルロース粒子の製造をおこない、得られた多孔性球状セルロース粒子について、上記排除限界分子量、結晶化度及び真球度の測定法に従い、排除限界分子量、結晶化度及び真球度を求めた。その結果を表1に示した。また、Kavグラフを図3に示した。
【0021】
比較例1
特公昭63−62252公報記載の方法に従って多孔性球状セルロースを製造した。すなわち、チオシアン酸カルシウム60重量%を含む水溶液100gにセルロース粉末(Whatman社製、CF−1タイプ)6gを加え、120℃に加熱し溶解した。得られた液をm−キシレン200gに分散させ130℃〜140℃に加熱し、次いで分散液を冷メタノール500ml中に注ぎ、粒子を得た。500mlのメタノールを数回に分けて、このセルロース粒子に注いで洗浄した後、大量の水で洗浄し、球状セルロース 48gを得た。
【0022】
実施例7
実施例1と比較例1で製造された多孔性球状セルロース粒子について、結晶化度、真球度、排除限界分子量、粒径範囲(粒径分布において70%を占める範囲)の比較を行った。その結果を表2に示した。
【0023】
【発明の効果】
本発明の多孔性球状セルロース粒子は真球度が高く、結晶化度が低くて反応性や安定性が高い多孔性球状セルロース粒子であり、しかも粒径分布がシャープであり、クロマト剤や医薬品基材として高性能の担体として好適に使用することができる。また、本発明においては、特殊な原料や添加物、二次的な操作を行うことなく一定のコントロールされた細孔径をもつ多孔性球状セルロース粒子を得ることができ、多様な物質の分離精製に対応できる。さらに、工業的に製造する場合も異形粒子、微粒子などのロスが非常に少ないので、篩い分けなどの工程を軽減でき、安定した生産ができる。
以上
【0024】
【表1】

