JPH02104905A - Combined cycle generating plant - Google Patents

Combined cycle generating plant

Info

Publication number
JPH02104905A
JPH02104905A JP25698588A JP25698588A JPH02104905A JP H02104905 A JPH02104905 A JP H02104905A JP 25698588 A JP25698588 A JP 25698588A JP 25698588 A JP25698588 A JP 25698588A JP H02104905 A JPH02104905 A JP H02104905A
Authority
JP
Japan
Prior art keywords
water supply
water
flow rate
exhaust
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25698588A
Other languages
Japanese (ja)
Inventor
Keishin Watanabe
渡邊 敬信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25698588A priority Critical patent/JPH02104905A/en
Publication of JPH02104905A publication Critical patent/JPH02104905A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve operational reliability by distributing feed flow rate into each of feed systems, based on a feed system with the maximum feed flow rate. CONSTITUTION:The flow rate of each of feed systems 22a-22c is separately determined by the opening and the before-and-after differential pressure of water level control valves 24a-24c. The before-and-after differential pressure of the water level control valves 24a-24c shows different values, respectively, so that a main controller 28 selects a feed system to which the maximum flow rate set value is granted out of feed systems 22a-22c. Then the pumping speed of a condensate pump 21 is so controlled that a feed system with the maximum flow rate set value is constant at the front-and-after differential pressure of the water level control valve. The amount of evaporation from each of exhaust heat recovering boilers 12a-12c is thus balanced with the amount of feed to prevent largely fluctuated water level of the steam drums 30a-30c of the exhaust heat recovering boilers. It is therefore possible to improve the reliability and the safety of plant operation.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はガスタービンプラントと蒸気タービンプラント
を組み合せたコンバインドサイクル発電プラントに係り
、特に多軸型ガスタービンプラントを備えたコンバイン
ドサイクル発電プラントに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a combined cycle power plant that combines a gas turbine plant and a steam turbine plant, and particularly relates to a combined cycle power plant that is equipped with a multi-shaft gas turbine plant. Regarding cycle power plants.

(従来の技術) 最近建設される火力発電プラントでは発電の効率化の要
求からコンバインドサイクル発電プラントが脚光を浴び
ている。コンバインドサイクル発電プラントはガスター
ビンプラントとこのガスタービンプラントからの排熱を
利用した蒸気タービンプラントとを組み合せたもので、
ガスタービンプラントには液体燃料やガス燃料が選択的
に使用される。
(Prior Art) Combined cycle power plants have been attracting attention among the thermal power plants that are being constructed recently due to the demand for more efficient power generation. A combined cycle power plant is a combination of a gas turbine plant and a steam turbine plant that utilizes the exhaust heat from the gas turbine plant.
Gas turbine plants selectively use liquid fuel or gas fuel.

ところで、この種のコンバインドサイクル発電プラント
にはガスタービンを複数台並設した多軸型ガスタービン
プラントを採用したものである。
By the way, this type of combined cycle power generation plant employs a multi-shaft gas turbine plant in which a plurality of gas turbines are installed in parallel.

この多軸型コンバインドサイクル発電プラントでは複数
台のガスタービンと複数の排熱回収ボイラとを有し、ガ
スタービンプラントの燃焼ガス供給系統やその排気系統
がそれぞれ複数系統独立して設けられる。各排気系統に
おいて排熱回収ボイラの熱源となるガスタービンの排気
ガス温度および流mは各ガスタービン毎、各ガスタービ
ンの負荷毎にそれぞれ異なる。
This multi-shaft combined cycle power plant has a plurality of gas turbines and a plurality of exhaust heat recovery boilers, and a plurality of combustion gas supply systems and exhaust systems for the gas turbine plant are each independently provided. In each exhaust system, the exhaust gas temperature and flow m of the gas turbine that serves as the heat source of the exhaust heat recovery boiler differ for each gas turbine and for each gas turbine load.

