JPH02105506A - Incombustible transformer winding structure - Google Patents

Incombustible transformer winding structure

Info

Publication number
JPH02105506A
JPH02105506A JP25717988A JP25717988A JPH02105506A JP H02105506 A JPH02105506 A JP H02105506A JP 25717988 A JP25717988 A JP 25717988A JP 25717988 A JP25717988 A JP 25717988A JP H02105506 A JPH02105506 A JP H02105506A
Authority
JP
Japan
Prior art keywords
flow
duct
horizontal
horizontal duct
winding structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25717988A
Other languages
Japanese (ja)
Other versions
JP2741876B2 (en
Inventor
Haruyuki Yamazaki
晴幸 山崎
Takeshi Sakamoto
坂元 健
Kiyoto Hiraishi
平石 清登
Keizaburo Kawashima
川嶋 啓三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63257179A priority Critical patent/JP2741876B2/en
Publication of JPH02105506A publication Critical patent/JPH02105506A/en
Application granted granted Critical
Publication of JP2741876B2 publication Critical patent/JP2741876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To enable the flow of a parallel channeling to be uniform without increasing its pressure loss by setting the gap of a parallel duct to a specific value in a transformer using an incombustible refrigeration medium. CONSTITUTION:A refrigeration medium 5 flows into a vertical duct 2 from the upstream flow-bending area and is distributed into a multi-layer horizontal duct 1. After cooling upper and lower windings 3 of a horizontal duct 1, the distributed refrigeration medium 5 is collected to the vertical duct 2 at the output side and flows to the flow-bending area at the downstream side. For example, perfluorocarbon is used as the refrigeration medium and the gap of the horizontal duct is set to a constant H, namely 0.5<=H<=3mm. Thus, the flow can be uniformly distributed without rapidly increasing pressure loss.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は変圧器に係り、特に、不燃性冷媒を用いた変圧
器の巻線構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transformer, and particularly to a winding structure of a transformer using a nonflammable refrigerant.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭57−147213号公報に記載
のように半径方向の冷却路(以下、水平ダクトと称す)
の幅寸法Hと、軸方向の冷却路(以下、垂直ダクトと称
す)の幅寸法VとがT−I / VS2.3となるよう
に構成していた。
The conventional device uses a radial cooling path (hereinafter referred to as a horizontal duct) as described in Japanese Patent Application Laid-Open No. 57-147213.
The width H of the duct and the width V of the cooling path in the axial direction (hereinafter referred to as the vertical duct) were configured to be T-I/VS2.3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は冷媒として変圧器油を対象としていると
思われるが、不燃性冷媒はその物性値が油と著しく異な
り(油に対と動粘性係数1/10゜比熱1/2、密度二
倍等)、さらさらと流れ易い性質のため、従来の条件(
H/V≦0.3)をそのまま適用できない。
The above conventional technology seems to target transformer oil as a refrigerant, but the physical properties of nonflammable refrigerants are significantly different from those of oil (kinematic viscosity 1/10°, specific heat 1/2, density twice that of oil). etc.), and due to its smooth and easy-flowing nature, it can be used under conventional conditions (
H/V≦0.3) cannot be applied as is.

また、上記従来技術は、水平ダクトの具体的な寸法につ
いて考慮されておらず、水平ダクトの間隙を極端に小さ
くすると冷媒の圧力損失が急増する問題があった。
Further, the above-mentioned conventional technology does not take into consideration the specific dimensions of the horizontal duct, and there is a problem in that when the gap between the horizontal ducts is extremely reduced, the pressure loss of the refrigerant increases rapidly.

本発明の目的は不燃性冷媒を用いた変圧器において、圧
力損失の増大を起こさせずに、多層の水平ダクトへ冷媒
を均一に分配する巻線構造を提供することにある。
An object of the present invention is to provide a winding structure for a transformer using a nonflammable refrigerant, which uniformly distributes the refrigerant to a multilayer horizontal duct without causing an increase in pressure loss.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、水平ダクトの間隙Hを1 mn≦H≦3画
とすることにより達成される。
The above object is achieved by setting the gap H between the horizontal ducts to 1 mn≦H≦3 strokes.