Figure 0003601229
【0025】
【表2】
Figure 0003601229

【図面の簡単な説明】
【図1】セルロースのX線回折図。
【図2】真球度および粒径の測定の模式図。
【図3】実施例2〜6で製造した多孔性球状セルロース粒子のKav曲線を示した説明図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous spherical cellulose particle having a specific exclusion limit molecular weight, a degree of crystallinity, and a uniform spherical shape having a sphericity of 0.9 or more. The porous spherical cellulose particles of the present invention can be very suitably used as a separating agent for chromatography, a carrier for a test agent, a carrier for a bioreactor, an adsorbent for treatment, and the like. In recent years, liquid chromatography used in fields such as chemistry and medicine has rapidly improved in performance, and has been widely used. The function of the filler used in this liquid chromatography greatly depends on the pore size. For example, in gel chromatography, a mixture solution is passed through a column packed with a packing material, and separation is performed according to the principle of sieving according to the size of molecules during elution. For this reason, substances that can be separated are limited by the size of pores, and packing materials with various pore diameters are required to separate and purify low-molecular substances such as amino acids to high-molecular substances such as proteins. Need to be prepared. Therefore, controlling the pore size is a major factor in determining the fractionation range and performance. In addition, the uniformity of the particle size and the sphericity of the filler greatly affect the performance such as reproducibility at the time of separation.
[0002]
[Prior art]
As a method for dissolving and regenerating cellulose to form gel beads, a method via an acetate ester is disclosed in JP-B-55-39565 and JP-B-55-40618. A method for granulating is described in JP-B-63-62252. In addition, a method for producing from a paraformaldehyde / dimethyl sulfoxide solution is disclosed in Japanese Patent Publication No. 22093/1990.
The method for producing porous spherical cellulose particles having a controlled pore diameter includes: (1) a method of adding a higher alcohol as a diluent during the production of cellulose particles, (2) a method of adding an acid or alkali, and (3) a crystal. There is a method of mixing and producing cellulose esters with different degrees of chemical conversion. However, in (1), washing and recovery of the diluent require much labor, and in (2), the pore size corresponding to the size of the protein molecule. However, in (3), special raw materials were required, and there was a problem that the cost was extremely high.
Separately from these methods, a method for producing cellulose particles in which a cellulose particle having a fixed pore diameter is produced, and then the three-dimensional space is narrowed by crosslinking the cellulose particle with a crosslinking agent to control the pore diameter. However, this method has a problem that the mechanical strength is reduced because cellulose particles having a stable structure are destroyed by a crosslinking reaction.
In addition, the porous spherical cellulose obtained by these granulation methods has a considerable variation in the particle size, and it requires sieving to obtain the particle size actually used. In the case of industrial production, there is a problem that loss is extremely large.
[0003]
[Problems to be solved by the invention]
The present inventors have intensively studied to solve such a problem. As a result, a solution in which a specific amount of cellulose having a specific average molecular weight is dissolved in an aqueous solution of calcium thiocyanate (hereinafter, referred to as R solution) is dropped into a dispersion medium solution (hereinafter, referred to as D solution), and stirred while heating. After granulation and cooling at a specific rate or higher, it has been found that porous cellulose particles having a specific crystallinity and a spherical shape can be obtained with a narrow particle size distribution. That is, the object of the present invention is to use a certain controlled pore diameter, that is , manufactured without using special raw materials and additives and without performing a secondary operation such as a crosslinking treatment, that is, to exclude a certain range. An object of the present invention is to provide porous cellulose particles having a critical molecular weight, a spherical shape, low crystallinity, and a narrow particle size distribution.
[0004]
[Means for Solving the Problems]
The present invention includes the following.
(1) Average molecular weight 1 1000-100000 is a raw material cellulose dissolution concentration dissolved in the aqueous solution of calcium thiocyanate is 3 wt% to 15 wt.% Solution (hereinafter, referred to as R liquid) was dispersed solution (hereinafter, A solution prepared by cooling the reaction solution at a cooling rate of 0.5 ° C./min or more after dropping the solution R into the solution D) so that the volume ratio of the solution R / D is 0.5 or less, stirring and granulating the solution. Porous spherical cellulose particles having an exclusion limit molecular weight of 500,000 to 5,000,000 due to oxide, a crystallinity determined by X-ray diffraction method of 3 to 15%, and a sphericity of 0.9 or more.
(2) The porous spherical cellulose particles according to the above (1), which has an exclusion limit molecular weight of 800,000 to 3,000,000 due to polyethylene oxide.
(3) The porous spherical cellulose particles according to the above (1), which has an exclusion limit molecular weight of 1,000,000 to 2,000,000 due to polyethylene oxide.
(4) The porous spherical cellulose particles according to the above (1), which has a crystallinity of 6 to 8%.
(5) The porous spherical cellulose particles according to any one of (1) to (4), wherein the volume ratio of the R solution / D solution is 0.3 or less.