一方、この種のコンバインドサイクル発電プラントでは
、ガスタービンプラントは蒸気タービンプラントに先行
して運転され、ガスタービンの排気ガス温度を利用して
排熱回収ボイラで蒸気を発生させ、この蒸気で蒸気ター
ビンを駆動させるようになっている。このため、ガスタ
ービンプラントが主、蒸気タービンプラントが従の主従
関係になり、排熱回収ボイラで発生する蒸気の温度はガ
スタービンからの排気ガス温度より決定され、この排気
ガス温度はガスタービンの負荷に左右される。
On the other hand, in this type of combined cycle power plant, the gas turbine plant is operated before the steam turbine plant, and the exhaust gas temperature of the gas turbine is used to generate steam in the exhaust heat recovery boiler, and this steam is used to power the steam turbine. It is designed to drive. For this reason, the gas turbine plant is the main plant and the steam turbine plant is the subordinate, in a master-slave relationship, and the temperature of the steam generated in the heat recovery boiler is determined by the temperature of the exhaust gas from the gas turbine. Depends on load.

このため、コンバインドサイクル発電プラントの排熱回
収ボイラや蒸気タービンプラントの運転は、一般の蒸気
タービン発電プラントに較べ負荷変動の大きな運転が必
要となる。
For this reason, the operation of the exhaust heat recovery boiler and steam turbine plant of a combined cycle power plant requires operation with larger load fluctuations than that of a general steam turbine power plant.

しかも、多軸型コンバインドサイクル発電プラントでは
、複数台のガスタービンや複数の排熱回収ボイラを備え
ているために、各排熱回収ボイラの熱源となるガスター
ビンからの排気ガス温度や流量は各ガスタービン毎、各
ガスタービンの負荷毎に異なり、−様でない。このため
、各排熱回収ボイラへの給水量はそれぞれ異なる。した
がって蒸気タービンプラントの給水ポンプのポンプ速度
を適切に制御し、給水ポンプから各排熱回収ボイラの給
水系統を通る給水流量を流m調節弁で適切に制御する必
要がある。
Moreover, since a multi-shaft combined cycle power plant is equipped with multiple gas turbines and multiple exhaust heat recovery boilers, the exhaust gas temperature and flow rate from the gas turbine, which is the heat source for each exhaust heat recovery boiler, vary. It is different for each gas turbine and for each gas turbine load. Therefore, the amount of water supplied to each waste heat recovery boiler is different. Therefore, it is necessary to appropriately control the pump speed of the feedwater pump of the steam turbine plant, and to appropriately control the flow rate of the feedwater from the feedwater pump through the water supply system of each exhaust heat recovery boiler using the flow m control valve.

(発明が解決しようとする課題) 従来のコンバインドサイクル発電プラントにおいては、
各排熱回収ボイラに蒸気タービンプラントの各給水系統
から給水を供給するようになっているが、各給水系統内
を流れる給水流量の配合については格別考慮されておら
ず、このため、各排熱回収ボイラ内での蒸気量と給水量
とが平衡しなかったり、またドラム水位に大きな変動が
生じ、この結果発生する蒸気脈動により蒸気タービンの
タービン翼の破壊や排熱回収ボイラ内の蒸発管の焼損な
どの不都合が生じる恐れがあった。
(Problem to be solved by the invention) In a conventional combined cycle power plant,
Feed water is supplied to each waste heat recovery boiler from each water supply system of the steam turbine plant, but no particular consideration is given to the mix of the feed water flow rate flowing through each water supply system. If the amount of steam in the recovery boiler and the amount of water supplied are not balanced, or if the drum water level fluctuates significantly, the resulting steam pulsations may damage the turbine blades of the steam turbine or damage the evaporation pipes in the heat recovery boiler. There was a risk of inconveniences such as burnout.

本発明は上述した事情を考慮してなされたもので、各排
熱回収ボイラに最適な給水量を安定的に供給し、蒸発量
と給水量とを平衡させてドラム水位の大幅な変動を抑制
し、その蒸発管の燃焼や蒸、  気タービンのタービン
翼の破損等を有効的に防止し、運転の信頼性を向上させ
たコンバインドサイクル発電プラントを提供することを
目的とする。
The present invention was made in consideration of the above-mentioned circumstances, and it stably supplies an optimal amount of water to each waste heat recovery boiler, balances the amount of evaporation and the amount of water supplied, and suppresses large fluctuations in drum water level. The purpose of the present invention is to provide a combined cycle power plant that effectively prevents combustion of the evaporator tube and damage to the turbine blades of the steam turbine and improves operational reliability.

