JPH02104640A - Steel sheet for direct single porcelain enameling excellent in press formability and resistance to blister and black-point defect - Google Patents

Steel sheet for direct single porcelain enameling excellent in press formability and resistance to blister and black-point defect

Info

Publication number
JPH02104640A
JPH02104640A JP25683588A JP25683588A JPH02104640A JP H02104640 A JPH02104640 A JP H02104640A JP 25683588 A JP25683588 A JP 25683588A JP 25683588 A JP25683588 A JP 25683588A JP H02104640 A JPH02104640 A JP H02104640A
Authority
JP
Japan
Prior art keywords
steel
pickling
defects
added
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25683588A
Other languages
Japanese (ja)
Other versions
JPH0759736B2 (en
Inventor
Kazunori Osawa
一典 大澤
Susumu Sato
進 佐藤
Toshiyuki Kato
俊之 加藤
Hideo Abe
阿部 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63256835A priority Critical patent/JPH0759736B2/en
Publication of JPH02104640A publication Critical patent/JPH02104640A/en
Publication of JPH0759736B2 publication Critical patent/JPH0759736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve press formability, adhesive strength at the time of single porcelain enameling, and resistance to blister and black-point defects by regulating the additive quantity of Ti in a steel sheet for porcelain enameling having a specific composition to a specific amount based on the contents of C, S, and N. CONSTITUTION:A steel sheet has a composition which consists of, by weight ratio, <=0.005% C, <0.10% Mn, <=0.020% P, 0.01-0.05% S, 0.003-0.100% Al, 0.005-0.010% N, 0.01-0.07% Cu, 0.002-0.050% Se, 0.0001-0.0030% B, and the balance Fe with inevitable impurities and contains, if necessary, 0.01-0.10% REM and in which Ti content is regulated so that (4XC%+1.5XS%+3.43XN%)<=Ti%<=0.2 is satisfied. By this method, a steel sheet for direct single porcelain enameling having press formability equal to or higher than those of conventional decarburized capped steel and conventional Ti-added steel and hardly causing the occurrence of blister and black-point defects can be provided.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、プレス成形性、耐つまとび性が良好で、かつ
、直接一回掛けほうろう時の密着性、ならびに耐泡・黒
点欠陥等のぼうろう特性に優れたほうろう用鋼板に関す
る。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention has good press formability and resistance to flaking, as well as adhesion when enameling is applied once directly, as well as resistance to bubbles and sunspot defects. Concerning a steel plate for enameling with excellent waxing properties.

〈従来の技術〉 はうろう用鋼板は、流し台、浴槽等に代表されるように
、かなり厳しいプレス加工が施されるためかなりの深絞
り性が要求される。 さらに、はうろう密着性、焼成歪
み特性、酎つまとび性、および耐泡・黒点欠陥性を満足
しなければならない。
<Prior Art> Steel plates for crawlers, as typified by sinks, bathtubs, etc., are subjected to fairly severe press working, and therefore are required to have considerable deep drawability. Furthermore, it must satisfy the properties of waxy adhesion, firing distortion properties, dropability, and bubble resistance/sunspot defect properties.

Ti添加鋼、とくにC含有量をo、oos%以下にした
場合、優れたプレス加工性が得られることは特公昭42
−12348号公報、特公昭44−18066号公報な
どに開示されている。 このTi添加鋼は、プレス加工
性の他に、優れたほうろう特性を兼ね備えており、特公
昭45−40655号公報、特開昭53−131919
号公報あるいは特開昭56−9357号公報等に開示さ
れている。
It is known from the Japanese Patent Publication No. 42 that excellent press workability can be obtained in Ti-added steel, especially when the C content is less than o, oos%.
This method is disclosed in Japanese Patent Publication No. 12348, Japanese Patent Publication No. 44-18066, etc. This Ti-added steel has not only press workability but also excellent enameling properties, and is disclosed in Japanese Patent Publication No. 45-40655 and Japanese Patent Application Laid-Open No. 53-131919.
This method is disclosed in Japanese Patent Application Laid-Open No. 56-9357, etc.

これらの技術は、良好なプレス加工性とともにほうろう
特性、その中でも耐つまとび性を改善させるための技術
である。 すなわち、Tiは炭化物、窒化物および硫化
物を形成する。 これらの析出物は、つまとぴの原因と
なる鋼中の水素をトラップする作用があり゛、耐つまと
び性を向上させる。
These techniques are techniques for improving not only good press workability but also enameling properties, particularly chipping resistance. That is, Ti forms carbides, nitrides, and sulfides. These precipitates have the effect of trapping hydrogen in the steel, which is the cause of sagging, and improve the sagging resistance.

〈発明が解決しようとする課題〉 しかしながら、優れたプレス成形性、耐つまとび性を有
するTi添加鋼でも、特開昭61−276958号公報
に記載されているような溶接性不良が原因となる欠陥、
また特開昭60−110845号公報で説明されている
ようにほうろう密着性、耐泡・黒点欠陥性の点で、従来
から用いられている脱炭キャップド鋼に比較して劣って
いる等の問題がある。 溶接性不良については特開昭6
1−276958号公報で、Tii加鋼にSsあるいは
Teを微量添加して、溶接部の“ブローホール欠陥”、
“ひけ”を抑制し、溶接性の不具合によって発生する泡
欠陥および筋状の欠陥を改善した鋼板が開示されている
が、もう一方のTi添加鋼特有の欠陥ともいえる溶接部
以外でのr泡・黒点欠陥発生のしやすさ1については、
いまだ脱炭キャップド鋼なみの耐泡・黒点欠陥まで改善
するに至っていないのが現状である。
<Problems to be Solved by the Invention> However, even Ti-added steel that has excellent press formability and resistance to flaking can suffer from poor weldability as described in JP-A No. 61-276958. defect,
Furthermore, as explained in JP-A-60-110845, it is inferior in terms of enamel adhesion, bubble resistance, and black spot defect properties compared to conventionally used decarburized capped steel. There's a problem. Regarding poor weldability, see Japanese Patent Application Laid-Open No. 6
1-276958, by adding a small amount of Ss or Te to Tii processed steel, "blowhole defects" in welds,
A steel plate has been disclosed that suppresses "sink marks" and improves bubble defects and streak-like defects caused by poor weldability. - Regarding the ease of sunspot defect occurrence 1,
The current situation is that the bubble resistance and sunspot defects have not yet been improved to the level of decarburized capped steel.

また、特開昭83−45322号公報にTi添加鋼を用
いたほうろう用鋼板の製造方法が記載されている。 し
かし、その内容はプレス成形性ならびに耐縦割れ性を改
善することを主目的としたものであり、ピンホール欠陥
やブローホール欠陥等の泡・黒点欠陥は、連続鋳造パウ
ダーのC含有量、および連続鋳造における引き抜き速度
を規定して改善しているのみである。
Furthermore, Japanese Patent Application Laid-Open No. 83-45322 describes a method for producing a steel plate for enameling using Ti-added steel. However, the main purpose of this is to improve press formability and longitudinal cracking resistance, and bubbles and black spot defects such as pinhole defects and blowhole defects are caused by the C content of the continuous casting powder and It only improves the drawing speed in continuous casting by specifying it.

しかし、TiとBの添加のみでは泡・黒点欠陥を抑制す
る効果が少なく、従来のT1!#独添加鋼と泡・黒点欠
陥発生傾向はほとんど変わらない、 この理由は、Ti
添加鋼では結晶粒界を強化するCがTiCとして固定さ
れ、酸洗性を増大させるPが結晶粒界へ析出しやすいた
めと考えられた。 プレス成形性、耐つまとび性、溶接
性を損ねずに従来の脱炭キャップド鋼と同等またはそれ
以上の耐泡・黒点欠陥性を有する直接一回掛けほうろう
用鋼板を提供することを目的としている。
However, the addition of Ti and B alone has little effect on suppressing bubbles and sunspot defects, and conventional T1! # The tendency of bubble and sunspot defects to occur is almost the same as that of Ti steel.
This is thought to be because in additive steel, C, which strengthens grain boundaries, is fixed as TiC, and P, which increases pickling properties, tends to precipitate at grain boundaries. The purpose is to provide a steel plate for direct single-lay enameling that has bubble resistance and black spot defect resistance equivalent to or better than conventional decarburized capped steel without impairing press formability, toe resistance, and weldability. There is.