(6) The porous spherical cellulose particles according to any one of the above items 1 to 5, wherein the liquid D is a halogenated hydrocarbon compound.
(7) The porous spherical cellulose particles according to the above (6), wherein the halogenated hydrocarbon compound is dichloroethane or dichlorobenzene.
(8) The porous spherical cellulose particles according to any one of the above items 1 to 7, wherein the cooling rate is 2 ° C / min or more.
(9) The porous spherical cellulose particles according to any one of the above items 1 to 8, wherein the average particle size is 50 to 2000 µm, and 70 % or more of the porous spherical cellulose particles has a particle size range of ± 10% of the average particle size. Porous spherical cellulose particles.
(10) The porous spherical cellulose particles described in any one of the average molecular weight of the cellulose raw material is 10,000 to 40,000 in which the first to ninth paragraph.
[0005]
Hereinafter, the present invention will be described in detail. The porous spherical cellulose particles of the present invention have a pore size with a molecular weight of exclusion of 0.5 to 5,000,000 due to polyethylene oxide, a crystallinity of 3 to 15% determined by X-ray diffraction, and a sphericity of 0. Nine or more porous spherical cellulose particles, and the porous spherical cellulose particles can be produced by the following production method. That is, a cellulose solution (hereinafter referred to as R solution) in which the concentration of a solution obtained by dissolving the raw material cellulose in an aqueous solution of calcium thiocyanate is adjusted to a certain range is dropped into a dispersion medium solution (hereinafter referred to as D solution) such as dichlorobenzene. After stirring and granulating, the porous spherical cellulose particles of the present invention can be obtained by a method of cooling the reaction solution at a cooling rate of 0.5 ° C./min or more.
[0006]
As the raw material cellulose of the porous spherical cellulose particles of the present invention, cellulose as a main component such as crystalline cellulose powder, and from the viewpoint of easy handling of the solution after dissolving in calcium thiocyanate aqueous solution, Cellulose having an average molecular weight of 1,000 to 100,000 determined by the cadoxene method is preferable, and one having a molecular weight of 10,000 to 40,000 is more preferable. The cellulose concentration of the solution obtained by dissolving the raw material cellulose in the aqueous solution of calcium thiocyanate, that is, the R solution, is 3 to 15% by weight, preferably 6 to 10% by weight. If the cellulose concentration is significantly higher than 15% by weight, the viscosity of the solution becomes high and handling becomes difficult. If the concentration is much lower than 3% by weight, the solution has a low viscosity and good fluidity, but has an irregular shape. Particles are easily generated.
[0007]
By adjusting the average molecular weight of the raw material cellulose and the concentration of the cellulose cellulose dissolved in the aqueous solution of calcium thiocyanate within the above-mentioned ranges, the pore size of the obtained cellulose particles can be reduced to a molecular weight of 500,000 to exclusion limit by polyethylene oxide (hereinafter referred to as PEO). It becomes possible to control to 5 million. The larger the molecular weight of the starting cellulose, the larger the pore size of the obtained spherical cellulose, and the lower the dissolution concentration, the larger the pore size of the obtained porous spherical cellulose particles. By utilizing this property, it is possible to prepare spherical cellulose particles having an arbitrary pore size within a range of cellulose concentration that does not hinder granulation. In the production method of the present invention, particles having an exclusion limit molecular weight by PEO in the range of 500,000 to 5,000,000 are obtained as described above.
[0008]
The exclusion limit molecular weight in the present invention is the molecular weight of the smallest molecule that cannot enter the pores of the gel in the gel filtration method. The value of the exclusion limit molecular weight largely depends on the three-dimensional structure of the sample molecule used for the measurement. For example, the exclusion limit is different between the case of using a fiber-extended molecule such as dextran and the case of using a dense molecule such as a globular protein. It is necessary to keep. The sample molecule used in the present invention is PEO, and the value of the exclusion limit molecular weight of the porous spherical cellulose particles of the present invention obtained using these samples is from 500,000 to 5,000,000.
[0009]
The R solution having a specific concentration obtained by dissolving in an aqueous solution of calcium thiocyanate is formed into a spherical shape by a dispersion method. As a method of obtaining spherical cellulose by a dispersion method, for example, the R solution is added to a D solution having low compatibility with a solvent of a cellulose solution containing a surfactant, and emulsification is performed by an operation such as stirring. As the properties of the surfactant used in the present invention, a hydrophilic solution suitable for producing an O1 / O2-type emulsion in which the cellulose solution is used as the inner oil layer O1 and the dispersion medium of the cellulose solution containing the surfactant is used as the outer oil layer O2. Surfactants having a ratio of groups and hydrophobic groups are preferred.
As the emulsification operation, a known dispersion method, for example, a method using a mixer such as a propeller-type stirrer or a turbine-type stirrer, a colloid mill method, a homogenizer method, an ultrasonic irradiation method, and the like are used. The particle size of the spherical cellulose can be controlled by this emulsification operation.
