JPH02104249A - Gelatinization of starch and device therefor - Google Patents

Gelatinization of starch and device therefor

Info

Publication number
JPH02104249A
JPH02104249A JP61302382A JP30238286A JPH02104249A JP H02104249 A JPH02104249 A JP H02104249A JP 61302382 A JP61302382 A JP 61302382A JP 30238286 A JP30238286 A JP 30238286A JP H02104249 A JPH02104249 A JP H02104249A
Authority
JP
Japan
Prior art keywords
starch
powder
far
diaphragm
grain itself
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61302382A
Other languages
Japanese (ja)
Inventor
Osamu Matsuda
修 松田
Kozo Sato
佐藤 弘三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61302382A priority Critical patent/JPH02104249A/en
Publication of JPH02104249A publication Critical patent/JPH02104249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cereal-Derived Products (AREA)

Abstract

PURPOSE:To gelatinize starch by a simple process in a short time by irradiating grain, powder or granule thereof with far infrared rays while finely vibrating. CONSTITUTION:Grain, power or granule thereof is dropped from a hopper 1 on plural vibrating plates 2 inclined to a proper angle and zigzag set in the vertical direction, heated by far infrared rays belonging to a wavelength band of <=3mum irradiated from a far infrared generator 3 while being successively transferred to the vibrating plates and gelatinized. The irradiation time of far infrared rays is in a range not to reduce >=10% water content of the starchy material, e.g., sufficiently >=30 minutes in the case of ground polished rice having ordinary water content.

Description

【発明の詳細な説明】 (発明の目的) この発明は、米や小麦等の穀類そのもの、あるいは粉砕
精米や小麦粉、蕎麦粉等の穀類の粉体、粒状体をアルコ
ール醗酵させたり、即席御飯やパン、菓子、餅等の製品
にする前処理手段として必要となる澱粉の糊化、即ちα
化を理想的に実現する新規な方法とその為の装置を提供
しようとするものである。
[Detailed Description of the Invention] (Purpose of the Invention) The present invention is directed to alcohol-fermenting grains such as rice and wheat, or powders and granules of grains such as milled rice, wheat flour, and buckwheat flour, or by fermenting them into instant rice or other products. The gelatinization of starch, which is necessary as a pretreatment means for making products such as bread, sweets, and rice cakes, is
The purpose of this project is to provide a new method and equipment for ideally achieving this goal.

(従来技術) これまでに採用されてきた澱粉のα化方法は、例えば、
気流式やバッチ式のように釜の中にいれた原料全体に熱
風やスチームを長時間に亘って浸透させるようにした方
法や、キルン式のように熱風やスチームを充満させた空
間内に原料を螺旋状に流して実現する方法等熱源として
何れも熱風かスチームを利用するものであって、基本的
には澱粉を所定水分下において蒸す方法に属するもので
あった。
(Prior art) Starch gelatinization methods that have been adopted so far include, for example,
There are two methods, such as the air flow method and batch method, in which hot air or steam permeates the entire raw material in the kettle over a long period of time, and a kiln method, in which the raw material is placed in a space filled with hot air or steam. Methods such as the method of flowing starch in a spiral shape all use hot air or steam as a heat source, and basically belong to methods of steaming starch under a specified moisture content.

しかし、この従前までの方法では、その熱効率上の問題
からα化のためにがなり長時間を要するだけではなく、
設備自体が大小がりのものとならざるを得ながったり、
作業工程が複雑なものとなる等して、全体としてがなり
高頷な資本投下をしなければならないという大きな欠点
を有するものであったが、これまでのところでは、これ
ら従前までの方法に代替し得る有効な手段もなく、現在
でもほとんどがこの従前までの手段に顆っているような
1開である。
However, with this conventional method, not only does gelatinization take a long time due to problems with thermal efficiency, but it also requires a long time.
The equipment itself has to be large or small,
These methods have major drawbacks, such as the complexity of the work process and the need for a large investment of capital, but so far there have been no alternatives to these conventional methods. There is no effective means to do so, and even now, most of us are stuck with the existing methods.