(発明の構成) (課題を解決するための手段) 本発明に係るコンバインドサイクル発電プラントは、ガ
スタービンの排気を排熱回収ボイラに送るガスタービン
プラントの排気系統を複数系統並設し、上記排気系統の
各排熱回収ボイラに給水を供給する蒸気タービンプラン
トの給水系統を、復水または給水ポンプ下流側から分岐
させてそれぞれ接続し、前記各排熱回収ボイラにて加熱
された給水の蒸気を蒸気タービンに供給して蒸気タービ
ンを駆動させるコンバインドサイクル発電プラントにお
いて、各排熱回収ボイラに配設された気水ドラムの水位
を制御するために、各給水系統に備えられた水位調節弁
の弁開度を、水位設定用主調節器で調節するとともに、
各給水系統の流量測定値から最大給水流量の給水系統を
選択し、この最大給水流量の給水系統の流量調節弁前俊
の差圧を一定に保持するように、前記復水または給水ポ
ンプのポンプ速度を制御したものである。
(Structure of the Invention) (Means for Solving the Problems) A combined cycle power generation plant according to the present invention includes a plurality of exhaust systems of the gas turbine plant that sends the exhaust gas of the gas turbine to the exhaust heat recovery boiler. The water supply system of the steam turbine plant that supplies water to each waste heat recovery boiler in the system is branched from the downstream side of the condensate water or feed water pump and connected to each other, and the steam of the feed water heated by each of the waste heat recovery boilers is transferred. In a combined cycle power generation plant that supplies water to a steam turbine to drive the steam turbine, the water level control valve installed in each water supply system is used to control the water level in the air-water drum installed in each exhaust heat recovery boiler. The opening degree is adjusted with the main water level setting controller, and
The water supply system with the maximum water supply flow rate is selected from the flow rate measurement values of each water supply system, and the pump of the condensate water or water supply pump is The speed is controlled.

(作 用) このコンバインドサイクル発電プラントでは、蒸気ター
ビンプラントの最も支配的な系統である最大給水流量の
給水系統を選択し、その給水系統を基準にして各給水系
統に給水流量を配分することにより、各排熱回収ボイラ
で蒸発する蒸発量と給水」とを平衡に保ち、ドラム水位
の大幅な変動を防止し、このドラム水位変動に起因する
排熱回収ボイラの蒸発管の焼損や蒸気タービン翼の破損
等を有効的に防止でき、プラント運転の信頼性や安全性
を向上させることができる。
(Function) In this combined cycle power generation plant, the water supply system with the maximum water supply flow rate, which is the most dominant system in the steam turbine plant, is selected, and the water supply flow rate is distributed to each water supply system based on that water supply system. , the amount of evaporation evaporated in each waste heat recovery boiler and the feed water are kept in equilibrium, preventing large fluctuations in the drum water level, and preventing burnout of the evaporation tube of the waste heat recovery boiler and steam turbine blades caused by fluctuations in the drum water level. Damage to the plant can be effectively prevented, and the reliability and safety of plant operation can be improved.

(実施例) 以下、本発明に係るコンバインドサイクル発電プラント
の一実施例について添附図面を参照して説明する。
(Example) Hereinafter, an example of a combined cycle power generation plant according to the present invention will be described with reference to the accompanying drawings.

このコンバインドサイクル発電プラントは第1図に示す
ように複数台のガスタービンla、 1b、 1cを有
する多軸型ガスタービンプラント2と蒸気タービンプラ
ント3とを組み合せたものであり、この多軸型コンバイ
ンドサイクル発電プラントはガスタービンプラント2の
各ガスタービン1a〜1Cへの燃焼ガス供給系統3a〜
3Cや各ガスタービン1a〜1Cからの排気系統4a〜
4Cは実質的に同一であり、異ならないので1つの燃焼
ガス供給系統3aおよび排気系統4aについて説明し、
残りの系統の説明を省略する。
As shown in Fig. 1, this combined cycle power generation plant is a combination of a multi-shaft gas turbine plant 2 having a plurality of gas turbines la, 1b, and 1c and a steam turbine plant 3. The cycle power generation plant includes a combustion gas supply system 3a to each gas turbine 1a to 1C of the gas turbine plant 2.
Exhaust system 4a from 3C and each gas turbine 1a to 1C
4C are substantially the same and do not differ, so one combustion gas supply system 3a and one exhaust system 4a will be explained,
The explanation of the remaining systems will be omitted.