く課題を解決するための手段〉 上記目的を達成するために、本発明によれば、重量比に
て、 C:0.005%以下、 Mn:0.10%未満、 Pro、020%以下、 S:0.01〜0.05%、 AjZ:0.003〜0.100%、 N:0.005〜0.010%、 Cu:0. 01 〜0. 07  %、Se  : 
 0. 002〜0. 050  %、B:  ooo
t  〜0. 0030 %、かつ、(4xc(%)+
1.5×S (%)+3、 43×N  (%))≦T
t(%)≦0.2(%)、残部がFeおよび不可避的不
純物から成る直接一回掛けほうろう用鋼板が提供される
Means for Solving the Problems> In order to achieve the above objects, according to the present invention, in terms of weight ratio, C: 0.005% or less, Mn: less than 0.10%, Pro, 0.020% or less, S: 0.01-0.05%, AjZ: 0.003-0.100%, N: 0.005-0.010%, Cu: 0. 01 ~0. 07%, Se:
0. 002~0. 050%, B: ooo
t~0. 0030%, and (4xc(%)+
1.5×S (%)+3, 43×N (%))≦T
A steel plate for direct single-lap enameling is provided, where t (%)≦0.2 (%), the balance being Fe and unavoidable impurities.

また、本発明によれば、重量比にて、 C:0.005%以下、 Mn:0.10%未満、 P:0.020%以下、 S:0.01〜0.05%、 AJ2:0.003〜0.100%、 N:0.002〜0.010%、 Cu : 0.01〜0.07%、 Se :0.002〜0.050%、 B:0.0001〜0.0030%、 REM:0.01〜0.10%、 かつ、(4×C(%)+1.5×S (%)+3、 4
3×N  (%) ) ≦Ti(%) ≦0.2(%)
、残部がFeおよび不可避的不純物から成る直接一回掛
けほうろう用鋼板が提供される。
Further, according to the present invention, in terms of weight ratio, C: 0.005% or less, Mn: less than 0.10%, P: 0.020% or less, S: 0.01 to 0.05%, AJ2: 0.003-0.100%, N: 0.002-0.010%, Cu: 0.01-0.07%, Se: 0.002-0.050%, B: 0.0001-0.000%. 0030%, REM: 0.01~0.10%, and (4×C(%)+1.5×S(%)+3, 4
3×N (%) ) ≦Ti (%) ≦0.2 (%)
, the balance being Fe and unavoidable impurities.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

まず、本発明の基となった実験の経緯および実験結果の
詳細について説明する。
First, the details of the experiment that formed the basis of the present invention and the experimental results will be explained.

(実験1) 第1表に示す化学組成をもつw4(鋼A−F)を実験室
において出鋼した後、これらを分塊圧延し、板厚30m
mのシートバーとした。 次いで温度1250℃の加熱
炉に4時間挿入し、3パスで板厚3.5mm、仕上げ温
度860℃になるように熱間圧延し、室温まで空冷(冷
却速度約り℃/分)で冷却した。
(Experiment 1) After tapping W4 (steels A-F) having the chemical composition shown in Table 1 in the laboratory, they were bloomed and rolled to a thickness of 30 m.
M seat bar. Next, it was inserted into a heating furnace at a temperature of 1250°C for 4 hours, hot-rolled in 3 passes to a plate thickness of 3.5mm and a finishing temperature of 860°C, and cooled to room temperature by air cooling (cooling rate approximately °C/min). .

これらを酸洗後、冷間圧延を施し、板厚0.8mm (
冷延圧下率約77%)の冷延板とし た。 次いで脱脂
を行ない、加熱速度;約り0℃/秒、均熱温度/時間;
860℃150秒、冷却速度;約り℃/秒のヒートサイ
クルで再結晶焼鈍を行なった。 その後、第2表に示す
工程(工程1〜12)でほうろう前処理[酸洗時間1〜
60分、Ni浸漬時間1〜30分(Ni付着量2〜60
 m g / d m 2) ]、および直接一回掛け
のほうろう施ゆう、820t/3分の焼成を施した。
After pickling these, they were cold rolled to a plate thickness of 0.8 mm (
The cold-rolled sheet had a cold-rolling reduction ratio of approximately 77%. Next, degreasing is performed, heating rate: approximately 0°C/sec, soaking temperature/time;
Recrystallization annealing was performed using a heat cycle at 860° C. for 150 seconds and a cooling rate of approximately 150° C./second. After that, in the steps shown in Table 2 (steps 1 to 12), enameling pretreatment [pickling time 1 to
60 minutes, Ni immersion time 1-30 minutes (Ni adhesion amount 2-60 minutes)
m g / d m 2) ], and a single direct enameling and firing of 820 t/3 min.

その後、目視判定により泡・黒点欠陥の発生傾向を調査
した。 また、PEI密着試験[P、E、1.(米国は
うろう協会)が推奨する密着試験方法 (ASTM :
 C313−59)]により、はうろう密着性を測定し
た。 その結果を第1図(a)〜(f)に示す。 比較
材として同様のほうろう加工を施した脱炭キャップド1
1 (mG)の結果も第1図(g)に示した。
Thereafter, the tendency of occurrence of bubbles and sunspot defects was investigated by visual inspection. In addition, PEI adhesion test [P, E, 1. (ASTM) recommended adhesion test method (ASTM:
C313-59)], the adhesiveness was measured. The results are shown in FIGS. 1(a) to (f). Decarburized capped 1 with similar enameling process as comparison material
1 (mG) are also shown in Figure 1 (g).

口内の記号は、下記に示すほうろう密着性、泡・黒点欠
陥発生の結果を表わしている。
The symbols inside the mouth represent the results of enamel adhesion and occurrence of bubbles and sunspot defects as shown below.

■:PEI密着性く85%、 泡・黒点欠陥発生−なし、または小 ○:PEI密着性≧85%、 泡・黒点欠陥発生−なし、または小 0:PEI密着性≧85%、 泡・黒点欠陥発生−中 ・:PEI密着性≧85%、 泡・黒点欠陥発生−大 S1.BおよびREM添加なしのTi単独添加の鋼(鋼
A)およびTi+B添加のm<鋼F)で酸洗時間が10
分超重Ni付着量が20m g / d m ’超、酸
洗時間が15分超重よびNi付着量が15mg/dm2
超、あるいは酸洗時間が20分茹で低Ni付着量は除く
)、そのいずれも満たすようなほうろう前処理条件下で
の鋼板は、泡、黒点欠陥が発生しやすかった。 また、
Ti+Se添加wI(鋼B)で、酸洗時間が15分超重
、NL付着量30m g / d m 2超、酸洗時間
が20分茹で、Ni付着量20 m g / d m 
2超、あるいは酸洗時間が30分超重そのいずれも満た
すようなほうろう前処理条件下での鋼板は、泡・黒点欠
陥が発生しやすかった。 また、Ti+Se+Bfi加
鋼(鋼C)は酸洗時間が30分超重、Ni付着量が30
 m g / d m 2超の前処理条件または酸洗時
間40分超重前処理条件になると、泡・黒点欠陥が発生
した。
■: PEI adhesion 85%, bubbles/sunspot defects - none or small ○: PEI adhesion ≧85%, bubbles/sunspot defects - none or small 0: PEI adhesion ≧85%, bubbles/sunspots Defect occurrence - Medium: PEI adhesion ≧85%, bubble/sunspot defect occurrence - Large S1. The pickling time was 10 for steel with Ti alone without B and REM addition (Steel A) and m<Steel F with Ti+B addition.
The amount of Ni deposited exceeds 20 mg/dm2, the pickling time exceeds 15 minutes, and the amount of Ni deposited exceeds 15 mg/dm2.
Steel plates under enameling pretreatment conditions that satisfy either of the following conditions were easy to generate bubbles and black spot defects. Also,
Ti+Se addition wI (Steel B), pickling time over 15 minutes, NL adhesion amount over 30 mg/dm2, pickling time 20 minutes boiling, Ni adhesion amount 20 mg/dm
Steel plates subjected to enameling pretreatment conditions in which the pickling time exceeded 2 or the pickling time exceeded 30 minutes were prone to bubbles and black spot defects. In addition, the Ti + Se + Bfi processed steel (Steel C) has a pickling time of over 30 minutes and a Ni adhesion amount of 30 minutes.
When the pretreatment conditions exceeded mg/dm2 or the pickling time exceeded 40 minutes, bubbles and black spot defects occurred.