[0010]
The liquid D used in the present invention is an O1 / O2 type emulsification in which the R liquid is used as the inner oil layer O1 and the D liquid is used as O2 when the cellulose liquid, that is, the R liquid is mixed at an arbitrary ratio and emulsification is performed. No particular limitation is imposed as long as it forms a product, but preferred are halogenated hydrocarbons and the like, examples of which include dichloroethane and dichlorobenzene, with dichlorobenzene being particularly preferred.
Further, the volume ratio (O1 / O2) of the inner oil layer O1 to the outer oil layer O2 is not particularly limited as long as it is a value that forms an O1 / O2 emulsion in which the R liquid is used as the inner oil layer O1 when the emulsifying operation is performed. However, when this value is 0.5 or more, irregular shaped particles are easily generated. Preferably it is 0.3 or less.
The reaction temperature at the time of granulation of the present invention is not particularly limited as long as it does not cause decomposition of cellulose, but is preferably 100 ° C to 130 ° C. The stirring time is adjusted at the above temperature, and then the gel is solidified by rapidly cooling. If the cooling time is long, irregular shaped particles are generated or the gel is colored. A preferred cooling rate is 0.5 ° C./min or more. More preferably, it is at least 2 ° C./min.
By increasing the cooling rate after the reaction at the O1 / O2 ratio described above, the R liquid dispersed at a constant stirring speed is solidified in a short time, and becomes a nearly spherical particle having a uniform particle diameter. In addition, since the regeneration of cellulose is completed in a short time, the progress of crystallization is suppressed, and particles having low crystallinity are obtained. Crystallinity can be controlled by adjusting the cooling rate.
[0011]
The crystallinity of the porous spherical cellulose particles obtained by the above production method is 3 to 15%. If the crystallinity is too high, the reactivity such as an addition reaction and a cross-linking reaction becomes low. However, if the crystallinity is too low, the steric stability of the gel may be impaired. The preferred crystallinity is 6 to 8%.
The sphericity in the present invention means the minor axis / major axis of the particles. When the sphericity is lower than 0.8, when used as a chromatographic agent, it cannot be uniformly filled, the reproducibility is low, and the performance as a carrier is deteriorated. The sphericity of the porous spherical cellulose particles of the present invention is 0.9 or more.
In addition, the obtained porous spherical cellulose has a particle size range of ± 10% of the average particle size occupying 70% or more, and a narrow particle size range can be obtained in a high yield without an operation such as sieving. .
[0012]
Since an organic solvent having no compatibility with water, such as dichlorobenzene, does not dissolve the R solution, when this solution is used as the D solution, it is necessary to remove the cellulose salt in the next step. In order to remove (desalinate) the calcium salt from the dispersed particles and regenerate the cellulose into a gel, the mixture is mixed with the solution D and washed with a solvent that dissolves the calcium salt (hereinafter referred to as a desalting solvent). . As the desalting solvent, lower alcohols such as ethanol, particularly methanol, ketones such as acetone and esters such as ethyl acetate are preferred. These solvents are used alone or as a mixture of two or more kinds, and may contain water. The desalting regeneration operation can be performed by pouring the dispersion liquid as it is into a desalting solvent and stirring gently.For example, after removing most of the dispersion solvent by decantation, filtration, or the like, the desalting solvent is removed. May be used for washing. In each case, the desalting solvent is mixed with the dispersion solvent, and at the same time, the calcium salt is extracted from the gel particles, so that the calcium salt is stabilized as cellulose particles. In order to sufficiently remove the organic solvent, calcium salt and, in some cases, the dispersant, it is preferable to thoroughly wash with water at the end.
[0013]
【Example】
Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to these examples. (1) Crystallinity, (2) Sphericity and particle size, (3) Measuring method of average molecular weight of starting cellulose (4) Measuring method of exclusion limit molecular weight in porous spherical cellulose particles produced in the following examples Is as follows.
[0014]
(1) Measurement method of crystallinity The measurement is performed by pressing 0.2 g of finely pulverized cellulose particles or regenerated cellulose against an aluminum holder and operating the diffraction angle of X-ray diffraction to 5 to 30 °. As shown in FIG. 1, crystalline cellulose has crystal scattering peaks of A1 and A2. On the other hand, the amorphous portion becomes background scattering as a portion B.
Therefore, the crystallinity is expressed by the following equation (A1 + A2) × 100 / (A1 + A2 + B) (%).
The areas of A1, A2, and B are obtained by connecting points 1 and 2 at 5 ° and 30 ° with a straight line, and further connecting the scattering points 3 at 18.5 ° as 1-3, 2-3 and 2-3.
[0015]
(2) Method for Measuring Sphericity and Particle Size The spherical cellulose obtained by the present invention is observed under a microscope, and the major axis (R1) and minor axis (R2) of each particle are measured as shown in FIG.
Sphericity = R2 / R1
Particle size = (R1 + R2) / 2
The sphericity and particle size were determined for 1000 particles, and the average was taken as the average sphericity and average particle size.
[0016]
(3) Measurement Method of Average Molecular Weight of Raw Cellulose The molecular weight of raw cellulose was determined using a viscosity measurement method.