この発明は、それらの状況に鑑み、全く新しい発想によ
って従前までの澱粉のα化方法の欠点を払拭しようとす
るものであり、その構成の要旨は、以下において詳述す
るとおりのものである。
In view of these circumstances, the present invention attempts to eliminate the drawbacks of the conventional starch gelatinization method using a completely new idea, and the gist of its structure is as detailed below.

(発明の構成) この発明の澱粉のα化の方法は、忠類そのもの、または
その粉体、粒状体(以下、単に澱粉質体という)をFR
振動させながら、その水分蒸発率が10%以内に納まる
範囲内で30μm以下の波長帯に属す遠赤外線照射する
ことにより、澱粉質体に含有される諏扮をα化するよう
にした澱粉のα化方法である。
(Structure of the Invention) The method for gelatinizing starch of the present invention is based on the method of gelatinizing starch itself, or its powder or granular material (hereinafter simply referred to as starch material).
The α of starch is irradiated with far infrared rays belonging to a wavelength band of 30 μm or less while being vibrated and the water evaporation rate is within 10%, thereby gelatinizing the starch contained in the starch. It is a method of conversion.

澱粉質体を微振動させる手段は、澱粉質体を載せる台や
ベルト、あるいは適宜容器を公知の各種バイブレータ−
に接続させることによって実現されるものであり、澱粉
質体の性状、即ちその粒子の大きさや比重、含水状態、
粒子表面の粘着度合い等の条件に応じて最適な振動が得
られるよう、予めその振動範囲に合致したバイブレータ
−の選択が成されるよう計画されるのが望ましい。
The means for slightly vibrating the starchy material is to use a stage or belt on which the starchy material is placed, or an appropriate container with various known vibrators.
This is achieved by connecting the starchy material to the properties of the starchy material, i.e. its particle size, specific gravity, water content,
In order to obtain the optimum vibration according to conditions such as the degree of adhesion of the particle surface, it is desirable to select a vibrator that matches the vibration range in advance.

また、照射すべき遠赤外線は、その波長帯において30
゜μm以下の範囲に属す遠赤外線が有効であり、その範
囲の遠赤外線の発生が可能なものであれば特にその形態
について制限を受けるものではなく、例えば、抵抗発熱
体の表面にセラミックをライニングした小リングからな
るランプ状の遠赤外線放射体や、ジルコニウムまたはチ
タニウム系セラミック焼結管にニクロム線を挿入して形
成した棒状の遠赤外線放射体等公知のランプ状、棒状の
遠赤外線放射体を適宜組み合わせて発生させるようにし
ても勿論差し支えはないが、照射される澱粉黄体全面に
均質に照射する上で配置の容易な面状の遠赤外線放射体
、例えば平板状セラミック板の裏面にニクロム線ヒータ
を配設して形成されるような遠赤外線放射体により発生
させるようにすると好都合のものとなる。
In addition, the far infrared rays to be irradiated are 30% in that wavelength band.
Far infrared rays in the range of ゜μm or less are effective, and there are no particular restrictions on the form as long as it is possible to generate far infrared rays in that range.For example, ceramic lining on the surface of a resistance heating element Known lamp-shaped and rod-shaped far-infrared radiators, such as lamp-shaped far-infrared radiators made of small rings, and rod-shaped far-infrared radiators formed by inserting nichrome wire into zirconium or titanium ceramic sintered tubes. Of course, there is no problem in generating it in an appropriate combination, but in order to uniformly irradiate the entire surface of the starch corpus luteum to be irradiated, a planar far-infrared radiator that is easy to arrange, for example, a nichrome wire on the back side of a flat ceramic plate. It is advantageous if the far-infrared rays are generated by a far-infrared emitter, such as one formed by an arrangement of a heater.

そして、上記遠赤外線の照射時間は、照射すべき澱粉質
体の含水率が10%以上低下しない範囲、例えば破砕精
米についてのα化に要する照射時間は、通常の含水率の
破砕精米であれば、30分を越えない時間で十分である
The above-mentioned far-infrared ray irradiation time is set within a range in which the water content of the starchy material to be irradiated does not decrease by 10% or more. For example, the irradiation time required for gelatinization for crushed and milled rice is for crushed and milled rice with a normal water content. , a time not exceeding 30 minutes is sufficient.

このようにして実現される澱粉のα化は、次のような装
置によって実現される。
The gelatinization of starch achieved in this manner is achieved by the following device.

即ち、澱粉質体を投入するホッパー1の下方に、適宜角
度に傾斜させた振動板2を配設する一方、該振動板2に
対して適宜間隔を置いた上方に遠赤外線発生装置3,3
・旧・・を併置して澱粉のα化qWとするものである。
That is, a diaphragm 2 tilted at an appropriate angle is provided below a hopper 1 into which starch is fed, while far-infrared generators 3 and 3 are provided above the diaphragm 2 at an appropriate distance.
・Old... is juxtaposed to form the gelatinized qW of starch.

振動板2は、その長平方向に沿う両側部がその長で方向
に亘って適宜中で上方に折曲されて立ち上がり縁21.
21とされた溝型断面の樋状部材によって構成され、遠
赤外線の照射時間に応じて決定される傾斜角度にセット
されると共に、適宜箇所をバイブレータ−4に接続する
ものである。
The diaphragm 2 has both sides along the longitudinal direction thereof bent upward as appropriate along the length thereof to form a rising edge 21.
It is constituted by a gutter-like member with a groove-shaped cross section of 21, and is set at an inclination angle determined according to the irradiation time of far infrared rays, and is connected to the vibrator 4 at appropriate points.

遠赤外線発生装置3は、30A1m以下の波長帯に属す
遠赤外線を発生ずる遠赤外線放射体が振動板2の上方に
適宜間隔を置いて並設し易くするためにユニット化され
た装置とするのが望ましい。
The far-infrared ray generator 3 is a unitized device so that far-infrared radiators that generate far-infrared rays belonging to a wavelength band of 30A1 m or less can be easily arranged in parallel at appropriate intervals above the diaphragm 2. is desirable.

以下、図面に示す具体的な実施例について説示する。Hereinafter, specific embodiments shown in the drawings will be described.

(実施態様1) ホッパー1の下方に配設されるQ動板は、1個の長い部
材によって形成されても勿論差し支えはないが、図面に
示されているように複数個に分割されたものを採用し、
それらを上下方向に亙ってジグザグ状に配し、各振動板
2,2・・・・・・毎にか、あるいは図示の例の如く2
個に共通させてバイブレータ−4を接続し、振動板2゜
2・・・・・・上をゆっくりと流下する澱粉質体が、他
の振動板に順次移行していく際に、移行前の振動板上に
形成された澱粉質体の堆積状態を攪乱する如くして成る
澱粉のα化装置とする。
(Embodiment 1) The Q moving plate disposed below the hopper 1 may of course be formed by one long member, but it may be divided into a plurality of pieces as shown in the drawing. adopted,
They are arranged in a zigzag pattern in the vertical direction, and each diaphragm 2, 2... or 2 diaphragms as in the example shown in the figure.
A vibrator 4 is connected in common to each vibrator, and when the starchy material slowly flowing down on the diaphragm 2゜2... transfers to other diaphragms one after another, the A starch gelatinization device is provided which disturbs the state of accumulation of starchy substances formed on a diaphragm.

上下方向に亘ってジグザグ状に配設される振動板2,2
・・・・・・は、澱粉質体のα化に必要な遠赤外線の照
射時間に応じて最適な長さと個数に決定されるものであ
る。
Vibration plates 2, 2 arranged in a zigzag pattern in the vertical direction
. . . are determined to have the optimum length and number depending on the far-infrared irradiation time required for gelatinization of the starchy material.

図中、5は、ホッパー1内へ澱粉質体を送り込むための
撤入コンベア、6は、振動板2,2・・・・・・を経由
して落ちてきた澱粉質体を所定箇所に取り出すための搬
出コンベアを夫々示すものであり、場合によっては、搬
出コンベア6上に示されているように、これらコンベア
5.6上にも遠赤外線発生装置3,3・・・・・・を並
設するようにしても良い。
In the figure, 5 is a withdrawal conveyor for sending the starch material into the hopper 1, and 6 is a withdrawal conveyor for feeding the starch material that has fallen through the vibration plates 2, 2, etc. to a predetermined location. In some cases, far-infrared generators 3, 3, etc. are also arranged on these conveyors 5.6, as shown on the carry-out conveyor 6. You may also set it.

(実施態様2) この澱粉のα化装置における振動板2は、遠赤外線が光
としての性質を有することに着目し、澱粉質体への遠赤
外線照射効果を高めるように、その素材をアルミニウム
板あるいはステンレス板等反射板を兼用する素材に限定
して形成するようにすると極めて効率的な装置とするこ
とができるものである。
(Embodiment 2) The diaphragm 2 in this starch pregelatinization device focuses on the fact that far infrared rays have properties as light, and is made of aluminum plate to enhance the effect of irradiating far infrared rays on starchy substances. Alternatively, if the reflective plate is made of a material such as a stainless steel plate that also serves as a reflective plate, an extremely efficient device can be obtained.

(作用効果) 上記のとおりの構成から成るこの発明の澱粉のα化方法
は、次のような特徴を有する。
(Operation and Effect) The starch gelatinization method of the present invention, which is constructed as described above, has the following characteristics.

まず、澱粉のα化を進める遠赤外線の照射が、所定範囲
の波長帯の遠赤外線を、含水率との兼ね合いで短時間に
限定して実施されるものであるから、従来までの蒸す方
法に比較し、遇かに効率的であり、しかも必要とする設
備を大いに筒素化でき、全体として非常に経済的なもの
とすることができるという五人の特徴を有している。
First, far-infrared rays in a predetermined wavelength range are used to promote gelatinization of starch, and are limited to a short period of time in consideration of water content. In comparison, these five systems have the characteristics of being fairly efficient, and the necessary equipment can be made into a large number of cylinders, making the system extremely economical as a whole.

特に、これまで澱粉質体に照射する遠赤外線は、主とし
て加熱、焼成、乾燥の為の一手段として利用されること
が多かったことから、特にその波長帯に拘らないで採用
されるのが普通であったものを、この発明では、遠赤外
線の特定範囲の波長帯のものを限定使用することにより
、その電磁波としての性質が澱粉質体のα化に非常に有
効であることを見出だし、それを微振動下状態においた
澱粉質体に照射することによって全体的に均質かつ効果
的(質量の80%以上の)α化を促進することができる
とした効果は非常に高く評価されて然るべきである。
In particular, far-infrared rays used to irradiate starchy materials have often been used primarily as a means for heating, baking, and drying, so they are usually used without regard to the particular wavelength range. However, in this invention, by limited use of far infrared rays in a specific wavelength range, we found that the electromagnetic wave properties are very effective for gelatinization of starchy substances, By irradiating the starchy material under microvibration, it is possible to promote homogeneous and effective gelatinization (more than 80% of the mass) as a whole, and the effect should be highly praised. It is.

例えば、粉体澱粉に対し、15 、6 C/ h出力の
遠赤外線発生装置によって120hg/hの効率で処理
した原料によってアルコール醗酵させたものの場合、原
料工し当り400〜420リツトルものアルコール収得
が可能であり、これは、従前までのスチームを利用して
α化したものが、八人でも原料1を当り精々360リッ
トルのアルコール収得しか実現できなかった実情に比較
すると、この発明のα化方法によるものの澱粉のα化が
、単に澱粉のα化に要する時間の短縮だけではなく、い
かに均質かつ効率的な澱粉のα化につながっているかを
如実に物語るものである。
For example, when powdered starch is subjected to alcohol fermentation using a raw material treated with a far infrared ray generator with an output of 15.6 C/h at an efficiency of 120 hg/h, the alcohol yield per raw material processing is 400 to 420 liters. This is possible, and compared to the previous method of pregelatinization using steam, only eight people could obtain at most 360 liters of alcohol per raw material, compared to the pregelatinization method of this invention. This clearly demonstrates how the gelatinization of starch not only shortens the time required for starch gelatinization, but also leads to homogeneous and efficient starch gelatinization.

上記しなα化方法は、しかも極めて簡単な構造にホッパ
ー1、振動板2、遠赤外線発生装置3、バイブレータ−
4を組み合わせるだけで実現されるものであるから、従
前までのもののように、大掛かりな釜やスチーム発生装
置、パイピング等が一切不要となり、それだけ経済的か
つ安全であり、しかも取り扱い容易になるという秀れた
効果を発揮することができものであるから、澱粉のα化
を必要とする食品加工業界、例えば酒造業界や菓子製造
業界、麺類製造業界等にとっては画期的な装置として高
く評価されることが予想される。
The above gelatinization method has an extremely simple structure including a hopper 1, a diaphragm 2, a far-infrared generator 3, and a vibrator.
Since it can be realized by simply combining 4, there is no need for large-scale pots, steam generators, piping, etc., which were required in the past, making it economical, safe, and easy to handle. It is highly regarded as a revolutionary device for the food processing industry that requires gelatinization of starch, such as the sake brewing industry, confectionery manufacturing industry, noodle manufacturing industry, etc. It is expected that.

特に、振動板2を上下方向に亘ってジグザグ状に配設し
たものの場合には、澱粉質体仝体の均質なα化に大いに
効果がでると共に、装置設置のためのスペース効率上か
らしても極めて有利なものとすることができ、更に、振
動板2としてアルミニウム板やステンレス板等反射板を
兼用する素材から成るものを採用すれば、遠赤外線照射
効率が非常に高められ、−層α化に有利なものとなる。
In particular, when the diaphragm 2 is arranged in a zigzag pattern in the vertical direction, it is highly effective in uniformly gelatinizing the starchy body, and is also effective in terms of space efficiency for installing the device. Furthermore, if the diaphragm 2 is made of a material that also serves as a reflector, such as an aluminum plate or a stainless steel plate, the far-infrared irradiation efficiency can be greatly increased, and the -layer α It will be advantageous for the development.

蒸上のとおり、この発明の澱粉のα化方法およびその為
の装置は、従前までのそれに比較し極めて高いα化効率
を実現して既往の食品加工の面においても非常に有利に
作用するだけではなく、これまでに無い製品開発にもつ
ながる可能性をも包含するものである外、作業工程の簡
素化、安全化につながり、そのもたらす経済的な効果は
、計り知れないものであるとすることができる。
As mentioned above, the starch gelatinization method and device for this purpose of the present invention achieve extremely high gelatinization efficiency compared to the conventional methods, and work very advantageously in terms of existing food processing. Rather, it not only includes the possibility of leading to the development of unprecedented products, but also simplifies and makes work processes safer, and the economic effects it brings are immeasurable. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の澱粉のα化方法を実現するための装
置について、その基本的な構造部分だけを図示したもの
である。 1・・・ポツパー、2・・・振動板、3・・・遠赤外線
発生装置、4・・・バイブレータ−0
The drawings illustrate only the basic structural parts of an apparatus for realizing the starch gelatinization method of the present invention. 1...Popper, 2...Vibration plate, 3...Far-infrared generator, 4...Vibrator-0

Claims (1)

【特許請求の範囲】 1 微振動下状態においた穀類そのもの、またはその粉
体、粒状体に対して、その水分蒸発率が10%以内に納
まる範囲内で30μm以下の波長帯に属す遠赤外線照射
をなすことにより、穀類そのもの、またはその粉体、粒
状体に含有される澱粉をα化するようにした澱粉のα化
方法。 2 穀類そのもの、またはその粉体、粒状体を投入する
ホッパーの下方に適宜角度に傾斜させた振動板を配設す
る一方、該振動板に対して適宜間隔を置いた上方に遠赤
外線発生装置を併置して成る穀類そのもの、またはその
粉体、粒状体に含有される澱粉のα化装置。3 特許請
求の範囲第2項記載の振動板が、上下方向に亘ってジグ
ザグ状に複数個配され、振動板上を流下する穀類そのも
の、またはその粉体、粒状体が、他の振動板に順次移行
していく際に、移行前の振動板上に形成された穀類その
もの、またはその粉体、粒状体の堆積状態を攪乱する如
くして成る穀類そのもの、またはその粉体、粒状体に含
有される澱粉のα化装置。 4 特許請求の範囲第2ないし3項記載の振動板が、ア
ルミニウム板あるいはステンレス板等反射板を兼用する
素材から形成されて成る穀類そのもの、またはその粉体
、粒状体に含有される澱粉のα化装置。
[Scope of Claims] 1 Far-infrared rays belonging to a wavelength band of 30 μm or less within a range where the moisture evaporation rate is within 10% to the grain itself or its powder or granule under microvibration. A method for gelatinizing starch, which gelatinizes starch contained in the grain itself, or its powder or granules. 2. A diaphragm tilted at an appropriate angle is installed below the hopper into which the grain itself, or its powder or granules are fed, while a far-infrared generator is placed above the diaphragm at an appropriate distance. A device for gelatinizing starch contained in the grain itself or its powder or granules. 3. A plurality of diaphragms according to claim 2 are arranged in a zigzag pattern in the vertical direction, and the grains themselves flowing down on the diaphragms, or their powders or granules, are not affected by other diaphragms. Contained in the grain itself, its powder, or granular material in such a way as to disturb the accumulated state of the grain itself, its powder, or granular material formed on the diaphragm before the migration when it is sequentially transferred. Starch gelatinization device. 4. The diaphragm according to claims 2 to 3 is formed from a material that also serves as a reflective plate, such as an aluminum plate or a stainless steel plate, and is made of grain itself, or the starch α contained in its powder or granule. conversion device.
JP61302382A 1986-12-17 1986-12-17 Gelatinization of starch and device therefor Pending JPH02104249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302382A JPH02104249A (en) 1986-12-17 1986-12-17 Gelatinization of starch and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302382A JPH02104249A (en) 1986-12-17 1986-12-17 Gelatinization of starch and device therefor

Publications (1)

Publication Number Publication Date
JPH02104249A true JPH02104249A (en) 1990-04-17

Family

ID=17908233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302382A Pending JPH02104249A (en) 1986-12-17 1986-12-17 Gelatinization of starch and device therefor

Country Status (1)

Country Link
JP (1) JPH02104249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861600A1 (en) * 1997-02-26 1998-09-02 Micronizing Company (UK) Limited Grain and seed treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264447A (en) * 1975-08-12 1977-05-27 Jiyaado Kk Heat treating method of cereal powders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264447A (en) * 1975-08-12 1977-05-27 Jiyaado Kk Heat treating method of cereal powders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861600A1 (en) * 1997-02-26 1998-09-02 Micronizing Company (UK) Limited Grain and seed treatment

Similar Documents

Publication Publication Date Title
US5024145A (en) Vibratory bulk material processor and method
US5972413A (en) Process for cooking cereal grains
RU2389418C2 (en) Installation for micronisation ofgrains
GB1379116A (en) Treatment of cereals and other seeds
US20140093636A1 (en) Method and system for making partially popped popcorn
JPH02104249A (en) Gelatinization of starch and device therefor
DE69528846D1 (en) WHOLE GRAIN FOOD
US5189809A (en) Vibratory bulk material processing method
JPS62158476A (en) Vacuum dryer
US2972197A (en) Continuous vibratory heating apparatus
EP0523045B1 (en) vibratory bulk material processor
US3456575A (en) Apparatus for making puffed foods
RU2294108C2 (en) Thermal processing apparatus for grain
EP1496756A1 (en) Process and apparatus for the production of short cooking time rice
JPS60241859A (en) Method and apparatus for dropping and heat-treatment of powdery substance
RU2372795C1 (en) Food material thermal threatment device
RU2264128C1 (en) Plant for heat treatment of grain materials
WO1997033469A1 (en) Rotary and tunnel-type kilns with multi-ducted radiant heating
EP0861600B1 (en) Grain and seed treatment
RU2813884C1 (en) Feed grain micronisation plant
RU2568130C1 (en) Unit for production of exploded product from sorghum feed grain
JPS6247500B2 (en)
RU2781961C1 (en) Feed grain micronization plant
CN214283265U (en) Extrusion type puffed food continuous production system
JPH0718342Y2 (en) Infrared roast dryer