しかしながら、Mnを0.10%未満に低減したTi+
Se+B添加の鋼板(鋼D)およびBとREMの複合添
加の鋼板(鋼E)は、脱炭キャップド鋼(鋼G)と高M
 n + T i + S e +B添加a4(鋼C)
に比べ、はるかに長い酸洗時間の前処理条件下でも泡・
黒点欠陥が発生しないことが判明した。  また、低M
n+Ti+Se+B+REMを添加した鋼(鋼E)は低
M n + T i + S e + B m加の鋼(
鋼D)に比較し、短時間酸洗の前処理条件下でのほうろ
う密着性が良好であった。
However, Ti+ with Mn reduced to less than 0.10%
Steel plate with Se+B addition (Steel D) and steel plate with combined addition of B and REM (Steel E) are decarburized capped steel (Steel G) and high M
n + T i + S e + B addition a4 (Steel C)
Even under pretreatment conditions with a much longer pickling time, foam and
It was found that no sunspot defects occurred. Also, low M
Steel with n+Ti+Se+B+REM added (Steel E) is a steel with low M n + Ti + Se + B m addition (Steel E).
Compared to steel D), the enamel adhesion was better under short-time pickling pretreatment conditions.

第  2  表 つぎに、泡・黒点欠陥の発生傾向におよぼすB添加量の
効果について検討した実験、および結果を以下に説明す
る。
Table 2 Next, an experiment in which the effect of the amount of B added on the tendency to generate bubbles and sunspot defects was investigated and the results will be explained below.

(実験2) 重量比にて、 C:0.002%、 P:0.005%、 S:0.02%、 A11.0.02%、 N:0.006%、 Cu:0.03%、 Se:0.009%、 Ti:0.08%、 0:0.003% Mnを0.05%、0,30%の2水準とした鋼に、B
をそれぞれ0.0.0001%0.0004.0.00
080 、0.0020.0.0040%添加した鋼を
(実験1)と同じ工程で熱延、冷延、焼鈍を行ない冷延
鋼板とした後、第2表に示す前処理工程で酸洗時間1〜
60分、Ni浸漬時間20分のほうろう前処理を行なっ
た鋼板に直接一回掛けの番ヨうろう施ゆう、焼成を施し
、泡・黒点欠陥発生が[中以上]になる酸洗時間とB添
加量の関係を調査し、比較鋼として(実験1)に示した
脱炭キャップド鋼の結果も併せて第2図に示した。 そ
の結果、高MnでB添加なしのTi添加鋼は15分の酸
洗時間で、評価が[中以上]の泡・黒点欠陥発生である
のに対して、Mnを0.05%に低減し、Bを添加した
Ti添加鋼はBflがOlOO01at%以上で脱炭キ
ャップド鋼とMn:0.30%のTi添加鋼に比べて同
等以上の優れた耐泡・黒点欠陥性であった。
(Experiment 2) Weight ratio: C: 0.002%, P: 0.005%, S: 0.02%, A11.0.02%, N: 0.006%, Cu: 0.03% , Se: 0.009%, Ti: 0.08%, 0:0.003% B
0.0.0001%0.0004.0.00 respectively
080, 0.0020, 0.0040% added steel was hot rolled, cold rolled, and annealed in the same process as (Experiment 1) to make a cold rolled steel plate, and then the pickling time was changed in the pretreatment process shown in Table 2. 1~
A steel plate that has undergone enameling pretreatment for 60 minutes and a Ni immersion time of 20 minutes is directly subjected to one-time enameling and sintering, and the pickling time and B The relationship between the amounts added was investigated, and the results for the decarburized capped steel shown in (Experiment 1) as a comparison steel are also shown in Figure 2. As a result, Ti-added steel with high Mn and no B addition had bubbles and black spot defects rated as [medium or higher] after pickling time of 15 minutes, whereas Mn was reduced to 0.05%. , B-added Ti-added steel had Bfl of O1OO01 at% or more and had excellent bubble resistance and black spot defect properties that were equal to or better than the decarburized capped steel and the Ti-added steel with Mn: 0.30%.

上記泡・黒点欠陥発生の理由は、以下のように考えられ
る。 本来、結晶粒界に析出し、結晶粒界を強化するC
がTLを添加することによってTiCになり、固定され
てしまい、そのため結晶粒界は、酸洗速度を増大するP
が粒界偏析しやすくなり、はうろう前処理工程の酸洗時
に優先的に鋼板表面の結晶粒界が腐食され、かつ、粒界
腐食が進んだ後、さらに水平方向の粒内へと腐食が進行
し、鋼板表面の性状(粗い凹凸、スマットの堆積、過剰
のNi析出等)を劣化させる。 このような粗い凹凸、
スマットの堆積、過剰のNi析出等がほうろうゆう薬の
施ゆう一乾燥一焼成初期段階に泡・黒点の原因となる空
隙を形成し、表面性状が荒れているほど粗大泡を発生し
てしまうものと考えられる。
The reason for the occurrence of the above-mentioned bubble/sunspot defects is thought to be as follows. C originally precipitates at grain boundaries and strengthens them.
becomes TiC by adding TL and is fixed, so the grain boundaries are free from P which increases the pickling rate.
becomes more likely to segregate at grain boundaries, and the grain boundaries on the surface of the steel sheet are preferentially corroded during pickling in the waxing pre-treatment process, and after intergranular corrosion progresses, corrosion further extends into the grains in the horizontal direction. progresses, deteriorating the properties of the steel sheet surface (roughness, smut accumulation, excessive Ni precipitation, etc.). Such rough unevenness,
Smut accumulation, excessive Ni precipitation, etc. form voids that cause bubbles and sunspots during the initial stages of enamel coating, drying, and firing, and the rougher the surface texture, the larger the bubbles. it is conceivable that.

これらの粗大泡は、泡欠陥となり、また泡の上方が口を
開いたものは焼成中、大気中の酸素を取り込み、鋼板界
面を異常酸化させ、黒点欠陥を生じさせるものと考えら
れる。
These coarse bubbles become bubble defects, and it is thought that bubbles with open upper portions take in oxygen from the atmosphere during firing, abnormally oxidize the steel plate interface, and cause black spot defects.

本実験で得られたよりなりを添加することで泡・黒点欠
陥が抑制された理由は、以上のことを考えた場合、結晶
粒界にCのかわりにBが析出し、Pの粒界偏析を抑制す
ることができたためと考えられ、とくにSeが添加され
ていることでSsが結晶粒内に固溶し、Bを優先的に結
晶粒界へ析出させることができたためと考えられる。 
よって、BをO,0001wt%以上添加した鋼板は、
泡・黒点欠陥発生傾向を緩和することができたものと考
えられる。
Considering the above, the reason why bubbles and sunspot defects were suppressed by adding the twist obtained in this experiment is that B precipitates at the grain boundaries instead of C, causing grain boundary segregation of P. This is thought to be due to the fact that B was able to be suppressed, and in particular, it is thought that due to the addition of Se, Ss was dissolved as a solid solution within the crystal grains, and B could be preferentially precipitated at the grain boundaries.
Therefore, a steel sheet to which B is added in an amount of O,0001wt% or more,
It is thought that the tendency to generate bubbles and sunspot defects was alleviated.

ルかし、0.0001wt%未満ではその効果はあまり
肥められなかった。
However, at less than 0.0001 wt%, the effect was not enhanced much.

つぎに、泡・黒点欠陥発生におよぼすBとSe添加の効
果について調査した実験、および結果について以下に述
べる。
Next, an experiment conducted to investigate the effects of B and Se addition on the generation of bubbles and sunspot defects, and the results will be described below.