ガスタービンプラント2の燃焼ガス供給系統4aは燃焼
器5を備え、この燃焼器5にはガスタービン1aにて駆
動される空気圧縮機6から圧縮空気が供給されるととも
に、燃料制御弁7を備えた燃料供給管8を通ってガス燃
料や液体燃料が選択的に供給される。カズ燃料には天然
ガス、液化天然ガス、液化石油ガス、都市ガス、および
コークス炉等があり、液体燃料には灯油、軽油、ナフサ
、重油、原油等がある。
The combustion gas supply system 4a of the gas turbine plant 2 includes a combustor 5, to which compressed air is supplied from an air compressor 6 driven by the gas turbine 1a, and a fuel control valve 7. Gas fuel or liquid fuel is selectively supplied through the fuel supply pipe 8. Gas fuels include natural gas, liquefied natural gas, liquefied petroleum gas, city gas, and coke ovens, and liquid fuels include kerosene, light oil, naphtha, heavy oil, and crude oil.

燃焼器5内に供給された燃料と圧縮空気は混合されて燃
焼せしめられ、その燃焼ガスはガスタービン1aに送ら
れ、ここで仕事をしてガスタービン発電機9を駆動させ
る。その際、ガスタービン1aの負荷は、ガスタービン
負荷指令制a装置10により、燃料制御弁7の弁開度調
節を行なうことにより、適宜設定される。燃料調節弁7
の開度調節により必要な流量の燃料が燃焼器に供給され
る。
The fuel and compressed air supplied into the combustor 5 are mixed and combusted, and the combustion gas is sent to the gas turbine 1a, where it performs work and drives the gas turbine generator 9. At this time, the load on the gas turbine 1a is appropriately set by adjusting the valve opening of the fuel control valve 7 using the gas turbine load command control device 10. Fuel control valve 7
The necessary flow rate of fuel is supplied to the combustor by adjusting the opening of the combustor.

ガスタービン1aで仕事をし、膨張した燃焼ガスは排気
ガスとなって排ガス管11を通り排熱回収ボイラ12a
に送られる。排ガス管11の途中には排気ガス温度計1
3や排気ガス流量計14がそれぞれ設けられ、排気ガス
温度や流量を測定している。
Work is done in the gas turbine 1a, and the expanded combustion gas becomes exhaust gas and passes through the exhaust gas pipe 11 to the exhaust heat recovery boiler 12a.
sent to. An exhaust gas thermometer 1 is installed in the middle of the exhaust gas pipe 11.
3 and an exhaust gas flow meter 14 are provided, respectively, to measure exhaust gas temperature and flow rate.

排熱回収ボイラ12aに案内された排気ガスはここで給
水と熱交換して冷却され、冷却された排気ガスは煙突1
5から大気中に放出される。
The exhaust gas guided to the exhaust heat recovery boiler 12a is cooled by exchanging heat with the water supply here, and the cooled exhaust gas is sent to the chimney 1.
5 is released into the atmosphere.

一方、排熱回収ボイラ12aで加熱され、発生した蒸気
は、途中で他の排気系統4a、 4bの各排熱回収ボイ
ラ12b、 12cからの蒸気と合流せしめられ、蒸気
加減弁17等を通って蒸気タービン18に供給され、こ
こで仕事をし、蒸気タービン発電機19を駆動させる。
On the other hand, the steam heated and generated by the exhaust heat recovery boiler 12a is combined with steam from the exhaust heat recovery boilers 12b and 12c of the other exhaust systems 4a and 4b, and passes through the steam control valve 17, etc. It is supplied to a steam turbine 18, where it does work and drives a steam turbine generator 19.

蒸気タービン18で仕事をし、膨張した蒸気水器20に
案内され、ここで冷却されて凝縮し、復水となって一旦
貯溜される。復水器20に貯溜された復水は、復水ポン
プ21により昇圧されて蒸気タービンプラント3の複数
の給水系統22a、 22b、 22cに送られる。
Work is performed by the steam turbine 18, and the water is guided to the expanded steam water machine 20, where it is cooled and condensed to become condensed water, which is temporarily stored. The condensate stored in the condenser 20 is pressurized by a condensate pump 21 and sent to a plurality of water supply systems 22a, 22b, and 22c of the steam turbine plant 3.

各給水系統22a〜22cは復水ポンプ(あるいは給水
ポンプでもよい。)21の下流側から分岐されてガスタ
ービンプラント排気系統4a〜4cに設けられた各排熱
回収ボイラ12a、 12b、 12cにそれぞれ接続
される。各給水系統228〜22Cは構成を同じくし、
異ならないので、1つの給水系統22aについて説明し
、残りの説明を省略する。
Each water supply system 22a to 22c is branched from the downstream side of the condensate pump (or a water supply pump) 21 and connected to each exhaust heat recovery boiler 12a, 12b, 12c provided in the gas turbine plant exhaust system 4a to 4c. Connected. Each water supply system 228 to 22C has the same configuration,
Since there is no difference, one water supply system 22a will be explained and the remaining explanation will be omitted.