〔作用〕[Effect]

不燃性冷媒は変圧器油に比べて動粘度係数が約−割であ
り、さらさらと流れ易い性質がある。そのため、水平ダ
クトの間隙を従来と同様に大きくした場合は、出口付近
の水平ダクト内の冷媒の流れが偏り、入口付近で冷媒の
流れない水平ダクトの上・下の巻線が過熱したり、冷媒
が沸臆する恐れがあった。また、水平ダクトの間隙を小
さくすると、流れが均一に分配できるようになるが、さ
らに小さくシ、ある寸法を超えると急激に圧力損失が増
大し、巻線同士が近づき過ぎて絶縁破壊したりする。
The nonflammable refrigerant has a kinematic viscosity coefficient that is approximately -00% lower than that of transformer oil, and has the property of flowing easily. Therefore, if the gap between the horizontal ducts is made as large as before, the flow of refrigerant in the horizontal duct near the outlet will be biased, and the upper and lower windings of the horizontal duct, where refrigerant does not flow near the inlet, may overheat. There was a risk that the refrigerant would boil over. Also, if the gap in the horizontal duct is made smaller, the flow can be distributed evenly, but if the gap is made even smaller and exceeds a certain dimension, the pressure loss will increase rapidly, and the windings may get too close together, causing dielectric breakdown. .

そこで、不燃性冷媒を用いた場合は、水平ダクトの間隙
Hを1m≦H≦3mにすると、圧力損失を急増させるこ
となく、流れを均一に分配することができる。
Therefore, when a nonflammable refrigerant is used, by setting the gap H of the horizontal duct to 1 m≦H≦3 m, the flow can be uniformly distributed without rapidly increasing the pressure loss.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第5図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

冷媒5は上流の折流区から垂直ダクト2へ流入し、多層
の水平ダクト1へ分配される。分配された冷媒5は水平
ダクト1の上・下巻線3を冷却した後、出口側の垂直ダ
クト2へ集められ、下流側の折流区へ流下する。冷媒に
は、例えば、パーフルオロカーボンを用いる。また、水
平ダクトの間隙Hを一定とし、0.5≦H≦3mm と
なるように配置した0図中Aは折流板、第2図にH= 
2 mmとH= 5 rraの場合の各水平ダクト内の
離遠Uの分布を示した。H= 5 rmでは、出口付近
に流れが偏り、入口付近の流速が小さくなるのに対し、
H=2nnでは均一に流量を分配することができる。第
3図に巻線3と冷媒5の温度差である温度上昇の分布を
示した。H= 5 mnでは、入口付近の温度上昇が大
きくなり、冷媒が発泡(絶縁破壊の原因)する恐れがあ
るが、H= 2 +amでは、温度上昇を小さく均一に
することができる。第4図に垂直ダクト間隙Hと偏流率
U wax / U meanの関係を示した。H〈2
IIIIlでは偏流率の変化は小さいが、H≧21ff
l+ではHの増加と共に偏流率が緩やかに増加し、流れ
が均一に分配されなくなることを示している。
The refrigerant 5 enters the vertical duct 2 from the upstream fold section and is distributed to the multilayer horizontal duct 1 . After cooling the upper and lower windings 3 of the horizontal duct 1, the distributed refrigerant 5 is collected into the vertical duct 2 on the exit side and flows down to the folded flow section on the downstream side. For example, perfluorocarbon is used as the refrigerant. In addition, the gap H of the horizontal duct is kept constant, and A in Figure 0 is a folding plate, and H=
The distribution of distance U in each horizontal duct in the case of 2 mm and H = 5 rra is shown. At H = 5 rm, the flow is biased near the outlet and the flow velocity near the inlet is small, whereas
When H=2nn, the flow rate can be uniformly distributed. FIG. 3 shows the distribution of temperature rise, which is the temperature difference between the winding 3 and the refrigerant 5. At H=5 mn, the temperature rise near the inlet becomes large and there is a risk that the refrigerant may foam (causing dielectric breakdown), but at H=2 + am, the temperature rise can be small and uniform. FIG. 4 shows the relationship between the vertical duct gap H and the drift rate U wax / U mean. H〈2
In IIIl, the change in drift rate is small, but H≧21ff
At l+, the drift rate increases slowly as H increases, indicating that the flow is no longer uniformly distributed.

第5図に水平ダクト間隙Hと折流区あたりの圧力損失(
w+液柱)との関係を示した。圧力損失はH≧2mでは
ほぼ一定であるが、H≦1mになると急増する。
Figure 5 shows the horizontal duct gap H and the pressure loss per fold section (
w+liquid column). The pressure loss is almost constant when H≧2m, but increases rapidly when H≦1m.

冷媒としてパーフルオロカーボン液を用いた場合、多層
の水平ダクトへ流量を均一に分配し、圧力損失を小さく
する効果がある。
When a perfluorocarbon liquid is used as a refrigerant, the flow rate is uniformly distributed to a multilayer horizontal duct, which has the effect of reducing pressure loss.

本発明の他の実施例を第6図ないし第8図に示した。水
平ダクトの間隙を入口からHとHl (H>Hl)とに
交互に配置し、出口をHt とした実施例である。
Other embodiments of the invention are shown in FIGS. 6-8. This is an embodiment in which the horizontal duct gaps are alternately arranged at H and Hl (H>Hl) from the inlet, and the outlet is Ht.

第6図にH= 3mm、 Hz /H= 1 、2/ 
3 、1/3の流速分布を示した。H1/ H: 1で
は入口から出口に近くなるにつれ、Uがほぼ直線的に増
加しているのに対し、Hx / H= 2 / 3 、
1 / 3では間隙の大きいHでUが大きく、間隙の小
さなHlでUが小さくなる。しかし、第7図に示すよう
に、温度上昇はH1/ H= 1に比べHt/H=2/
3.1/3が小さく、平均化されている。これは巻線3
が上側の水平ダクトと下側の水平ダクトにより冷却され
1巻線の温度が平均化されるためである。
In Figure 6, H = 3 mm, Hz /H = 1, 2/
It showed a flow velocity distribution of 3.1/3. In H1/H: 1, U increases almost linearly from the inlet to the outlet, whereas Hx/H=2/3,
At 1/3, U is large when H has a large gap, and U is small when Hl has a small gap. However, as shown in Figure 7, the temperature rise is Ht/H=2/H compared to H1/H=1.
3.1/3 is small and averaged. This is winding 3
This is because the winding is cooled by the upper horizontal duct and the lower horizontal duct, and the temperature of one winding is averaged.

第8図にH1/Hと圧力損失の関係を示した。FIG. 8 shows the relationship between H1/H and pressure loss.

圧力損失はH1/Hz1.5で最小になり、第5図に比
べ全体的に小さい。
The pressure loss becomes minimum at H1/Hz1.5, and is smaller overall than in FIG. 5.

本実施例によれば、巻線の温度上昇を、更に、均一化、
及び、低下することができる。また、圧力損失を低下さ
せる効果もある。
According to this embodiment, the temperature rise of the winding can be further made uniform and
and can be decreased. It also has the effect of reducing pressure loss.

第9図ないて第11図は他の実施例である。流れを均一
化するため、水平ダクト1の内に流動抵抗となる凸部6
を設置した。また、絶縁抵抗の増大のため、水平ダクト
1を絶9[7で仕切った。
FIGS. 9 to 11 show other embodiments. In order to equalize the flow, there is a convex part 6 inside the horizontal duct 1 that acts as a flow resistance.
was installed. Further, in order to increase the insulation resistance, the horizontal duct 1 was partitioned off with 9 [7].

なぜなら、冷媒中に浮遊物(ごみ)9があると。This is because there are floating objects (dust) 9 in the refrigerant.

水平ダクトの間隙Hを小さくした場合、浮遊物9が巻線
電界の強い部分に集められ、巻線間を浮遊物9の橋がで
きて絶縁破壊の原因となるからである。
This is because if the gap H between the horizontal ducts is made small, floating objects 9 will be collected in areas where the winding electric field is strong, and a bridge of floating objects 9 will form between the windings, causing dielectric breakdown.

本実施例によれば、冷媒の流れを均一に分配させ、巻線
の絶縁耐力を向上させる効果がある。
According to this embodiment, the flow of the refrigerant is uniformly distributed and the dielectric strength of the windings is improved.

第12図では、水平ダクトの出口にスリットを設け、水
平ダクトの流動抵抗を増加させ、流量分配を均一化させ
た。
In FIG. 12, a slit is provided at the outlet of the horizontal duct to increase the flow resistance of the horizontal duct and to equalize the flow distribution.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流路の圧力損失を増大させることなく
、水平流路の流れを均一化することができる。
According to the present invention, the flow in the horizontal channel can be made uniform without increasing the pressure loss in the channel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の流路断面図、第2図ないし
第5図は第1図の説明図、第6図ないし第8図は他の実
施例、及びその説明図、第9図ないし第12図は更に他
の実施例の説明図である。 1・・・水平ダクト、2・・・垂直ダクト、3・・・巻
線、4・・折流板、5・・・冷媒、6・・・凸部、7・
・・絶縁膜、8・・・スリット、9・・・浮遊物。
FIG. 1 is a cross-sectional view of the flow path of one embodiment of the present invention, FIGS. 2 to 5 are explanatory diagrams of FIG. 1, and FIGS. 6 to 8 are other embodiments and their explanatory diagrams. 9 to 12 are explanatory diagrams of still other embodiments. DESCRIPTION OF SYMBOLS 1... Horizontal duct, 2... Vertical duct, 3... Winding wire, 4... Folding plate, 5... Refrigerant, 6... Convex part, 7...
...Insulating film, 8...Slit, 9...Floating object.

Claims (6)

【特許請求の範囲】[Claims] 1.不燃性冷媒を用いて冷却する巻線、水平ダクト、垂
直ダクトより成る不燃変圧器において、前記水平ダクト
の相互の間隙Hが、1mm≦H≦3mmとなるように前
記巻線を配置したことを特徴とする不燃変圧器巻線構造
1. In a non-flammable transformer that is cooled using a non-flammable refrigerant and consists of windings, horizontal ducts, and vertical ducts, the windings are arranged so that the mutual gap H between the horizontal ducts is 1 mm≦H≦3 mm. Features a non-flammable transformer winding structure.
2.水平ダクトの相互間の間隙をHとH_1(H>H_
1)とし、HとH_1が交互になるように前記巻線を配
置したことを特徴とする不燃変圧器巻線構造。
2. The gap between the horizontal ducts is H and H_1 (H>H_
1) A non-flammable transformer winding structure characterized in that the windings are arranged so that H and H_1 alternate.
3.特許請求の範囲第2項において、 前記不燃性冷媒の流入部より順次HとH_1を交互にし
、前記不燃性冷媒の出口部をH_1としたことを特徴と
する不燃変圧器巻線構造。
3. The non-flammable transformer winding structure according to claim 2, characterized in that H and H_1 are sequentially alternated from the in-flow part of the non-flammable refrigerant, and H_1 is the outlet part of the non-flammable refrigerant.
4.特許請求の範囲第1項において、 前記水平ダクト内に流動抵抗体を設けたことを特徴とす
る不燃変圧器巻線構造。
4. The non-flammable transformer winding structure according to claim 1, characterized in that a flow resistor is provided within the horizontal duct.
5.特許請求の範囲第1項において、 前記水平ダクトの間に絶縁膜をはさみ、上下の前記巻線
を分離したことを特徴とする不燃変圧器巻線構造。
5. The non-flammable transformer winding structure according to claim 1, wherein an insulating film is sandwiched between the horizontal duct to separate the upper and lower windings.
6.特許請求の範囲第1項において、 前記水平ダクトの出入口部に絞り部を設けたことを特徴
とする不燃変圧器巻線構造。
6. The non-flammable transformer winding structure according to claim 1, characterized in that a constriction part is provided at an entrance/exit part of the horizontal duct.
JP63257179A 1988-10-14 1988-10-14 Cooling structure of non-combustible transformer winding Expired - Lifetime JP2741876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257179A JP2741876B2 (en) 1988-10-14 1988-10-14 Cooling structure of non-combustible transformer winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257179A JP2741876B2 (en) 1988-10-14 1988-10-14 Cooling structure of non-combustible transformer winding

Publications (2)

Publication Number Publication Date
JPH02105506A true JPH02105506A (en) 1990-04-18
JP2741876B2 JP2741876B2 (en) 1998-04-22

Family

ID=17302781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257179A Expired - Lifetime JP2741876B2 (en) 1988-10-14 1988-10-14 Cooling structure of non-combustible transformer winding

Country Status (1)

Country Link
JP (1) JP2741876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168707A (en) * 1990-11-01 1992-06-16 Toshiba Corp Disk winding of induction apparatus
JP2010087247A (en) * 2008-09-30 2010-04-15 Mitsubishi Electric Corp Air-core reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147213A (en) * 1981-03-09 1982-09-11 Toshiba Corp Winding for transformer
JPS6316414U (en) * 1986-07-18 1988-02-03

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8428401D0 (en) * 1984-11-09 1984-12-19 Dow Corning Ltd Organosiloxane-oxy-alkylene copolymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147213A (en) * 1981-03-09 1982-09-11 Toshiba Corp Winding for transformer
JPS6316414U (en) * 1986-07-18 1988-02-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168707A (en) * 1990-11-01 1992-06-16 Toshiba Corp Disk winding of induction apparatus
JP2010087247A (en) * 2008-09-30 2010-04-15 Mitsubishi Electric Corp Air-core reactor

Also Published As

Publication number Publication date
JP2741876B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
EP0572510B1 (en) Optimized offset strip fin for use in compact heat exchangers
US4207550A (en) Winding structure of electric devices
JPH02105506A (en) Incombustible transformer winding structure
JPH09199345A (en) Winding of transformer
US3147711A (en) Laminations and laminated structures suitable for use in electrical apparatus
US2811923A (en) Direct current electromagnetic pump
US3032728A (en) Insulating and cooling arrangement for electrical apparatus
JPH06119827A (en) Litz wire
JPH09162040A (en) Winding of transformer
JPH0822918A (en) Transformer winding
JP3535562B2 (en) Gas-cooled power equipment
JPS5875816A (en) Leaf winding transformer
JPS5875818A (en) Foil winding
JPS58151009A (en) Winding of stationary induction electric apparatus
JP2002015923A (en) Static induction apparatus
JP2000077236A (en) Stationary induction device
JP2697600B2 (en) Winding structure for induction magnet
JPS58119616A (en) Foil winding transformer
JPH0433305A (en) Transformer
JPH05326293A (en) Gas insulated transformer
JPH05315149A (en) Self-cooled transformer
JPS63117411A (en) Cooling panel for foil winding transformer
JP3465373B2 (en) Winding cooling structure of gas insulation equipment
JP2667048B2 (en) Electrical insulation tube
JPS5877210A (en) Transformer