○ Method (1) Adjustment of cadoxene To 90 g of ethylenediamine (EDA), 231.4 g of distilled water is gradually added at 0 ° C.
2. 31.8 g of cadmium oxide are slowly added to the EDA solution at 0 ° C. (Milky or transparent)
3. 3. Leave overnight at -15 ° C. To 190 ml of the supernatant, 12 ml of EDA + 31 ml of H2O + 2.8 g of NaOH are added at 0.degree.
5.4 Sealed storage in a dark place at 4 to 6 ° C (2) Viscosity measurement In 50 ml of cadoxene, 0.5 g of cellulose is dissolved at 6 ° C. or lower.
2. The flow time was measured at 25 ° C. using an Ostwald viscometer. The concentration gradient is set by preparing a two-fold or three-fold dilution from the stock solution (prepared in 1.). The intrinsic viscosity [η] is determined from these plots.
3. The average molecular weight M is determined from the following equation.
[Η] = KMa
Here, K and a are coefficients obtained by the light scattering method, and K = 1.8 × 10−2 and a = 0.77 are used.
[0017]
(4) Method for measuring exclusion limit molecular weight The pores of the cellulose particles obtained in the present invention were evaluated by measuring the exclusion limit molecular weight by liquid chromatography. The measuring method is shown below.
○ Kav: The gel was packed into a column having a diameter of 2.2 cm to a height of 50 cm, blue dextran and PEO (polyethylene oxide) having various molecular weights shown below were added, and gel filtration chromatography was performed at a flow rate of 100 ml / h. The elution position is determined with an RI detector.
Kav is obtained by the following equation.
Kav = (Ve−Vo) / (Vt−Vo)
Here, Ve is the elution amount (ml) of various PEOs, and Vo is the solvent volume outside the cellulose particles, which is determined as the elution amount (ml) of blue dextran which is a high molecular substance completely excluded from the particles. Vt is the gel bed capacity, which is obtained as an equation of the cross-sectional area of the column and the height of the gel bed.
O Kav graph: A graph obtained by plotting the molecular weight of PEO on the logarithmic scale side and Kav on the normal scale side of a semilogarithmic graph.
The exclusion limit molecular weight in the present invention was defined as the molecular weight at the contact point with the X axis on the extension of the Kav curve obtained by plotting.
[0018]
<Various PEOs>
1. PEO SE-70 (Tosoh TSK standard polyethylene oxide) Molecular weight: 570,2. PEO SE-15 (Tosoh TSK Dit.) Molecular weight: 163. PEO SE-2 (Tosoh TSK, same as above) Molecular weight: 214,000. Blue Dextran 2000 (Pharmacia LKB Fine Chemical)
[0019]
Example 1
35.0 g of cellulose powder having an average molecular weight of 10,000 was added to 0.5 L of an aqueous solution of calcium thiocyanate, and the mixture was heated to 100 ° C. and dissolved. The obtained liquid was dropped into 2.5 L of O-dichlorobenzene containing 3.1 g of sorbitan monooleate heated to 130 ° C., and granulated at a stirring speed of 200 rpm. Thereafter, the mixture is cooled to a normal temperature at a cooling rate of 2.0 ° C./min, washed by dropping 1.8 L of methanol in several steps, and then washed with a large amount of water, and 420 g of porous spherical cellulose (dry weight: 42 g). Got. As a result, 71% of particles having an average sphericity of 0.96, an exclusion limit molecular weight of 2.4 million, a crystallinity of 8%, and a particle size of 85 to 100 μm were obtained.
[0020]
Examples 2 to 6
The production of porous spherical cellulose particles was carried out in accordance with Example 1 except that the molecular weight of the raw material cellulose and the concentration of the cellulose solution were changed as shown in Table 1 below, and the exclusion limit molecular weight of the obtained porous spherical cellulose particles was determined. The exclusion limit molecular weight, crystallinity, and sphericity were determined according to the measurement methods of crystallinity, and sphericity. The results are shown in Table 1. The Kav graph is shown in FIG.
[0021]
Comparative Example 1
Porous spherical cellulose was produced according to the method described in JP-B-63-62252. That is, 6 g of cellulose powder (manufactured by Whatman, CF-1 type) was added to 100 g of an aqueous solution containing 60% by weight of calcium thiocyanate, and dissolved by heating to 120 ° C. The obtained liquid was dispersed in 200 g of m-xylene and heated to 130 ° C. to 140 ° C., and then the dispersion was poured into 500 ml of cold methanol to obtain particles. 500 ml of methanol was divided into several portions and poured into the cellulose particles for washing, followed by washing with a large amount of water to obtain 48 g of spherical cellulose.
[0022]
Example 7
For the porous spherical cellulose particles produced in Example 1 and Comparative Example 1, the crystallinity, sphericity, exclusion limit molecular weight, and particle size range (range occupying 70% in the particle size distribution) were compared. The results are shown in Table 2.
[0023]
【The invention's effect】
The porous spherical cellulose particles of the present invention are porous spherical cellulose particles having high sphericity, low crystallinity, high reactivity and stability, and a sharp particle size distribution. It can be suitably used as a high-performance carrier as a material. In the present invention, special raw materials and additives, it is possible to obtain a porous spherical cellulose particles having a certain controlled pore size without a secondary operation, the separation and purification of various substances Can respond. Furthermore, even in the case of industrial production, the loss of irregularly shaped particles and fine particles is very small, so that steps such as sieving can be reduced, and stable production can be achieved.
[0024]
[Table 1]
Figure 0003601229
[0025]
[Table 2]
Figure 0003601229