(実験3) 重量比にて、 C:0.003%、 P:0.01%、 S:0.02%、 Au、0.03%、 N:0.006%、 Cu:0.03%、 Ti:0.100%、 0:0.003% を基本組成とし、Mn:0.03%で B:0001%、または0.0010%を添加した鋼と
、Mn:0.26%でB: o、oooa%を添加した鋼に、Seを0〜0.025
%添加した鋼を実験室で溶解、出鋼して(実験1)と同
じ工程で熱延、冷延、焼鈍を行ない冷延鋼板とした後、
第2表に示す前処理工程で酸洗時間1〜60分、Ni浸
漬時間20分のほうろう前処理を行なった鋼板に直接一
回掛けのほうろう施ゆう、焼成を施し、泡・黒点欠陥発
生が[中以上]になる酸洗時間とSe添加量の関係を調
査し、比較鋼として(実験1)に示した脱炭キャップド
鋼(鋼G)と0.26%Mn+0.0008%B1添加
鋼(ic)の結果も併せて第3図に示した。
(Experiment 3) Weight ratio: C: 0.003%, P: 0.01%, S: 0.02%, Au, 0.03%, N: 0.006%, Cu: 0.03% , Ti: 0.100%, 0:0.003% as the basic composition, Mn: 0.03% and B: 0001% or 0.0010% added, and Mn: 0.26% and B. : 0 to 0.025 Se to steel added with o, oooa%
% added steel was melted and tapped in the laboratory and hot-rolled, cold-rolled, and annealed in the same process as (Experiment 1) to make a cold-rolled steel plate.
A steel plate that has undergone enameling pretreatment with a pickling time of 1 to 60 minutes and a Ni immersion time of 20 minutes in the pretreatment process shown in Table 2 is directly enameled once and fired to eliminate the occurrence of bubbles and sunspot defects. We investigated the relationship between the pickling time and the amount of Se added to achieve [medium or above], and compared the decarburized capped steel (Steel G) shown in (Experiment 1) and the 0.26% Mn + 0.0008% B1 added steel. The results of (ic) are also shown in FIG.

その結果、Seが添加されていない鋼はB添加量の多少
にかかわらず、泡・黒点欠陥が発生しやすかった。  
しかしながら、Seが添加された鋼板の泡・黒点欠陥の
発生傾向はSeが微量であっても泡・黒点欠陥は改善さ
れた。
As a result, bubbles and black spot defects were likely to occur in steel to which Se was not added, regardless of the amount of B added.
However, the tendency of bubble/sun spot defects to occur in the steel sheet to which Se was added was improved even if the amount of Se was small.

すなわち、0.002wt%以上の添加で泡・黒点欠陥
発生限界時間は、脱炭キャップド鋼と同等またはそれ以
上となった。
That is, when 0.002 wt% or more was added, the critical time for bubble/sunspot defect occurrence was equal to or longer than that of decarburized capped steel.

(実験4) 次に、泡・黒点欠陥発生におよぼすMniの影響につい
て調査した実験、および結果について以下に述べる。
(Experiment 4) Next, an experiment in which the influence of Mni on the generation of bubbles and sunspot defects was investigated and the results will be described below.

重量比にして、 C:0.002%、 P:0.01%、 S:0.02%、 AIL、0.03%、 N:0.008%、 Cu:0103%、 Ti:0.08%、 0:0.004%、 Se:0.008%、 B:001%、 を基本組成とし、Mnを0.02〜0.30%添加した
鋼を実験室で溶解、出鋼して(実験1)と同じ工程で熱
延、冷延、焼鈍を行い冷延鋼板とした後、第2表に示し
たような前処理工程で酸洗時間:1〜60分、Ni浸漬
時間:20分のほうろう前処理を行なった鋼板に直接一
回掛けのほうろう施ゆう、焼成を施し、泡・黒点の発生
がL中以上]になる酸洗時間とMn量の関係を調査した
。 また比較鋼として(実験1)に示した脱炭キャップ
ド鋼の結果も併せて第4図に示した。
In terms of weight ratio, C: 0.002%, P: 0.01%, S: 0.02%, AIL, 0.03%, N: 0.008%, Cu: 0103%, Ti: 0.08 %, 0: 0.004%, Se: 0.008%, B: 001%, steel with the basic composition and 0.02 to 0.30% Mn added was melted and tapped in the laboratory ( After hot-rolling, cold-rolling, and annealing to obtain a cold-rolled steel sheet in the same process as in Experiment 1), a pretreatment process as shown in Table 2 was carried out for pickling time: 1 to 60 minutes, Ni immersion time: 20 minutes. A steel plate that had undergone enameling pretreatment was directly enameled once and fired, and the relationship between the pickling time and the amount of Mn at which the generation of bubbles and sunspots reached L medium or higher was investigated. The results of the decarburized capped steel shown in (Experiment 1) as a comparison steel are also shown in FIG. 4.

その結果、Mn量が減少するに従い、泡・黒点欠陥発生
の限界時間は長時間側に移動する傾向にあった。 特に
、Mn量が0.10%未満の領域では著しく改善された
。 また、0.10%以上の添加では泡・黒点欠陥発生
傾向であった。
As a result, as the amount of Mn decreased, the critical time for occurrence of bubbles and sunspot defects tended to move to the longer side. In particular, significant improvement was achieved in the region where the Mn content was less than 0.10%. Further, when the amount of addition was 0.10% or more, bubbles and black spot defects tended to occur.

この理由については今だ明らかではないが、おそらく鋼
中の固溶Mnの減少により、酸洗速度が遅くなり、はう
ろう前処理工程の硫酸酸洗時に酸洗生成物(スマット)
の生成、付着が抑制されたためと考えられる。 すなわ
ち、このスマットの鋼板表面への付着が抑制されたこと
によって、はうろう焼成時に、はうろうと鋼板との”ぬ
れ性“が改善され、また界面反応が促進されたことによ
るものと考えられる。
The reason for this is still not clear, but the pickling speed is probably slowed down by a decrease in solid solution Mn in the steel, and pickling products (smut) are formed during sulfuric acid pickling in the pre-treatment process.
This is thought to be due to the suppression of the formation and adhesion of In other words, it is thought that by suppressing the adhesion of this smut to the steel sheet surface, the "wettability" between the wax and the steel plate was improved during firing of the wax and the interfacial reaction was promoted. .

つぎに、本発明で鋼成分組成の含有量を限定した理由を
以下に説明する。
Next, the reason why the content of the steel component composition is limited in the present invention will be explained below.

C: Cは、侵入型固溶元素であり、0.005wt%超の含
有量の場合、材質を著しく硬化させてしまう、 本発明
はTi添加鋼であり、CはTiCの析出物となり固溶C
を減少させ、材質を改善することができるが、木質的に
C量が増大すると微細なTICが析出しやすくなって、
材質を劣化させることから、本発明ではC含有量の上限
を0.005wt%とじた。
C: C is an interstitial solid solution element, and if the content exceeds 0.005 wt%, it will significantly harden the material. The present invention is a Ti-added steel, and C becomes a precipitate of TiC and dissolves in solid solution. C
However, when the amount of C increases in terms of wood quality, fine TIC becomes more likely to precipitate.
In the present invention, the upper limit of the C content is set at 0.005 wt% since it deteriorates the material quality.

M n : Mnは、通常、熱間圧延時の割れの原因になるSをMn
Sとして固定するとともに、はうろう前処理工程の酸洗
時にほうろう密着性を良好ならしめる鋼板表面の凹凸を
形成させる上につまとび欠陥となる水素をトラップする
のに有効な元素であるとされる。  しかしながら、本
発明ではTiが添加されていることからMnSは析出せ
ずMnは固溶状態にある。
Mn: Mn usually replaces S, which causes cracking during hot rolling.
It is said to be an effective element for fixing S as S, forming irregularities on the surface of the steel sheet that improve enamel adhesion during pickling in the enamel pre-treatment process, and trapping hydrogen that causes lump defects. Ru. However, in the present invention, since Ti is added, MnS does not precipitate and Mn is in a solid solution state.