排熱回収ボイラ12aには蒸気ドラム30aがとりつけ
られており、排熱回収ボイラ12aの蒸発器から生じた
蒸気と水の混合流体から蒸気をとり出し、ボイラの過熱
器に送る働きを受持つ。さらに蒸気ドラム30aには水
位検出器31aをとりつけて、調節弁制御器29に水位
信号を送っている。
A steam drum 30a is attached to the exhaust heat recovery boiler 12a, and has the function of extracting steam from a mixed fluid of steam and water generated from the evaporator of the exhaust heat recovery boiler 12a and sending it to the superheater of the boiler. Further, a water level detector 31a is attached to the steam drum 30a to send a water level signal to the regulating valve controller 29.

給水系統22aの給水管23の途中には水位調節弁24
aが設けられるとともに、この水位調節便24aの上流
側に流量検出器25が設けられ、この流量検出器25で
給水管23を流れる実給水流量が測定される。
A water level control valve 24 is installed in the middle of the water supply pipe 23 of the water supply system 22a.
A is provided, and a flow rate detector 25 is provided upstream of this water level adjustment stool 24a, and the actual water supply flow rate flowing through the water supply pipe 23 is measured by this flow rate detector 25.

一方、流量調節弁24aにはその前後の差圧ΔPを検出
する差圧検出器26が設けられ、この差圧検出器26で
検出された差圧検出信号は主調節器28に入力される。
On the other hand, the flow rate regulating valve 24a is provided with a differential pressure detector 26 that detects the differential pressure ΔP before and after the valve, and a differential pressure detection signal detected by the differential pressure detector 26 is input to the main regulator 28.

主調節器28は排熱回収ボイラ12a〜12cの運転状
態、あるいはガスタービン1a〜1Cの負荷変更、排気
ガスの状態に応じて水位設定値が適宜設定されており、
この水位設定値に応じて調節弁制御器29が操作される
The main controller 28 has a water level set value appropriately set according to the operating state of the exhaust heat recovery boilers 12a to 12c, changes in the load of the gas turbines 1a to 1C, and the state of the exhaust gas.
The regulating valve controller 29 is operated according to this water level set value.

調節弁制御器29は主調節器から入力される水位設定信
号(水位設定値)と水位検出器31aから入力される実
水位信号(水位測定値)とを比較演算し、その偏差を補
正するように水位調節弁24aを作動制御している。
The control valve controller 29 compares and calculates the water level setting signal (water level setting value) input from the main controller with the actual water level signal (water level measurement value) input from the water level detector 31a, and corrects the deviation. The water level control valve 24a is operated and controlled.

ところで、各給水系統22a〜22cの流量は、水位調
節弁24a〜24cの弁開度と、片前後の差圧でそれぞ
れ個別に決定されるが、各給水系統228〜22cの水
位調節弁24a〜24c前後の差圧はそれぞれ異なった
値を示すので、主調節器28は各給水系統22a〜22
cの流量設定値のうち最大の流量設定値が付与された給
水系統を選択し、流量設定値が最大の給水系統の水位調
節弁前後の差圧が一定となるように、復水ポンプ(また
は給水ポンプ)21のポンプ速度を制御する。
Incidentally, the flow rate of each of the water supply systems 22a to 22c is determined individually by the valve opening degree of the water level control valves 24a to 24c and the differential pressure before and after one side, but the flow rate of each of the water supply systems 228 to 22c is Since the differential pressures before and after 24c show different values, the main controller 28 controls each water supply system 22a to 22c.
Select the water supply system to which the maximum flow rate setting value has been assigned among the flow rate settings of c, and turn the condensate pump (or Controls the pump speed of the water supply pump) 21.

すなわち、蒸気タービンプラント3の各給水系統22a
〜22cのうち最も支配的な給水系統である給水流量最
大の系統を選択し、この給水系統を基準にとることによ
って、各給水系統22a〜22cに流れる給水流量を有
効的に配分させることができる。
That is, each water supply system 22a of the steam turbine plant 3
By selecting the system with the largest water supply flow rate, which is the most dominant water supply system from among the water supply systems 22c to 22c, and using this water supply system as a reference, the water supply flow rate flowing to each of the water supply systems 22a to 22c can be effectively distributed. .