[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram of cellulose.
FIG. 2 is a schematic diagram of measurement of sphericity and particle size.
FIG. 3 is an explanatory view showing a Kav curve of the porous spherical cellulose particles produced in Examples 2 to 6.

Claims (10)

平均分子量が1千〜10万である原料セルロースをチオシアン酸カルシウム水溶液に溶解させた溶解濃度が 3 重量 % 15 重量 % の溶液(以下、R液という)を、分散溶液(以下、D液という)にR液/D液の体積比が 0.5 以下となるように滴下し、撹拌、造粒したのち、冷却速度 0.5 ℃/分以上で該反応液を冷却させて製造された、ポリエチレンオキサイドによる排除限界分子量が50万〜500万で、X線回折法により求めた結晶化度が3〜15%、真球度が0.9以上であることを特徴とする多孔性球状セルロース粒子。 Average molecular weight of 1 1000 to 100,000 in which the raw material cellulose dissolution concentration dissolved in the aqueous solution of calcium thiocyanate is 3 wt% to 15 wt.% Solution (hereinafter, referred to as R liquid) was dispersed solution (hereinafter, referred to as Solution D ) Is added dropwise so that the volume ratio of R solution / D solution is 0.5 or less, stirred, granulated, and then cooled at a cooling rate of 0.5 ° C./min or more. A porous spherical cellulose particle having a limiting molecular weight of 500,000 to 5,000,000, a crystallinity determined by an X-ray diffraction method of 3 to 15%, and a sphericity of 0.9 or more. ポリエチレンオキサイドによる排除限界分子量が80万〜300万である請求項1記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to claim 1, wherein the exclusion limit molecular weight of polyethylene oxide is 800,000 to 3,000,000. ポリエチレンオキサイドによる排除限界分子量が100万〜200万である請求項1記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to claim 1, wherein the exclusion limit molecular weight by polyethylene oxide is 1,000,000 to 2,000,000. 結晶化度が6〜8%である請求項1記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to claim 1, having a crystallinity of 6 to 8%. R液/D液の体積比がThe volume ratio of R liquid / D liquid is 0.30.3 以下である請求項1〜4のいずれか1項記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to any one of claims 1 to 4, which are as follows. D液がハロゲン化炭化水素化合物である請求項1〜5のいずれか1項記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to any one of claims 1 to 5, wherein the liquid D is a halogenated hydrocarbon compound. ハロゲン化炭化水素化合物がジクロロエタンもしくはジクロロベンゼンである請求項6記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to claim 6, wherein the halogenated hydrocarbon compound is dichloroethane or dichlorobenzene. 冷却速度がCooling rate 2Two ℃/分以上である請求項1〜7のいずれか1項記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to any one of claims 1 to 7, wherein the temperature is at least 0C / min. 多孔性球状セルロース粒子が、平均粒径がThe porous spherical cellulose particles have an average particle size 5050 ~ 20002000 μmであり、μm, 7070 %以上が平均粒径の±% Or more is ± 10%Ten% の粒径範囲である請求項1〜8のいずれか1項記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to any one of claims 1 to 8, which have a particle size range of: 原料セルロースの平均分子量がThe average molecular weight of the raw material cellulose is 1One 万〜Ten thousand~ 4Four 万である請求項1〜9のいずれか1項記載の多孔性球状セルロース粒子。The porous spherical cellulose particles according to any one of claims 1 to 9, wherein the number is 10,000.
JP01758897A 1997-01-14 1997-01-14 Porous spherical cellulose particles Expired - Lifetime JP3601229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01758897A JP3601229B2 (en) 1997-01-14 1997-01-14 Porous spherical cellulose particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01758897A JP3601229B2 (en) 1997-01-14 1997-01-14 Porous spherical cellulose particles

Publications (2)

Publication Number Publication Date
JPH10195103A JPH10195103A (en) 1998-07-28
JP3601229B2 true JP3601229B2 (en) 2004-12-15

Family

ID=11948071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01758897A Expired - Lifetime JP3601229B2 (en) 1997-01-14 1997-01-14 Porous spherical cellulose particles

Country Status (1)

Country Link
JP (1) JP3601229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352298B2 (en) 2010-12-14 2016-05-31 Jsr Corporation Method for producing polymer particles, and polymer particles

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998910B2 (en) * 2000-09-20 2012-08-15 スタンレー電気株式会社 Manufacturing method of organic material fine particles and twist ball display using the same
JP4665184B2 (en) * 2004-03-02 2011-04-06 独立行政法人海洋研究開発機構 Cellulose solid medium and production method thereof
JP4951908B2 (en) * 2005-09-20 2012-06-13 宇部興産株式会社 Method for producing spherical zinc oxide or acid carbide fine particles
JP5504596B2 (en) * 2007-08-31 2014-05-28 Jnc株式会社 Porous cellulose gel, method for producing the same, and use thereof
JP5691233B2 (en) * 2010-04-23 2015-04-01 Jnc株式会社 Method for dissolving crystalline cellulose and method for producing porous cellulose
EP3042925B1 (en) 2013-09-02 2019-09-18 JNC Corporation Method for producing porous cellulose particles, and porous cellulose particles
US10189007B2 (en) 2013-10-15 2019-01-29 Kaneka Corporation Method for producing porous cellulose beads and adsorbent employing same
EP3059251B1 (en) * 2013-10-15 2019-04-03 Kaneka Corporation Method for manufacturing porous cellulose beads
WO2015137170A1 (en) * 2014-03-12 2015-09-17 富士フイルム株式会社 Method for producing porous cellulose particles, and porous cellulose particles
KR20170076965A (en) * 2015-12-24 2017-07-05 롯데정밀화학 주식회사 Hydroxypropyl methyl cellulose phthalate particle and method of preparing the same
CN108285506B (en) * 2018-01-23 2020-05-22 北京海岸鸿蒙标准物质技术有限责任公司 Nano particles for polymer turbidity standard substance and preparation method thereof
US11806421B2 (en) 2018-06-29 2023-11-07 Jgc Catalysts And Chemicals Ltd. Porous-cellulose particles and production method thereof, and cosmetic
JPWO2023032801A1 (en) * 2021-08-31 2023-03-09
JPWO2023032800A1 (en) * 2021-08-31 2023-03-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352298B2 (en) 2010-12-14 2016-05-31 Jsr Corporation Method for producing polymer particles, and polymer particles

Also Published As

Publication number Publication date
JPH10195103A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
JP3601229B2 (en) Porous spherical cellulose particles
JP6231032B2 (en) Method for producing cellulose porous particles and cellulose porous particles
JP5504596B2 (en) Porous cellulose gel, method for producing the same, and use thereof
JP6212617B2 (en) Method for producing porous cellulose beads
US5245024A (en) Cellulose chromatography support
CN109897202B (en) Large-particle-size agarose microspheres and preparation method thereof
CN106661263B (en) Method for producing porous cellulose medium
EP0047064A1 (en) Process for preparing porous, spherical cellulose particles
CN114700055B (en) Chromatography medium and chromatography device
JP3663666B2 (en) Spherical cellulose and process for producing the same
Xiao et al. Preparation of macroporous rigid agarose microspheres by pre-crosslinking with cyclic anhydride
US4840975A (en) Spherical grains of polyamino acid and production method thereof
CN114702732B (en) Polymer particle with double-size pore channel and preparation method thereof
EP0479906B1 (en) Improved cellulose chromatography support
US5656373A (en) Non-shrinking, non-swelling, cellulose bodies for chromatography
EP0587830B1 (en) Cellulose chromatographic supports and method
JPS6362252B2 (en)
WO2018186222A1 (en) Porous cellulose beads and adsorbent
JP2023037724A (en) Porous particle and production method of the same, and filler for chromatography using the same
Terauchi Preparation of new hydrophilic and durable porous polymer particles
JP2001324487A (en) Packing for reverse-phase liquid chromatography, and method for manufacturing the same
JPH0598024A (en) Preparation of spherical polyvinyl alcohol particle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term