Mnが固溶状態にあると、材質劣化を起こす他、Mnの
添加はいたずらに溶鋼コストを上昇させてしまうことか
ら好ましくない、 また、泡・黒点欠陥に対しても非常
に大きな影響を与え、0.10%以上の含有では、はう
ろう前処理において酸洗速度をはやめ、酸洗生成物(ス
マット)が多量に生成し、鋼板表面に付着・堆積し、は
うろう焼成時、鋼板とほうろうの1ぬれ性”を低下させ
、泡・黒点欠陥を発生しやすくなる。 また、界面反応
を抑制し、密着性を著しく劣化させてしまうことから本
発明ではMnの範囲を0.10%未満とした。
When Mn is in a solid solution state, it causes material deterioration, and addition of Mn is undesirable because it unnecessarily increases the cost of molten steel.It also has a very large effect on bubbles and sunspot defects. If the content is 0.10% or more, the pickling speed will be slowed down in the pre-treatment for waxing, a large amount of pickling products (smut) will be generated, and it will adhere and accumulate on the steel plate surface, causing problems with the steel plate during firing. This lowers the wettability of enamel and makes bubbles and black spot defects more likely to occur.In addition, it suppresses interfacial reactions and significantly deteriorates adhesion, so in the present invention, the range of Mn is set to less than 0.10%. And so.

P : 0.020wt%超のPの含有は、材質を硬化させ、プ
レス成形性を劣化させるばかりでなく、はうろう前処理
時の酸洗速度を速め、泡・黒点欠陥の原因となるスマッ
トを増加させてしまうことの他に、2次加工脆性を劣化
させてしまうことから、本発明でのP含有量の上限を0
.020wt%とした。  また、下限についてはとく
に規定しないが、極端に低い含有量にするには溶鋼コス
トを大幅に上昇させてしまうことから、O,0005w
t%程度までが好ましい。
P: Containing more than 0.020 wt% of P not only hardens the material and deteriorates press formability, but also speeds up the pickling speed during waxing pre-treatment, causing smut that causes bubbles and sunspot defects. In addition to increasing the
.. 020 wt%. In addition, although there is no particular stipulation regarding the lower limit, O.
It is preferably up to about t%.

S: Sは、本発明においてTi5%CuS等の析出物を形成
する。 これらの析出物は、はうろう密着性を良好なら
しめる鋼板表面の緻密な凹凸を形成する他、つまとび欠
陥の原因となる水素をトラップする効果を有する。 し
かし、これらの効果を引き出すには少なくとも0.01
wt%の含有が必要である。 ところが、0.05wt
%超の含有はSを固定するTiの含有量を増大させなけ
ればならなくなり、溶鋼コストが増大し、材質的にも不
利となることから、本発明でのS含有量を0.01〜0
.05wt%とじた。
S: S forms precipitates such as Ti5%CuS in the present invention. These precipitates not only form dense irregularities on the surface of the steel sheet that improve the solder adhesion, but also have the effect of trapping hydrogen, which causes jump defects. However, to bring out these effects, at least 0.01
wt% content is required. However, 0.05wt
If the content exceeds 0.0%, the content of Ti that fixes S must be increased, which increases the cost of molten steel and is disadvantageous in terms of material quality.
.. 05 wt%.

A 1 : A1は、製鋼段階において脱酸剤として用いられること
から有効な元素であり、脱酸を十分に行なうには少なく
とも0.003wt%含有するように添加する必要があ
る。  しかし、A1は高価な元素であり、0.100
wt%超の多量の添加、および含有はコストアップにつ
ながることから、上限は0.100wt%が望ましい。
A1: A1 is an effective element because it is used as a deoxidizing agent in the steel manufacturing stage, and must be added in an amount of at least 0.003 wt% in order to sufficiently deoxidize. However, A1 is an expensive element, and 0.100
Since adding or containing a large amount exceeding wt% leads to an increase in cost, the upper limit is preferably 0.100 wt%.

そこで、本発明のAn含有量の範囲を0.003〜0.
100 wt%とじた。
Therefore, the range of An content in the present invention is set to 0.003 to 0.00.
It was bound to 100 wt%.

N : Nは、通常、Cと同様に鋼中に固溶し、材質を劣化させ
る元素であるが、本発明はTi添加鋼であり、NはTi
Nの析出物を形成し固定することから材質面ではとくに
問題にはならない、 またこの析出物はつまとび欠陥の
原因となる水素をトラップするボイドを形成することか
らN含有量は多い方が好ましく、つまとび欠陥を防止す
るには最低限0.005wt%以上の含有が必要である
。 しかしながら、0.010wt%超の含有はT i
’添加量を増大しなければならなくなり、必然的にコス
トアップを招いてしまう、 よって本発明でのN含有量
の範囲をO,OO5〜0. 010wt%とした。
N: Like C, N is normally an element that dissolves in steel and deteriorates the material, but the present invention is a Ti-added steel, and N is a Ti-added element.
Since N precipitates are formed and fixed, there is no particular problem in terms of material quality, and since these precipitates form voids that trap hydrogen, which causes stubble defects, the higher the N content, the better. In order to prevent skipping defects, the content must be at least 0.005 wt%. However, if the content exceeds 0.010 wt%, Ti
'The amount of N added must be increased, which inevitably leads to an increase in cost. Therefore, the range of N content in the present invention is set to O, OO5 to 0. 010 wt%.

しかし、REMが添加された場合にはTiN以外に水素
のトラップサイトが形成されるため、0.005wt%
以下のN含有量としてもつまとび欠陥が発生しなくなる
。 それでも最低限0.002wt%の含有量は必要で
あることから、REMが添加された場合のN含有量の範
囲を0.002〜0.010wt%とした。
However, when REM is added, hydrogen trap sites are formed other than TiN, so 0.005wt%
Even if the N content is below, the skipping defect will not occur. Even so, since a minimum content of 0.002 wt% is required, the range of N content when REM is added is set to 0.002 to 0.010 wt%.

Cu : Cuは、はうろう前処理の酸洗時の酸洗速度をコントロ
ールするのに有効な元素であり、とくに本発明のような
Ti添加鋼は脱炭キャップド鋼に比較し、その酸洗速度
は2〜3倍程度速いことがらCuの含有は重要である。
Cu: Cu is an effective element for controlling the pickling speed during pickling in pre-treatment for waxing, and in particular, Ti-added steel like the one of the present invention has a higher rate of pickling than decarburized capped steel. Since the washing speed is about 2 to 3 times faster, the content of Cu is important.

 その効果を引き出すには、少なくとも0.01wt%
以上の含有が必要である。  しかし、本発明の成分系
において0.07wt%超のCu含有量では、酸洗速度
が遅くなりすぎ、短時間酸洗側でのほうろう密着性を低
下させてしまうことから本発明のCu含有量の範囲を0
.01〜0.07111t%とした。
To bring out the effect, at least 0.01wt%
The above content is necessary. However, if the Cu content exceeds 0.07 wt% in the component system of the present invention, the pickling speed becomes too slow and the enamel adhesion on the short-term pickling side decreases. range to 0
.. 01 to 0.07111t%.

S e : 本発明でSeを添加する理由は、溶接性、とくにTi添
加鋼は鋼中の0含有量が少なく表面張力が大きいため溶
接部の形状が悪い(凹み部が形成される)ので溶鋼の粘
性を小さくし、溶接後の突き合わせ部の形状を改善する
ためである。  また、Seは結晶粒内に固溶し、Bを
優先的に結晶粒界へ析出させ、泡・黒点欠陥の発生原因
となる結晶粒界の腐食を抑制させる効果をも持っている
。  しかしながら、0.002wt%未満の含有量で
はそれらの効果がなく、また酸洗速度を増大させ、泡・
黒点欠陥を発生しやすくなるため好ましくない。
S e: The reason why Se is added in the present invention is to improve weldability, especially Ti-added steel has a low zero content in the steel and has a high surface tension, so the shape of the welded part is poor (a concave part is formed). This is to reduce the viscosity of the material and improve the shape of the butt portion after welding. In addition, Se dissolves in crystal grains, causes B to preferentially precipitate at grain boundaries, and has the effect of suppressing corrosion at grain boundaries, which causes bubbles and black spot defects. However, if the content is less than 0.002wt%, these effects will not be achieved, and the pickling rate will increase, causing foam and
This is not preferable because black spot defects are likely to occur.

一方、0.050宵t%超の含有量では、はうろう前処
理の酸洗性が悪くなり、はうろう密着性に有利な緻密な
凹凸が鋼板表面に形成されにくくなるので好ましくない
On the other hand, if the content is more than 0.050 t%, the pickling properties in the pre-waxing treatment will be poor, and dense irregularities, which are advantageous for the soldering adhesiveness, will be difficult to form on the surface of the steel sheet, which is not preferable.