このようにコンバインドサイクル発電プラントにおいて
、複数の排熱回収ボイラ12a〜12cに給水を行なう
蒸気タービンプラント3の各給水系統22a〜22Cの
うち、給水流量最大の給水系統は、蒸気タービンプラン
ト3や復水ポンプ(給水ポンプ)21を支配する最も支
配的な系統であり、この最大給水流間の給水系統を選択
して基準とすることは、コンバインドサイクル発電プラ
ントの運用上好ましい。
In this way, in the combined cycle power plant, among the water supply systems 22a to 22C of the steam turbine plant 3 that supply water to the plurality of waste heat recovery boilers 12a to 12c, the water supply system with the largest water supply flow rate is connected to the steam turbine plant 3 or the steam turbine plant 3. It is the most dominant system that controls the water pump (water supply pump) 21, and it is preferable for the operation of the combined cycle power plant to select the water supply system between the maximum water supply flows and use it as a reference.

コンバインドサイクル発電プラントは排熱回収ボイラ1
2a〜12cの不平衡運転や部分的な系統運転、部分負
荷運転や大幅な負荷変更運転が要求されるプラントであ
り、このプラントの運転にとって、蒸気タービンプラン
トの各給水系統に給水流量を適切に分配して安定的に供
給できるのは望ましいことである。
Combined cycle power plant has exhaust heat recovery boiler 1
This is a plant that requires unbalanced operation of 2a to 12c, partial system operation, partial load operation, and large load change operation, and for the operation of this plant, it is necessary to appropriately adjust the water supply flow rate to each water supply system of the steam turbine plant. It is desirable to be able to distribute and provide a stable supply.

第2図は本発明に係るコンバインドサイクル発電プラン
トの他の実施例を示すものである。
FIG. 2 shows another embodiment of the combined cycle power plant according to the present invention.

この実施例に示されたコンバインドサイクル発電プラン
トは、ガスタービンプラント2の排気系統4a〜4Cに
設けられた排気ガス温度計13や流量計14を主調節器
28に接続するとともに、ガスタービン18〜1Cの負
荷を設定可能なガスタービン負荷指令制御装置10を主
調節器28に接続し、上記排気ガス温度や流量あるいは
ガスタービン負荷指令信号を用いて、主調節器28で蒸
気タービンプラント3の各給水系統228〜22cを流
れる流量設定値を設定したものである。
The combined cycle power plant shown in this embodiment connects the exhaust gas temperature gauge 13 and flow meter 14 provided in the exhaust systems 4a to 4C of the gas turbine plant 2 to the main controller 28, and A gas turbine load command control device 10 capable of setting a load of 1C is connected to the main controller 28, and the main controller 28 controls each of the steam turbine plant 3 using the exhaust gas temperature and flow rate or the gas turbine load command signal. The set value of the flow rate flowing through the water supply systems 228 to 22c is set.