よって、本発明ではSeの含有量を 0.002〜0.050  wt%とした。Therefore, in the present invention, the Se content is It was set to 0.002 to 0.050 wt%.

B : Bは、本発明の主たる目的のために添加する元素であり
、その目的は本来結晶粒界に析出し結晶粒界を強化する
CがTi添加によってTiCとして固定されてしまい、
結晶粒界は酸洗速度を増大するPが粒界偏析しやすくな
り、はうろう前処理工程の酸洗時に優先的に鋼板表面の
結晶粒界が酸洗され、泡・黒点発生の起点が形成されて
しまうのを防止するためである。
B: B is an element added for the main purpose of the present invention, and its purpose is to prevent C, which originally precipitates at grain boundaries and strengthens the grain boundaries, to be fixed as TiC by adding Ti.
P, which increases the pickling speed, tends to segregate at the grain boundaries, and the grain boundaries on the surface of the steel sheet are preferentially pickled during the pickling process in the pre-soldering process, becoming the starting point for bubbles and sunspots. This is to prevent it from forming.

すなわち、Bを添加することで結晶粒界にCのかわりに
Bを析出させ、Pの粒界偏析を抑制するためである。 
 しかし、O,0001wt%未満ではその効果はなく
、また0、0030wt%超の含有量では、鋼板の機械
的特性を著しく劣化させてしまうことから、本発明での
B含有量をo、ooot〜0.0030wt%とした。
That is, by adding B, B is precipitated at grain boundaries instead of C, and grain boundary segregation of P is suppressed.
However, if the B content is less than 0,0001 wt%, there is no effect, and if the content exceeds 0,0030 wt%, the mechanical properties of the steel sheet will be significantly deteriorated. The content was set at 0.0030 wt%.

Ti: Tiの含有量を(4×C(wt%)+1.S×S(wt
%)  +3. 43×N  (wt%))≦Ti(w
t%)≦0.2(wt%)とした理由は、固溶状態にし
ておくと著しく鋼板の機械的特性を劣化させてしまうC
,S%NをTic、TiS、TiN等の析出物にするた
めである。 そして、その効果を引き出すためには、少
なくとも (4×C(wt%)  +1.  5xS 
 (wt%) +3.43×N(wt%))以上の含有
が必要であることからである。  しかし、0.2wt
%超の含有は酸洗速度の上昇、スマット量の増大により
、泡・黒点欠陥が発生しやすくなるからである。
Ti: The content of Ti is (4×C(wt%)+1.S×S(wt%)
%) +3. 43×N (wt%))≦Ti(w
t%) ≦ 0.2 (wt%) is because C significantly deteriorates the mechanical properties of the steel sheet if left in a solid solution state.
, S%N to form precipitates of Tic, TiS, TiN, etc. In order to bring out the effect, at least (4×C(wt%) +1.5×S
(wt%)+3.43×N(wt%)) or more is required. However, 0.2wt
This is because if the content exceeds %, the pickling speed increases and the amount of smut increases, which tends to cause bubbles and black spot defects.

REM : REMは硫化物を形成し、Ti系の析出物と同様に水素
をトラップし、耐つまとび性を向上させることが可能で
あり、REMを添加することで泡・黒点欠陥の主たる原
因と考えられるTi量を低減することを可能とする。
REM: REM forms sulfides, traps hydrogen in the same way as Ti-based precipitates, and can improve flaking resistance. Adding REM eliminates the main cause of bubbles and sunspot defects. This makes it possible to reduce the amount of Ti that can be considered.

その効果の現れるREMの含有量は少なくとも0.01
wt%は必要である。 しかし、0.10wt%超の含
有は酸洗速度を増大させ、泡・黒点欠陥が発生しやすく
なることから本発明での上限を0.10wt%とした。
The REM content that exhibits this effect is at least 0.01
wt% is required. However, if the content exceeds 0.10 wt%, the pickling rate increases and bubbles and black spot defects are likely to occur, so the upper limit in the present invention is set to 0.10 wt%.

その他、不可避的不純物については極力その含有を控え
たほうが望ましいが、とくに本発明においてその含有量
は制限しない。
It is desirable to refrain from containing other unavoidable impurities as much as possible, but the content is not particularly limited in the present invention.

つぎに、本発明鋼板の製造条件の一例について述べる。Next, an example of manufacturing conditions for the steel sheet of the present invention will be described.

本発明において熱延条件は、通常Ar、変態点以上の温
度で熱間圧延を終了しても、Ars変態点以下の低温仕
上を行ってもほうろう特性にはあまり影響はないが、鋼
板の機械的特性を重要視する場合には熱延仕上げ温度は
Ar3変態点以・上にするのが望ましい。
In the present invention, the hot rolling conditions are usually Ar, and even if hot rolling is finished at a temperature above the transformation point or low-temperature finishing below the Ars transformation point, the enameling properties are not affected much, but the steel sheet machine When importance is placed on physical properties, it is desirable to set the hot rolling finishing temperature to the Ar3 transformation point or higher.

また、巻取温度についても機械的特性を確保したい場合
には高温とくに550℃以上にするのが好ましい。 し
かし、650℃超の巻取温度ではスケール層が厚くなり
脱スケール性(酸洗性)が低下することから上限は65
0℃程度とするのが望ましい。
Further, when it is desired to ensure mechanical properties, it is preferable to set the winding temperature to a high temperature, particularly 550° C. or higher. However, if the winding temperature exceeds 650°C, the scale layer will become thicker and descaling performance (pickling performance) will decrease, so the upper limit is 65°C.
It is desirable to set the temperature to about 0°C.

冷延条件: 冷延条件もまた本発明では規定するものではないが、機
械的特性、とくに絞り性(下値)の良好な冷延鋼板を製
造する場合には、冷延圧下率を70%以上にするのが好
ましい。
Cold rolling conditions: Cold rolling conditions are also not specified in the present invention, but when producing cold rolled steel sheets with good mechanical properties, especially drawability (lower value), the cold rolling reduction rate should be 70% or more. It is preferable to

連続焼鈍: 再結晶焼鈍は、短時間で焼鈍工程を完了することができ
る上、はうろう特性に悪影響をおよぼす鋼中元素の表面
濃化、粒界偏析を抑制することができる連続焼鈍が望ま
しい。
Continuous annealing: Continuous recrystallization annealing is desirable because it can complete the annealing process in a short time and also suppresses surface concentration and grain boundary segregation of elements in the steel, which adversely affect the melting properties. .

また、再結晶が完全でないと加工性を著しく損ない、プ
レス加工等を行なった場合にプレス割れを起こすこと、
一方、Ar3変態点超の温度では再結晶集合組織がラン
ダム化し、絞り性が低下することから、焼鈍温度は、再
結晶温度以上、Ac3変態点以下の温度域とする。
In addition, if recrystallization is not complete, workability will be significantly impaired, and press cracks may occur when press processing is performed.
On the other hand, at a temperature above the Ar3 transformation point, the recrystallized texture becomes random and the drawability decreases, so the annealing temperature is set in a temperature range of not less than the recrystallization temperature and not more than the Ac3 transformation point.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

第3表に示した化学組成の連続鋳造スラブを1200℃
で3時間加熱保持し、粗圧延で板厚30mmのシートパ
ーとした後、タンデム圧延機で仕上げ温度860℃、板
厚3.5mmの熱延板とし、620℃で巻き取った。 
酸洗後、4スタンドの冷間圧延機で板厚0.8mmの冷
延板とし、連続焼鈍ラインに通板し、加熱速度10℃/
 s s均熱温度860℃、均熱時間3分間、冷却速度
20℃/Sのヒートサイクルで再結晶焼鈍を行なった。
A continuously cast slab with the chemical composition shown in Table 3 was heated to 1200°C.
After heating and holding for 3 hours and rough rolling to form a sheet with a thickness of 30 mm, a hot-rolled sheet with a finishing temperature of 860°C and a thickness of 3.5 mm was formed using a tandem rolling mill, and the sheet was wound up at 620°C.
After pickling, it was made into a cold-rolled sheet with a thickness of 0.8 mm using a 4-stand cold rolling mill, and passed through a continuous annealing line at a heating rate of 10°C/
Recrystallization annealing was performed using a heat cycle with a soaking temperature of 860° C., a soaking time of 3 minutes, and a cooling rate of 20° C./S.

 ついで、圧下率0.5%の調質圧延を施した。Then, skin pass rolling was performed at a reduction rate of 0.5%.

その後、これらの鋼板に第1表に示したようなほうろう
前処理[酸洗時間1〜60分、Ni浸浸漬時間5コ]お
よび直接一回掛けのほうろう施ゆう、820℃/3分の
焼成を施した。
Thereafter, these steel plates were subjected to enameling pretreatment as shown in Table 1 [pickling time 1 to 60 minutes, Ni immersion time 5 times], direct enameling once, and firing at 820°C for 3 minutes. was applied.

その後、目視判定により泡・黒点欠陥の発生傾向[小、
中、大]を調査し、評価が[中以上]になる泡・黒点欠
陥発生限界の酸洗時間で表した。
After that, the tendency of occurrence of bubbles and sunspot defects was determined by visual inspection [small,
Medium, large] was investigated and expressed as the pickling time at the limit of bubble/sunspot defect occurrence that would give an evaluation of [medium or above].

また、PEI密着試験(P、E、1.(米国はうろう協
会)が推奨する密着試験方法(ASTM:C313−5
9)]により、はうろう密着性を測定した。
In addition, the adhesion test method (ASTM: C313-5) recommended by the PEI adhesion test (P, E, 1.
9)] was used to measure the adhesion.

耐つまとび性は、それぞれ3枚(n数!3)脱脂後の鋼
板に酸洗時間20秒、Ni浸漬なしの前処理を施し、市
販の下引きゆう薬を施ゆう、乾燥を行ない、820℃/
3分の焼成を行なった後、つまとび発生の促進処理(1
60℃/16時間)を行ない、つまとび発生枚数を観察
し、評価した(発生枚数:0の場合、0/3で表わした
)。
To measure the flaking resistance, three (n number! 3) degreased steel plates were pretreated with a pickling time of 20 seconds and no Ni immersion, then a commercially available undercoat was applied, and dried. °C/
After baking for 3 minutes, a treatment to promote the occurrence of starch (1
60° C./16 hours), and the number of sheets where skipping occurred was observed and evaluated (number of sheets: 0 was expressed as 0/3).

機械的特性は、焼鈍後の鋼板をJISS号引張試験片に
加工し、圧延方向に対して0°、45°および90°方
向の降伏点(YS)、引張強さ(TS)、伸び(EA)
、降伏伸び(YEjり、r値(ランクフォード値)を測
定し、その平均値[0°値+2X45@値十90”値)
/4]で評価した。 これらの結果を第4表に示した。
The mechanical properties were determined by processing the annealed steel plate into JISS No. tensile test specimens, and measuring the yield point (YS), tensile strength (TS), and elongation (EA) at 0°, 45°, and 90° with respect to the rolling direction. )
, Yield elongation (YEj), r value (Lankford value) was measured, and the average value [0° value + 2X45 @ value 190'' value)
/4]. These results are shown in Table 4.

その結果、本発明成分系で製造されたほうろう用冷延鋼
板(鋼1.2.3.4.12.15.17)は、鋼18
に示した従来の脱炭キャップド鋼に比較し、プレス成形
性、溶接性に優れ、かつ耐つまとび性、耐泡・黒点性、
密着性等のほうろう特性に関して、同等またはそれ以上
であることが判明した。  しかし、鋼14はP含有量
が本発明範囲外であるため15〜20分ですでに泡・黒
点欠陥が発生した。
As a result, the cold-rolled steel plate for enameling (Steel 1.2.3.4.12.15.17) manufactured using the composition system of the present invention was found to be
Compared to the conventional decarburized capped steel shown in Figure 2, it has superior press formability and weldability, as well as flaking resistance, bubble and sun spot resistance, and
It was found that the enamel properties such as adhesion were the same or better. However, since the P content of Steel 14 was outside the range of the present invention, bubbles and black spot defects were already generated within 15 to 20 minutes.

鋼5は、Mn量が多くBが添加されてないため15分程
度の酸洗時間で泡・黒点が発生した。 鋼9はSs含有
量が本発明範囲超のため密着性が悪かった。 鋼13は
Cu含有量が本発明範囲超のため、酸洗減量が低下し密
着性が低下した。 鋼10および11はSeが添加され
ていないため、溶接部に“ひけ“を生じた上に、酸洗速
度が速かったため、泡・黒点欠陥が生じやすかった。 
また、鋼7はC含有量が0.005wt%超のため機械
的特性が著しく悪かった。 鋼8は、N含有量が少ない
ためつまとび欠陥が発生し、また、Mn量が多いため、
泡・黒点欠陥が発生しやすかった。 また、鋼16はN
含有量が少ない上にREMの添加量も少ないことがらつ
まとび欠陥が発生した。
Steel 5 had a large amount of Mn and no B was added, so bubbles and black spots were generated after pickling for about 15 minutes. Steel 9 had poor adhesion because the Ss content exceeded the range of the present invention. Steel 13 had a Cu content exceeding the range of the present invention, so the weight loss after pickling decreased and the adhesion decreased. Steels 10 and 11 did not contain Se, so they caused "sink marks" in the welded areas, and because the pickling speed was fast, bubbles and black spot defects were likely to occur.
Further, Steel 7 had significantly poor mechanical properties because the C content exceeded 0.005 wt%. Steel 8 has a low N content, which causes skipping defects, and a high Mn content, so
Bubbles and sunspot defects were likely to occur. Also, steel 16 is N
Because the content was small and the amount of REM added was also small, jump defects occurred.

f!46は、Bの添加量が多すぎ、機械的特性の劣化が
著しかった。
f! In No. 46, the amount of B added was too large, and the mechanical properties deteriorated significantly.

また、@16は、REMの添加量が本発明の範囲より少
ないため、つまとび欠陥が発生した。
In addition, in @16, since the amount of REM added was smaller than the range of the present invention, a skipping defect occurred.

〈発明の効果〉 本発明は、以上説明したような鋼組成で構成されている
ので、Ti添加鋼であるにもかかわらず、直接一回掛け
のほうろう掛けでも従来の脱炭キャップド鋼および従来
のTi添加鋼以上のプレス加工性で、かつ泡・黒点欠陥
が発生しにくい直接一回掛けほうろう用鋼板を提供する
ことができる。
<Effects of the Invention> Since the present invention is composed of the steel composition as described above, even though it is a Ti-added steel, it is superior to conventional decarburized capped steel and conventional decarburized capped steel even when directly enameled once. It is possible to provide a steel plate for direct enameling, which has press workability superior to that of Ti-added steel and is less likely to generate bubbles and black spot defects.

また、本発明により、従来造塊法で製造されていた高級
はうろう用鋼板が連続鋳造法によって製造し得ることに
なり、コストおよび省エネルギーの点かうも非常に大き
なメリットがもたらされる。
Further, according to the present invention, high-grade steel plates for gauging, which were conventionally manufactured by the ingot method, can be manufactured by the continuous casting method, which brings about great advantages in terms of cost and energy saving.