この信号処理以外の構成は第1図に示されたコンバイン
ドサイクル発電プラントと異ならないので、同じ符号を
付し、説明は省略する。
The configuration other than this signal processing is the same as the combined cycle power plant shown in FIG. 1, so the same reference numerals are given and the explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明に係るコンバインドサイクル
発電プラントにおいては、蒸気タービンの各給水系統に
備えられた水位調節弁の弁開度を、水位設定用主調節器
で調節するとともに、各給水系統の流量測定値から最大
給水流量の給水系統を選択し、この最大給水流量の給水
系統の流量調節弁前後の差圧を一定に保持するように、
復水ポンプまたは給水ポンプのポンプ速度を制御するか
ら、最も支配的な最大給水流量の給水系統を基準にとっ
て、各給水系統に流れる給水流量の配分を有効かつ適切
に行なって各排熱回収ボイラに給水流量を安定的に供給
することができ、各排熱回収ボイラでの蒸発量と給水量
とを平衡させ、ドラム水位の大振幅な変動を未然にしか
も確実に防止することができる。したがって、各排熱回
収ボイラの蒸発管の焼損や蒸気タービン翼の破損等を有
効的に防止でき、運転の安全性や信頼性を向上させるこ
とができる。
As described above, in the combined cycle power plant according to the present invention, the valve opening degree of the water level control valve provided in each water supply system of the steam turbine is adjusted by the water level setting main controller, and each water supply system Select the water supply system with the maximum water supply flow rate from the flow rate measurement value, and maintain the differential pressure before and after the flow control valve of the water supply system with the maximum water flow rate constant.
Since the pump speed of the condensate pump or feed water pump is controlled, the water supply flow rate flowing to each water supply system can be effectively and appropriately distributed based on the water supply system with the most dominant maximum water supply flow rate, and the water flow rate can be effectively and appropriately distributed to each waste heat recovery boiler. The water supply flow rate can be stably supplied, the evaporation amount in each waste heat recovery boiler and the water supply amount can be balanced, and large fluctuations in the drum water level can be prevented in advance. Therefore, it is possible to effectively prevent burnout of the evaporator tubes of each exhaust heat recovery boiler, damage to the steam turbine blades, etc., and improve operational safety and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るコンバインドサイクル発電プラン
トの一実施例を示す系統図、第2図は本発明のコンバイ
ンドサイクル発電プラントの他の実施例を説明する図で
ある。 1a、 ib、 ic・・・ガスタービン、2・・・ガ
スタービンプラント、 3・・・蒸気タービンプラント、 4a、 4b、 4c・・・燃焼ガス供給系統、5・・
・燃焼器、     6・・・空気圧縮機、9・・・ガ
スタービン発電機、 10・・・ガスタービン負荷指令制御装置、12a、1
2b、12C・・・排熱回収ボイラ、13・・・排気ガ
ス温度計、 14・・・排気ガス流量計、18・・・蒸
気タービン、 19・・・蒸気タービン発電機、 20・・・復水器、    21・・・復水ポンプ、2
2a、22b、22C−・・給水系統、23・・・給水
管、 24a、24b、24c −・・水位調節弁、25・・
・流量検出器、  26・・・差圧検出器、28・・・
主調節器、   29・・・調節弁制御器、30a、 
30b、 30c・・・排熱回収ボイラ蒸気ドラム、3
1a、31b、31c −・・水位検出器。 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2図
FIG. 1 is a system diagram showing one embodiment of a combined cycle power plant according to the present invention, and FIG. 2 is a diagram illustrating another embodiment of the combined cycle power plant according to the present invention. 1a, ib, ic...gas turbine, 2...gas turbine plant, 3...steam turbine plant, 4a, 4b, 4c...combustion gas supply system, 5...
- Combustor, 6... Air compressor, 9... Gas turbine generator, 10... Gas turbine load command control device, 12a, 1
2b, 12C...Exhaust heat recovery boiler, 13...Exhaust gas temperature meter, 14...Exhaust gas flow meter, 18...Steam turbine, 19...Steam turbine generator, 20...Return Water device, 21... Condensate pump, 2
2a, 22b, 22C--Water supply system, 23...Water supply pipe, 24a, 24b, 24c--Water level control valve, 25...
・Flow rate detector, 26...Differential pressure detector, 28...
Main controller, 29... control valve controller, 30a,
30b, 30c...exhaust heat recovery boiler steam drum, 3
1a, 31b, 31c - Water level detector. Agent Patent Attorney Noriyuki Ken Yudo Daishimaru Ken Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)ガスタービンの排気を排熱回収ボイラに送るガス
タービンプラントの排気系統を複数系統並設し、上記排
気系統の各排熱回収ボイラに給水を供給する蒸気タービ
ンプラントの給水系統を、復水または給水ポンプ下流側
から分岐させてそれぞれ接続し、前記各排熱回収ボイラ
にて加熱された給水の蒸気を蒸気タービン供給して蒸気
タービンを駆動させるコンバインドサイクル発電プラン
トにおいて、各排熱回収ボイラに配設された気水分離ド
ラムの水位を調節するために、各給水系統に備えられた
水位調節弁の弁開度を、水位設定用主調節器で調節する
とともに、各給水系統の流量測定値から最大給水系統を
選択し、この最大給水流量の給水系統の水位調節弁前後
の差圧を一定に保持するように、前記復水または給水ポ
ンプのポンプ速度を制御することを特徴とするコンバイ
ンドサイクル発電プラント。
(1) Install multiple exhaust systems in parallel for a gas turbine plant that sends gas turbine exhaust gas to an exhaust heat recovery boiler, and install a water supply system for a steam turbine plant that supplies water to each exhaust heat recovery boiler in the exhaust system. In a combined cycle power generation plant in which water or feed water pumps are branched from the downstream side and connected to each other, and the feed water steam heated in each of the waste heat recovery boilers is supplied to the steam turbine to drive the steam turbine, each waste heat recovery boiler In order to adjust the water level of the air-water separation drum installed in the water supply system, the valve opening of the water level control valve provided in each water supply system is adjusted by the main water level setting controller, and the flow rate of each water supply system is measured. A combination characterized in that the maximum water supply system is selected from the values, and the pump speed of the condensate or water supply pump is controlled so as to maintain constant the differential pressure before and after the water level control valve of the water supply system with the maximum water flow rate. Cycle power plant.
(2)ガスタービンプラントの複数の排気系統の排気ガ
ス流量および温度を検出する排気ガス流量計を主調節器
に電気的に接続し、上記主調節器は検出された排気ガス
流量および温度信号を入力して水位設定値を演算し、前
記排気系統に対応する給水系統の給水流量を設定する特
許請求の範囲第1項に記載のコンバインドサイクル発電
プラント。
(2) An exhaust gas flow meter that detects the exhaust gas flow rate and temperature of multiple exhaust systems of the gas turbine plant is electrically connected to the main controller, and the main controller receives the detected exhaust gas flow rate and temperature signals. 2. The combined cycle power plant according to claim 1, wherein a water level setting value is input and a water level setting value is calculated, and a water supply flow rate of a water supply system corresponding to the exhaust system is set.
(3)複数台並設されたガスタービンの負荷を検出する
ガスタービン負荷指令制御装置を主調節器に電気的に接
続し、上記主調節器は各ガスタービンの負荷指令信号を
入力して水位設定値を演算し、前記ガスタービンからの
排気系統に対応する給水系統の給水流量を設定する特許
請求の範囲第1項に記載のコンバインドサイクル発電プ
ラント。
(3) A gas turbine load command control device that detects the load of multiple gas turbines installed in parallel is electrically connected to the main controller, and the main controller inputs the load command signal of each gas turbine to control the water level. The combined cycle power plant according to claim 1, wherein a set value is calculated to set a water supply flow rate of a water supply system corresponding to an exhaust system from the gas turbine.
JP25698588A 1988-10-14 1988-10-14 Combined cycle generating plant Pending JPH02104905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25698588A JPH02104905A (en) 1988-10-14 1988-10-14 Combined cycle generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25698588A JPH02104905A (en) 1988-10-14 1988-10-14 Combined cycle generating plant

Publications (1)

Publication Number Publication Date
JPH02104905A true JPH02104905A (en) 1990-04-17

Family

ID=17300127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25698588A Pending JPH02104905A (en) 1988-10-14 1988-10-14 Combined cycle generating plant

Country Status (1)

Country Link
JP (1) JPH02104905A (en)

Similar Documents

Publication Publication Date Title
CN101368723B (en) Steam temperature control in a boiler system using reheater variables
US8511093B2 (en) Power generation plant and control method thereof
JP2669545B2 (en) Exhaust heat recovery boiler system and its operation method
KR100592144B1 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US6339926B1 (en) Steam-cooled gas turbine combined power plant
US3789804A (en) Steam power plant with a flame-heated steam generator and a group of gas turbines
NO154767B (en) Steam and gas turbine power plant with combined cycle.
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
US9528396B2 (en) Heat recovery steam generator and power plant
KR102003136B1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JP2595046B2 (en) Steam temperature control system for reheat type combined plant
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP2013083226A (en) Control method and control device for waste heat boiler system
JPH02104905A (en) Combined cycle generating plant
JP7183130B2 (en) HOT WATER STORAGE GENERATION SYSTEM AND HOT WATER STORAGE GENERATION SYSTEM OPERATION METHOD
US10344627B2 (en) Heat recovery steam generator and power plant
JP2012140910A (en) Combined cycle power generation plant and gas turbine system, and gas turbine fuel gas heating system
JPS63247507A (en) Combined cycle power plant
JP5804748B2 (en) Steam supply system and steam supply method
KR102632779B1 (en) Bypass conduits for reducing thermal fatigue and stress in heat recovery steam generators of combined cycle power plant systems
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
US5476071A (en) Pressurized fluidized bed boiler
US20240218813A1 (en) Improved thermal power plant
GB738286A (en) Improvements in or relating to vapour generators and to a method of operation thereof
JPS6064101A (en) Controller for once-through boiler