なお、本発明鋼板は、直接一回掛けの用途ばかりでなく
、下引き一回掛け、2回掛けほうろう用の鋼板に用いて
も何らその特性に変りはない。
Note that the steel sheet of the present invention can be used not only for direct one-time application, but also as a steel plate for one-time undercoating and two-time enameling without any change in its properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図、第1b図、第1c図、第1d図、第1e図お
よび第1f図はそれぞれ成分系の異なるTi添加鋼の、
第1g図は脱炭キャップド鋼の、密着性と泡・黒点欠陥
発生傾向におよぼす酸洗時間とNi付着量の関係を示す
図である。 第2図は泡・黒点欠陥発生限界酸洗時間とB添加量の関
係を示す図である。 第3図は泡・黒点欠陥発生限界時間とSe添加量の関係
を示す図である。 第4図は泡・黒点欠陥発生限界時間とMn量の関係を示
す図である。 FIG、1a 酸洗晴間C′t) FIG、1b 醍5先晴間 (号) FIG、1c 酸J走時間 (介) FIG、1d 酸洗晴間(す) FIG、1e 酸洗晴間(労) FIG、1f 酸次ノ青間 (骨) FIG、19 酉艶洗時間 (分) FIG、2 08001   B添カロ  量 (wt %)FIG
、3 Se  シ蚕カロIt(W”0) FIG、4 Mn量(w? ’/@ )
Figures 1a, 1b, 1c, 1d, 1e, and 1f show Ti-added steels with different composition systems, respectively.
FIG. 1g is a diagram showing the relationship between the pickling time and the amount of Ni deposited on the adhesion and tendency to generate bubbles and black spot defects in decarburized capped steel. FIG. 2 is a diagram showing the relationship between the limit pickling time for generating bubbles and black spot defects and the amount of B added. FIG. 3 is a diagram showing the relationship between the bubble/sunspot defect generation limit time and the amount of Se added. FIG. 4 is a diagram showing the relationship between the bubble/sunspot defect generation limit time and the amount of Mn. FIG, 1a Pickling Haruma C't) FIG, 1b Dai5 Saki Haruma (No.) FIG, 1c Acid J Running Time (Intermediate) FIG, 1d Pickling Haruma (Su) FIG, 1e Pickling Haruma (Labor) FIG, 1f Acid Sujino Aoma (Bone) FIG, 19 Tori Gloss Washing Time (Minutes) FIG, 2 08001 B Added Calorie Amount (wt %) FIG
, 3 Se Silkworm KaroIt (W”0) FIG, 4 Mn amount (w? '/@ )

Claims (2)

【特許請求の範囲】[Claims] (1)重量比にて、 C:0.005%以下、 Mn:0.10%未満、 P:0.020%以下、 S:0.01〜0.05%、 Al:0.003〜0.100%、 N:0.005〜0.010%、 Cu:0.01〜0.07%、 Se:0.002〜0.050%、 B:0.0001〜0.0030%、 かつ、(4×C(%)+1.5×S(%)+3.43×
N(%))≦Ti(%)≦0.2(%)、残部がFeお
よび不可避的不純物から成る直接一回掛けほうろう用鋼
板。
(1) In weight ratio: C: 0.005% or less, Mn: less than 0.10%, P: 0.020% or less, S: 0.01-0.05%, Al: 0.003-0 .100%, N: 0.005-0.010%, Cu: 0.01-0.07%, Se: 0.002-0.050%, B: 0.0001-0.0030%, and (4×C(%)+1.5×S(%)+3.43×
A steel plate for direct single-roll enameling, consisting of N (%))≦Ti (%)≦0.2 (%), the balance being Fe and unavoidable impurities.
(2)重量比にて、 C:0.005%以下、 Mn:0.10%未満、 P:0.020%以下、 S:0.01〜0.05%、 Al:0.003〜0.100%、 N:0.002〜0.010%、 Cu:0.01〜0.07%、 Se:0.002〜0.050%、 B:0.0001〜0.0030%、 REM:0.01〜0.10%、 かつ、(4×C(%)+1.5×S(%)+3.43×
N(%))≦Ti(%)≦0.2(%)、残部がFeお
よび不可避的不純物から成る直接一回掛けほうろう用鋼
板。
(2) In weight ratio: C: 0.005% or less, Mn: less than 0.10%, P: 0.020% or less, S: 0.01-0.05%, Al: 0.003-0 .100%, N: 0.002-0.010%, Cu: 0.01-0.07%, Se: 0.002-0.050%, B: 0.0001-0.0030%, REM: 0.01-0.10%, and (4×C(%)+1.5×S(%)+3.43×
A steel plate for direct single-roll enameling, consisting of N (%))≦Ti (%)≦0.2 (%), the balance being Fe and unavoidable impurities.
JP63256835A 1988-10-12 1988-10-12 Steel sheet for direct enamel with excellent press formability, bubble resistance and black spot defects Expired - Fee Related JPH0759736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63256835A JPH0759736B2 (en) 1988-10-12 1988-10-12 Steel sheet for direct enamel with excellent press formability, bubble resistance and black spot defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63256835A JPH0759736B2 (en) 1988-10-12 1988-10-12 Steel sheet for direct enamel with excellent press formability, bubble resistance and black spot defects

Publications (2)

Publication Number Publication Date
JPH02104640A true JPH02104640A (en) 1990-04-17
JPH0759736B2 JPH0759736B2 (en) 1995-06-28

Family

ID=17298087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63256835A Expired - Fee Related JPH0759736B2 (en) 1988-10-12 1988-10-12 Steel sheet for direct enamel with excellent press formability, bubble resistance and black spot defects

Country Status (1)

Country Link
JP (1) JPH0759736B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470056B1 (en) * 2000-11-25 2005-02-04 주식회사 포스코 A cold rolled steel sheet for direct-on enamel applications with excellent adherence
KR20210002639A (en) 2018-05-17 2021-01-08 닛폰세이테츠 가부시키가이샤 Steel plate and enamel products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569357A (en) * 1979-07-03 1981-01-30 Nippon Steel Corp Steel plate for enameling with excellent nail flying resistance
JPS58197254A (en) * 1982-05-11 1983-11-16 Nippon Steel Corp Steel plate for enamel with superior secondary workability and deep drawability
JPS61276958A (en) * 1985-05-30 1986-12-06 Kawasaki Steel Corp Cold rolled steel sheet for enamel and its production
JPS6345322A (en) * 1986-08-09 1988-02-26 Sumitomo Metal Ind Ltd Production of steel sheet for enamel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569357A (en) * 1979-07-03 1981-01-30 Nippon Steel Corp Steel plate for enameling with excellent nail flying resistance
JPS58197254A (en) * 1982-05-11 1983-11-16 Nippon Steel Corp Steel plate for enamel with superior secondary workability and deep drawability
JPS61276958A (en) * 1985-05-30 1986-12-06 Kawasaki Steel Corp Cold rolled steel sheet for enamel and its production
JPS6345322A (en) * 1986-08-09 1988-02-26 Sumitomo Metal Ind Ltd Production of steel sheet for enamel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470056B1 (en) * 2000-11-25 2005-02-04 주식회사 포스코 A cold rolled steel sheet for direct-on enamel applications with excellent adherence
KR20210002639A (en) 2018-05-17 2021-01-08 닛폰세이테츠 가부시키가이샤 Steel plate and enamel products

Also Published As

Publication number Publication date
JPH0759736B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JP2007277652A (en) Manufacturing method of galvannealed sheet steel having good workability, powdering resistance and sliding property
JPH0310048A (en) Steel sheet for porcelain enameling having excellent fishscale resistance and press formability and its manufacture
JPH0757892B2 (en) Method for manufacturing cold-rolled steel sheet for deep drawing with excellent secondary workability and surface treatment
JPH0230738A (en) Steel plate for direct one treatment enameling having excellent resistance to fault of bubble and black spot
JPH02104640A (en) Steel sheet for direct single porcelain enameling excellent in press formability and resistance to blister and black-point defect
JP2007247012A (en) Method for manufacturing steel sheet for ultrathin can, and steel sheet for ultrathin can
JPH0416539B2 (en)
JP3293681B2 (en) Hot-dip galvanized or alloyed hot-dip galvanized high-strength steel sheet and method for producing the same
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JP3951789B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics
JP2812770B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JP2005023348A (en) Method for manufacturing hot-dip galvanized steel sheet
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods
JP2003096542A (en) Steel sheet for enamel, and production method therefor
JP3473039B2 (en) Manufacturing method of low strength deep drawn cold rolled steel sheet with excellent corrosion resistance
JPS60110845A (en) Cold rolled steel sheet for enamel and its manufacture
JP2005281816A (en) High strength cold rolled steel sheet having satisfactory formability and excellent projection weldability, and production method therefor
JP2002146477A (en) High strength galvanized steel sheet having excellent formability and its production method
JPS6320888B2 (en)
JP2812769B2 (en) Manufacturing method of alloyed hot-dip galvanized cold rolled steel sheet for ultra deep drawing with excellent powdering resistance
JPH0293046A (en) Steel sheet for direct single enamelling
JP2714994B2 (en) Manufacturing method of steel plate for welding can with excellent stripping property
JP3016333B2 (en) Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JPH06264138A (en) Production of steel sheet for welded can excellent in blank layout property

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees