JPH02103885A - Heat generating device - Google Patents

Heat generating device

Info

Publication number
JPH02103885A
JPH02103885A JP25391788A JP25391788A JPH02103885A JP H02103885 A JPH02103885 A JP H02103885A JP 25391788 A JP25391788 A JP 25391788A JP 25391788 A JP25391788 A JP 25391788A JP H02103885 A JPH02103885 A JP H02103885A
Authority
JP
Japan
Prior art keywords
electrode
heating element
conductive
terminal
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25391788A
Other languages
Japanese (ja)
Inventor
Hitoshi Hanawa
塙 仁志
Takashi Nakajima
隆 中島
Shigeru Kaito
海東 滋
Atsushi Kitamura
厚 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANAWA NETSUDEN KINZOKU KK
Toray Industries Inc
Original Assignee
HANAWA NETSUDEN KINZOKU KK
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANAWA NETSUDEN KINZOKU KK, Toray Industries Inc filed Critical HANAWA NETSUDEN KINZOKU KK
Priority to JP25391788A priority Critical patent/JPH02103885A/en
Publication of JPH02103885A publication Critical patent/JPH02103885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To improve the electrical connection and to increase the mechanical strength by placing a connection member which consists of a heatproof conductive material with the rigidity lower than that of a C/C composite heating body between the terminal of the C/C composite heating body and an electrode. CONSTITUTION:Between the terminal 11a of a C/C composite heating body 11 and an electrode, a connection member which consists of a heatproof conductive material with the rigidity lower than that of said heating body 11 is placed. As the connection material, a sintered carbon; a high melting point metal such as Mo, W, Cr, Ti, Zr, and Ta; various sorts of heatproof alloys; a conductive ceramics such as a conductive nitride, a conductive metal silicate, and a conductive carbide; and moreover, a conductive cement or adhesive made by mixing the powder of those materials with a carbonic binder such as coal tar and coal tar pitch, a phenol resin, a furan resin, a KOPUNA [phonetic] resin; are used. When the terminal 11a and the electrode are connected, a washer is made from said material, for example, the washer is placed between the terminal and the electrode, and fastened with a screw nut and the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維/炭素コンポジット(以下、C/C
コンポジットという)を発熱体とする発熱装置に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to carbon fiber/carbon composite (hereinafter referred to as C/C
This invention relates to a heat generating device using a composite (composite) as a heat generating element.

(従来の技術) マトリックスが炭素(または黒鉛)で、強化材が炭素繊
維(または黒鉛繊維)から成る複合材であるC/Cコン
ポジットを発熱体として使用する試みがなされている。
(Prior Art) Attempts have been made to use a C/C composite, which is a composite material in which the matrix is carbon (or graphite) and the reinforcing material is carbon fiber (or graphite fiber), as a heating element.

そして、本発明者らは、このC/Cコンポジットを用い
た面発熱体を開発し、既にそれを、特願昭63−370
69号、特願昭63−37070号として出願した。
The present inventors have developed a surface heating element using this C/C composite, and have already published it in Japanese Patent Application No. 63-370.
No. 69 and Japanese Patent Application No. 63-37070.

これらC/Cコンポジットを発熱体として使用する場合
、C/Cコンポジットの機械的強度が大きいので、薄形
、細径に加工することができ、小型で精密な形状に賦形
することが可能であり、また通電負荷が小さくても高温
発生が可能になるという効果が得られる。その場合には
、C/Cコンポジットは給電路である電極と接続されな
ければならない。
When these C/C composites are used as heating elements, they can be processed into thin shapes and small diameters because of their high mechanical strength, and can be formed into small and precise shapes. Moreover, it is possible to generate high temperatures even when the current load is small. In that case, the C/C composite must be connected to an electrode that is a power supply path.

従来、この接続に関しては、たとえば、電極とC/Cコ
ンポジット発熱体の端子部とを直接面接触させるという
方法や、電極を炭素材(または黒鉛材)で製作しこれに
発熱体端子部を接触せしめ、両者を単にビス止めしたり
または導電性接着剤で接合するという方法などが採用さ
れている。
Conventionally, this connection has been achieved by, for example, making direct surface contact between the electrode and the terminal part of the C/C composite heating element, or making the electrode from a carbon material (or graphite material) and contacting the terminal part of the heating element with it. A method of simply screwing the two together or joining them with a conductive adhesive has been adopted.

(発明が解決しようとする課題) しかしながら、上記したような接続方法の場合には、次
のような問題が発生する。
(Problems to be Solved by the Invention) However, in the case of the connection method as described above, the following problems occur.

たとえば、発熱体の端子部と電極とを直接接触させて両
者を接続した場合、発熱体の熱伝導損失が大きくなり、
発熱体に所望する温度分布を設定することが困難になる
。また、この接続においては、発熱体の端子部と電極と
は単なる面接触状態にあるため、その接触抵抗が大きく
なる。その結果、通電時にこの接続部の温度上昇が進ん
で電極が高温となり、たとえば電極が銅のような金属製
であった場合、その電極が劣化し消耗するという事態を
招く。
For example, if the terminals of the heating element and the electrodes are connected by directly contacting them, the heat conduction loss of the heating element will increase.
It becomes difficult to set a desired temperature distribution on the heating element. Further, in this connection, the terminal portion of the heating element and the electrode are in a mere surface contact state, so that the contact resistance becomes large. As a result, when electricity is applied, the temperature of this connecting portion increases and the electrode becomes hot. For example, if the electrode is made of metal such as copper, the electrode deteriorates and becomes worn out.

発熱体がC/Cコンポジット、電極が炭素材で、両者を
ビス止めするような接続の場合、このC/Cコンポジッ
トは一般にその剛性が極めて高く弾性に欠けるので、ビ
スを緊締しても電極とC/Cコンポジットとは互いにな
じまず、結局は充分に密着した状態の接続が果せないと
いう問題が生ずる。また、導電性接着剤を用いて接続し
た場合には、導電性接着剤を硬化した後であっても前記
接着剤からのガス発生があるため、全体の環境を劣悪に
するという事態を招く。
If the heating element is a C/C composite and the electrode is a carbon material, and the two are connected by screwing them together, the C/C composite generally has extremely high rigidity and lacks elasticity, so even if the screws are tightened, it will not work as the electrode. The problem arises that they are not compatible with the C/C composite, and that a sufficiently close connection cannot be achieved. Further, when a connection is made using a conductive adhesive, gas is generated from the adhesive even after the conductive adhesive is cured, resulting in a situation where the overall environment becomes poor.

本発明は上記したような諸問題解決し得るC/Cコンポ
ジット発熱体と電極との接続部を有する発熱装置の提供
を目的とする。
An object of the present invention is to provide a heat generating device having a connecting portion between a C/C composite heat generating element and an electrode, which can solve the above-mentioned problems.

(課題を解決するための手段・作用) 上記目的を達成するために、本発明においては、C/C
コンポジット発熱体の端子部と電極との間に、前記C/
Cコンポジット発熱体よりも剛性の低い耐熱導電材から
成る接続部材を介在させ、前記端子部と電極とを接続し
て成る接続部を有することを特徴とする発熱装置が提供
される。
(Means/effects for solving the problem) In order to achieve the above object, in the present invention, C/C
Between the terminal part of the composite heating element and the electrode, the C/
There is provided a heat generating device characterized in that it has a connecting portion that connects the terminal portion and the electrode with a connecting member made of a heat-resistant conductive material having lower rigidity than the C composite heating element interposed therebetween.

発熱体であるC/Cコンポジットは次のような方法で製
造することができる。
The C/C composite which is a heating element can be manufactured by the following method.

第1の方法はプリプレグ法である。この方法においては
まず、後述する炭素繊維に、Bステージのフェノール樹
脂、フラン樹脂のような熱硬化性樹脂や、ピッチ等の炭
化可能物質が含浸されているプリプレグを用い、このプ
リプレグを必要枚数だけ積層したりまたは必要回数巻回
して所望の発熱体形状に整形する。
The first method is the prepreg method. In this method, first, a prepreg is used, in which the carbon fiber described later is impregnated with a B-stage thermosetting resin such as phenolic resin or furan resin, or a carbonizable substance such as pitch, and the required number of prepregs are used. It is laminated or wound a necessary number of times to form a desired heating element shape.

つぎに、得られた整形体を不活性ガス雰囲気下において
600〜3000°Cの温度域で焼成し、プリプレグ中
の炭化可能物資を熱分解せしめて炭素化または黒鉛化し
、C/Cコンポジットとなして発熱体を得る。しかしな
がら、得られた発熱体は多孔質で低密度であるため、再
びこれに前記炭化可能物質を含浸し焼成するという操作
を複数回反復して所定の密度になるまで高密度化するこ
とが好ましい。
Next, the obtained shaped body is fired at a temperature range of 600 to 3000°C in an inert gas atmosphere, and the carbonizable materials in the prepreg are thermally decomposed and carbonized or graphitized to form a C/C composite. to obtain a heating element. However, since the obtained heating element is porous and has a low density, it is preferable to repeat the operation of impregnating it with the carbonizable substance and firing it several times to increase the density until it reaches a predetermined density. .

第2の方法は樹脂含浸法である。この方法は、生の炭素
繊維それ事態を積層または巻回して発熱体形状に整形し
たのち、これに上記炭化可能物質を含浸し焼成するとい
う方法である。含浸−焼成を必要面反復して高密度化す
るのが好ましいことはプリプレグ法の場合と同様である
The second method is a resin impregnation method. In this method, raw carbon fibers are laminated or wound and shaped into the shape of a heating element, and then impregnated with the above-mentioned carbonizable substance and fired. As in the case of the prepreg method, it is preferable to repeat the impregnation and firing process as necessary to increase the density.

第3の方法はCVD法である。この方法は、前記樹脂含
浸法の場合と同様に生の炭素繊維を整形して発熱体形状
とし、これを1000〜2000°Cの高温下において
メタン、プロパン等の炭化水素を含む気流中で熱処理す
ることにより、炭素繊維の表面に熱分解炭素(または黒
鉛)を必要量沈積せしめてC/Cコンボジントメトし、
発熱体にする方法である。
The third method is the CVD method. In this method, as in the case of the resin impregnation method, raw carbon fibers are shaped into a heating element shape, and then heat treated in an air stream containing hydrocarbons such as methane and propane at a high temperature of 1000 to 2000°C. By doing so, the required amount of pyrolytic carbon (or graphite) is deposited on the surface of the carbon fiber to form a C/C composite,
This is a method of turning it into a heating element.

第4の方法は、単糸径が3〜15μm程度でアスペクト
比が数百という短繊維に適用できるブレンド法ともいう
べき方法である。この方法においては、上記短繊維と上
記炭化可能物質との混合物に各種の成形法を適用して、
発熱体形状に成形したのちこれを焼成する。
The fourth method is a blending method that can be applied to short fibers having a diameter of about 3 to 15 μm and an aspect ratio of several hundreds. In this method, various molding methods are applied to the mixture of the short fibers and the carbonizable substance,
After molding into the shape of a heating element, this is fired.

以上説明した第1〜第4の方法においては、あらかじめ
発熱体形状に整形したものを焼成しているが、焼成後に
切削加工等の機械加工を施して所望の発熱体形状にする
こともできる。
In the first to fourth methods described above, the heating element is shaped in advance into the shape of the heating element and then fired, but after firing, machining such as cutting may be performed to form the desired heating element shape.

これらの方法に用いられる炭素繊維としては次のような
形態のものがあげられる。
The carbon fibers used in these methods include the following types.

第1に織物である。織物は平織物、綾織物、朱子織物の
いずれであってもよい。また、特開昭5158568号
、特公昭59−32291号公報にそれぞれ開示されて
いる円形織物ないし螺旋状円形織物を使用することがで
きる。
The first is textiles. The woven fabric may be a plain woven fabric, a twill woven fabric, or a satin woven fabric. Further, circular woven fabrics or spiral circular woven fabrics disclosed in Japanese Patent Application Laid-Open No. 5158568 and Japanese Patent Publication No. 59-32291, respectively, can be used.

第2に解繊マットである。これは、1本1本の炭素短繊
維がランダム配向しているものである。
The second is a defibrated mat. In this case, each short carbon fiber is randomly oriented.

第3はチョツプドストランドマットである。これは、炭
素繊維の束を所定の長さに裁断し、各裁断束をランダム
配向セしめて成るマットである。
The third is chopped strand mat. This mat is made by cutting bundles of carbon fibers into predetermined lengths and setting each cut bundle in random orientation.

第4は、スワールマントである。これは、短繊維ではな
く、解繊され、または解繊されていない連続繊維(若し
くは連続繊維束)がランダム配向されているものである
The fourth is the swirl cloak. This is not short fibers, but randomly oriented continuous fibers (or continuous fiber bundles) that may or may not be defibrated.

第5は筒状編組である。これはその径方向および長手方
向への伸縮性に冨む。筒状のままでも使用できるしまた
平らに押しつぶして使用することもできる。
The fifth is a tubular braid. This is due to its radial and longitudinal extensibility. It can be used in its cylindrical form, or it can be crushed flat.

第6は、一方向に互いに並行に、かつテープ状またはシ
ート状に引揃えた、連続繊維の一方向引揃え体である。
The sixth type is a unidirectionally aligned body of continuous fibers that are aligned parallel to each other in one direction in the form of a tape or sheet.

これには、通常、引揃え状態を維持するために、Bステ
ージの、フェノール樹脂等の熱硬化性樹脂や、ピッチな
どが含浸されている。
This is usually impregnated with a B-stage thermosetting resin such as phenolic resin, pitch, etc. to maintain the aligned state.

別に、一方向性プリプレグと呼ばれるものである。Separately, it is called unidirectional prepreg.

第7の形態は、アスペクト比の小さい短繊維であり、前
記したブレンド法による発熱体の製造時に使用される。
The seventh form is short fibers with a small aspect ratio, and is used when producing a heating element by the blending method described above.

なお、上記した第1〜第6の形態の炭素繊維を積層して
用いる場合、炭素繊維の糸を用い、たとえば単環縫によ
って一体にステイフナしておくと、発熱体の層間剥離強
度や層間剪断強度、衝撃強度等が向上するようになるの
で好ましい。
In addition, when using the carbon fibers of the first to sixth embodiments described above in a layered manner, using carbon fiber threads and stiffening them together by, for example, single chain stitching, will improve the interlayer peel strength and interlayer shear of the heating element. This is preferable because strength, impact strength, etc. are improved.

発熱体の電気抵抗は、使用した炭素繊維の種類、形態、
配置の仕方、含有量、炭素繊維にするときの焼成温度や
、マトリックス炭素の種類や、発熱体の嵩密度や、C/
Cコンポジット化するときの焼成温度等によって変化さ
せることができる。
The electrical resistance of the heating element depends on the type and form of the carbon fiber used,
The arrangement method, content, firing temperature when making carbon fiber, type of matrix carbon, bulk density of heating element, C/
It can be changed depending on the firing temperature, etc. when forming a C composite.

上記したC/Cコンポジット発熱体に電流を給電するた
めの電極の材料としては、汎用されているCu、N、、
ステンレスなどの合金のような電気伝導度の大きい材料
の外に、たとえば、焼結炭素(またはその黒鉛化物) 
; Mo 、 W、  Cr 、 TiZr、Taのよ
うな高融点金属;各種の耐熱合金、BNのような導電性
窒化物;M6Sixのような導電性金属けい化物、B、
Cのような導電性炭化物に代表される、導電性と同時に
耐熱性も備えた材料をあげることができる。
The electrode materials for supplying current to the C/C composite heating element mentioned above include commonly used Cu, N,...
In addition to materials with high electrical conductivity such as alloys such as stainless steel, for example, sintered carbon (or its graphitized product)
; Refractory metals such as Mo, W, Cr, TiZr, and Ta; various heat-resistant alloys, conductive nitrides such as BN; conductive metal silicides such as M6Six, B,
Materials that are both electrically conductive and heat resistant, typified by conductive carbides such as C, can be cited.

本発明の発熱装置においては、C/Cコンポジット発熱
体の端子部と上記電極との間に、後述の接続部材を介在
せしめることにより両者が接続されて接続部が構成され
る。
In the heat generating device of the present invention, a connecting member, which will be described later, is interposed between the terminal portion of the C/C composite heating element and the electrode to connect the two to form a connecting portion.

ここで用いる接続部材は、導電性を有することはもち論
のことであるが、さらには、前記したC/Cコンポジッ
トよりもその剛性が低いという特性を備えていることが
必要である。
It goes without saying that the connecting member used here has electrical conductivity, but it also needs to have a property that its rigidity is lower than that of the C/C composite described above.

このような特性を満足する材料としては、前記した、焼
結炭素(またはその黒鉛化物);M。
Examples of materials that satisfy such characteristics include the above-mentioned sintered carbon (or its graphitized product);

W、Cr、T、、Zr、Taのような高融点金属;各種
の耐熱合金;導電性窒化物、導電性金属けい化物、導電
性炭化物のような導電性セラミックス、さらにはこれら
材料の粉末を、コールタール。
High-melting point metals such as W, Cr, T, Zr, and Ta; various heat-resistant alloys; conductive ceramics such as conductive nitrides, conductive metal silicides, and conductive carbides; and powders of these materials. , coal tar.

コールタールピッチなどの炭素質バインダ フェノール
樹脂、フラン樹脂、コブナ樹脂などの樹脂バインダと混
練して成る導電性セメントや導電性接着剤をあげること
ができる。
Examples include conductive cements and conductive adhesives made by kneading carbonaceous binders such as coal tar pitch and resin binders such as phenol resins, furan resins, and cobuna resins.

発熱体の端子部と電極を接続する際には、上記した材料
から、たとえばワッシャを製作し、このワッシャを前記
端子部と電極の間に介在せしめ、全体を常法のビス止め
のような手段で緊締すればよい。また、ワッシャに代え
て、上記材料の発泡体を介在せしめてもよい。さらには
、端子部または電極に上記した導電性接着剤を塗布し、
それを乾燥硬化せしめたのち両者をビス止めのような手
段で緊締すればよい。
When connecting the terminals of the heating element and the electrodes, for example, a washer is manufactured from the above-mentioned material, this washer is interposed between the terminals and the electrodes, and the whole is secured by conventional means such as screws. All you have to do is tighten it up. Further, instead of the washer, a foam made of the above material may be used. Furthermore, apply the above-mentioned conductive adhesive to the terminal part or electrode,
After it is dried and hardened, the two can be tightened together using screws or other means.

また、電極と発熱体の端子部の間に上記した材料で構成
した接続部材を橋絡せしめ、この接続部材の一方の端部
と電極、およびこの接続部材の他方の端部と発熱体の端
子部とをビス止めのような手段でそれぞれ緊締してもよ
い。
In addition, a connecting member made of the above-mentioned material is bridged between the electrode and the terminal of the heating element, and one end of this connecting member and the electrode, and the other end of this connecting member and the terminal of the heating element. The parts may be tightened by means such as screws.

この前者の接続部の場合、接続部材はその剛性がC/C
コンポジットよりも低く軟質であるため、緊締手段で発
熱体の端子部と電極間を緊締したとき、この接続部材が
発現するある種の弾発力の作用により、この接続部材は
、常時、発熱体の端子部と電極との両者を緊締方向に逆
向した方向に押圧することになり、その結果、接続部に
おける発熱体の端子部と電極との電気的接続状態は良好
に維持される。
In the case of the former connection, the connection member has a rigidity of C/C
Since it is lower and softer than a composite, when the terminal part of the heating element and the electrode are tightened with a tightening means, a certain elastic force is generated by this connecting member, so that the connecting member is always attached to the heating element. Both the terminal portion of the heating element and the electrode are pressed in a direction opposite to the tightening direction, and as a result, the electrical connection state between the terminal portion of the heating element and the electrode at the connection portion is maintained well.

また、後者の接続部の場合も、緊締手段によってその両
端部で電極と発熱体の端子部とにそれぞれ圧接されてい
る接続部材は、その弾発力によってその両端部が電極と
端子部に密着することになるので、電極と発熱体の端子
部との間の電気的接続状態は良好に維持される。
Also, in the case of the latter connection, the connection member whose both ends are pressed into contact with the electrode and the terminal of the heating element by the tightening means, has both ends tightly attached to the electrode and the terminal due to the elastic force. Therefore, the electrical connection between the electrode and the terminal portion of the heating element is maintained well.

(実施例) 以下に、本発明装置における接続部を添付図面に基づい
てさらに詳細に説明する。
(Example) Below, the connecting portion in the device of the present invention will be explained in more detail based on the accompanying drawings.

第1図は本発明にかかる接続部の1例を示す分解斜視図
である。図において、発熱体11は発熱部がジクザクに
屈曲したC/Cコンポジットの板体であり、その端子部
11aには透孔11bが形成されている。この発熱体の
端子部11aは、上部にねじ穴12aが形成されている
BNスタンド12の上に、透孔11bとねし穴12aを
合致させた状態で載置される。
FIG. 1 is an exploded perspective view showing an example of a connecting portion according to the present invention. In the figure, the heating element 11 is a C/C composite plate whose heating part is bent in a zigzag manner, and a through hole 11b is formed in the terminal part 11a. The terminal portion 11a of this heating element is placed on the BN stand 12, which has a screw hole 12a formed in the upper part, with the through hole 11b and the screw hole 12a aligned.

そして、透孔11bとねじ穴12aには、ねし頭13c
の下面に雄ねじ13aが突設され上面にはねじ穴13b
が形成されているMO製のねし13が螺着されて、発熱
体の端子部11aがねし13のねし頭13cの下面とB
Nスタンド12の上面の間で強く挟持される。
A screw head 13c is provided in the through hole 11b and the screw hole 12a.
A male screw 13a is provided protruding from the bottom surface of the , and a screw hole 13b is provided from the top surface.
The screw 13 made of MO, which is formed with
It is strongly held between the upper surfaces of the N stand 12.

ねじ頭13cの上面には、端部に透孔14aが形成され
、ニッケルメッキが施されているCu製のブスバー14
が載置され、この透孔14aとねじ穴13bには、雄ね
じ15aが形成されているM。
A through hole 14a is formed at the end of the upper surface of the screw head 13c, and a bus bar 14 made of Cu is plated with nickel.
is mounted, and a male screw 15a is formed in the through hole 14a and the screw hole 13b.

製のねじ15が螺着されて、ねじ13の上面とねじ15
のねし頭の下面とでCuブスバー4が強く挟持される。
A screw 15 made of
The Cu bus bar 4 is strongly clamped by the lower surface of the cross head.

このような構造の接続部においては、発熱体の端子部1
1aは軟質なMO製ねじ13のねし頭13cの下面と密
着した状態で接続するので、Cuブスバー14と発熱体
11との電気的接続は良好となる。
In the connection part of such a structure, the terminal part 1 of the heating element
Since the screw 1a is connected in close contact with the lower surface of the screw head 13c of the soft MO screw 13, the electrical connection between the Cu bus bar 14 and the heating element 11 is good.

第2図は、他の接続部材を用いたときの、C/Cコンポ
ジット発熱体とカーボンなどの炭素質電極の接続部を例
示する分解斜視図である。
FIG. 2 is an exploded perspective view illustrating a connecting portion between a C/C composite heating element and a carbonaceous electrode such as carbon when another connecting member is used.

図において、発熱体21の端子部21aには透孔21a
が形成され、また炭素質電極22の端部にも透孔22a
が穿設されている。接続部材23は、棒状の炭素または
黒鉛材から成り、その両端に透孔23a、23bがそれ
ぞれ穿設されている。
In the figure, the terminal portion 21a of the heating element 21 has a through hole 21a.
is formed, and a through hole 22a is also formed at the end of the carbonaceous electrode 22.
is drilled. The connecting member 23 is made of a rod-shaped carbon or graphite material, and has through holes 23a and 23b formed at both ends thereof.

接続部材23の一側面の2つの透孔23a、23bの外
周には、同心状にねし24a、25aより大径の凹部が
形成されていて、この四部間は長手方向に伸びる凹溝で
連絡されている。そして、透孔23a、23bの凹部と
凹溝にはMOが組込まれて埋設されている。
On the outer periphery of the two through holes 23a and 23b on one side of the connecting member 23, concave portions having a larger diameter than the screws 24a and 25a are formed concentrically, and these four portions are connected by a groove extending in the longitudinal direction. has been done. MO is incorporated and buried in the recesses and grooves of the through holes 23a and 23b.

発熱体の端子部21aと電極22の上には、対応する互
いの透孔が合致するように前記した接続部材23が載置
され、これらの透孔に雄ねじ24a25aがそれぞれ嵌
挿され、それを雌ねじ24b25bで緊締した構造にな
っている。この場合の雄ねじ、雌ねじは耐熱性、導電性
を備えていればよく、その材質は問わない。
The above-mentioned connecting member 23 is placed on the terminal portion 21a of the heating element and the electrode 22 so that the corresponding through holes match each other, and the male screws 24a and 25a are inserted into these through holes, respectively. It has a structure in which it is tightened with female screws 24b and 25b. In this case, the male thread and the female thread may be made of any material as long as they have heat resistance and conductivity.

この場合は、接続部材23は発熱体の端子部21aと電
極22を橋絡した構造であり、端子部21aはその部分
のC/Cコンポジットよりも剛性が低く軟質である炭素
または黒鉛材と密着するので、第1図の場合と同じよう
に、端子部21aと電極22との間の電気的接続は良好
となる。
In this case, the connecting member 23 has a structure in which the terminal part 21a of the heating element and the electrode 22 are bridged, and the terminal part 21a is in close contact with carbon or graphite material that is softer and has lower rigidity than the C/C composite in that part. Therefore, as in the case of FIG. 1, the electrical connection between the terminal portion 21a and the electrode 22 is good.

第3図は、接続部材がMoの箔である場合の分解斜視図
である。図において、C/Cコンポジットの発熱体31
の端子部31a、およびCu電極32の端部にはそれぞ
れ透孔31b、32aが形成され、この両者間に、両端
に透孔33a、33bを有し、波状に折り曲げられたM
o箔33が載置され、これらは、雄ねじ34 a、  
35 a、雌ねじ34b、35bによってねし止めされ
ている。なお、この場合も、第2図の場合と同じように
、雄ねじ、雌ねじは耐熱性、導電性を備えていればよく
、その材質を問うものではない。
FIG. 3 is an exploded perspective view when the connecting member is a Mo foil. In the figure, a C/C composite heating element 31
Through holes 31b and 32a are formed in the terminal portion 31a of the terminal portion 31a and the end portion of the Cu electrode 32, respectively.
o foil 33 is placed, these are male threads 34 a,
35a, and are screwed together with female screws 34b and 35b. In this case as well, as in the case of FIG. 2, the material of the male and female threads does not matter as long as they have heat resistance and conductivity.

この場合は、接続部材33がMoff3であるためその
熱容量は小さく、それゆえ、発熱体31で発生した熱量
が、熱容量の大きいCu電極32側に伝達するという熱
伝導損失の問題を抑制し、その結果、発熱体31の熱効
率を改善することもできる。
In this case, since the connecting member 33 is Moff3, its heat capacity is small, and therefore, the problem of heat conduction loss in which the amount of heat generated by the heating element 31 is transferred to the Cu electrode 32 side, which has a large heat capacity, is suppressed. As a result, the thermal efficiency of the heating element 31 can also be improved.

第4図は、発熱体が捕型形状をしており、電極がC/C
コンポジットである場合の接続部を例示する分解斜視図
である。
Figure 4 shows that the heating element has a trap shape and the electrodes are C/C.
FIG. 3 is an exploded perspective view illustrating a connection portion when it is a composite.

図において、発熱体41は置型形状をし、その端子部4
1aは足状に引き出され、そこに透孔Jlbが形成され
ている。
In the figure, the heating element 41 has a stationary shape, and its terminal portion 4
1a is pulled out in the shape of a foot, and a through hole Jlb is formed therein.

tlfi42もc/Cコンポジットで構成されているが
、その比抵抗は発熱体41のそれよりも小さい値になっ
ている。そして、電極42の上端には透孔42aが形成
されている。
The tlfi 42 is also made of a c/c composite, but its specific resistance is smaller than that of the heating element 41. A through hole 42a is formed at the upper end of the electrode 42.

接続部材43はMo板から成り、その上部には、発熱体
の端子部41aを抱きかかえるような側板部43aが形
成され、またその下部には、上記側板部43aとは逆方
向に折曲され、電極42を抱きかかえられるような側板
部43bが形成されている。そしてMo板の上部には透
孔43cが穿設されている。
The connecting member 43 is made of a Mo board, and has a side plate part 43a formed at its upper part to hold the terminal part 41a of the heating element, and a side plate part 43a which is bent in the opposite direction to the side plate part 43a at its lower part. A side plate portion 43b that can hold the electrode 42 is formed. A through hole 43c is bored in the upper part of the Mo board.

接続に当っては、発熱体の端子部41aにM。When connecting, connect the terminal part 41a of the heating element to M.

板の上部と電極42の上部を互いの透孔41b。The upper part of the plate and the upper part of the electrode 42 are connected to each other through holes 41b.

43a、42aが合致するように重ね合せ、M。Overlap so that 43a and 42a match, M.

板の側板部43bを折曲して端子部41.aを抱きかか
えさせ、その状態で、Mo製の雄ねじ44を各透孔に嵌
挿し、それを雌ねじでねし止めすればよい。
By bending the side plate portion 43b of the plate, the terminal portion 41. A is held, and in this state, a male screw 44 made of Mo is inserted into each through hole, and then screwed down with a female screw.

この構造の場合、軟質なMO板43が介在するため、発
熱体の端子部41bと電極42との密着性が向上して両
者間の電気的接続状態は良好になるのみならず、Mo板
43とC/Cコンポジット電極42の併用によって、端
子部、llbの機械的強度が補強されるという効果も得
られる。
In this structure, since the soft MO plate 43 is interposed, the adhesion between the terminal portion 41b of the heating element and the electrode 42 is improved, and the electrical connection between them is not only improved, but also the Mo plate 43 The combined use of the C/C composite electrode 42 also provides the effect of reinforcing the mechanical strength of the terminal portion, llb.

(発明の効果) 以上の説明で明らかなように、本発明装置における接続
部は、C/Cコンポジット発熱体の端子部と電極とをC
/Cコンポジットよりも剛性の低い材料の接続部材を介
在させた状態で互いに接続しているので、C/Cコンポ
ジット発熱体と電極間の電気的接続は良好となり、接続
部の発熱は抑制される。また、この接続部材は軟質であ
るため緊締時に形状追随して応力集中を緩和することに
なり、その結果、接続部の機械的強度も補強される。さ
らには、この接続部材は、発熱体からの熱4゜ 流が電極側に流れ込むことを制限することもできるので
、発熱体の熱効率を高めるという効果も発揮する。
(Effects of the Invention) As is clear from the above explanation, the connection part in the device of the present invention connects the terminal part of the C/C composite heating element and the electrode to the C/C composite heating element.
Since they are connected to each other through a connecting member made of a material with lower rigidity than the C/C composite, the electrical connection between the C/C composite heating element and the electrode is good, and heat generation at the connection part is suppressed. . Furthermore, since this connecting member is soft, it follows the shape during tightening and relieves stress concentration, thereby reinforcing the mechanical strength of the connecting portion. Furthermore, this connecting member can also restrict the flow of 4° heat from the heating element to the electrode side, and therefore exhibits the effect of increasing the thermal efficiency of the heating element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、いずれも本発明方法で形成した接続
部の構造例を示す分解斜視図である。 11 21.31.41・・・C/Cコンポジット発熱
体、11.a、21a、31a、41a、・・・発熱体
の端子部、Ilb、14a、2]a、22a。 23a  23b、31a、32a、33a、33b。 41b  42a  43cm透孔、12・BNスタン
ド、1.2 a、  13 b・=ねじ穴、13 、1
5−M。 製のねじ、22・・・炭素質電極、24a、25a34
 a、  35 a、 44−雄ねじ、24b、25b
34b  35b・・・雌ねじ、33・・・Mo箔、4
2・・・C/Cコンポジントメト極、43・・・Mo板
、43a。 43b・・・側板部。 出願人  ハナワ熱電金属株式会社 出願人  東 し 株 式 会 社 代理人  弁理士  長 門 侃 ニ 第2 図
1 to 4 are exploded perspective views showing structural examples of connecting portions formed by the method of the present invention. 11 21.31.41...C/C composite heating element, 11. a, 21a, 31a, 41a, . . . terminal portion of heating element, Ilb, 14a, 2]a, 22a. 23a 23b, 31a, 32a, 33a, 33b. 41b 42a 43cm through hole, 12・BN stand, 1.2 a, 13 b・= screw hole, 13, 1
5-M. screws, 22... carbonaceous electrodes, 24a, 25a34
a, 35 a, 44-male thread, 24b, 25b
34b 35b... Female thread, 33... Mo foil, 4
2...C/C composite tomet electrode, 43...Mo plate, 43a. 43b...Side plate part. Applicant: Hanawa Thermoelectric Metals Co., Ltd. Applicant: Toshi Co., Ltd. Company Representative: Patent Attorney Kan Nagato Figure 2

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維/炭素コンポジット発熱体の端子部と電極との
間に、前記炭素繊維/炭素コンポジット発熱体よりも剛
性の低い耐熱導電材から成る接続部材を介在させ、前記
端子部と電極とを接続して成る接続部を有することを特
徴とする発熱装置。
A connecting member made of a heat-resistant conductive material having lower rigidity than the carbon fiber/carbon composite heating element is interposed between the terminal part of the carbon fiber/carbon composite heating element and the electrode to connect the terminal part and the electrode. A heat generating device characterized in that it has a connection part consisting of.
JP25391788A 1988-10-11 1988-10-11 Heat generating device Pending JPH02103885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25391788A JPH02103885A (en) 1988-10-11 1988-10-11 Heat generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25391788A JPH02103885A (en) 1988-10-11 1988-10-11 Heat generating device

Publications (1)

Publication Number Publication Date
JPH02103885A true JPH02103885A (en) 1990-04-16

Family

ID=17257828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25391788A Pending JPH02103885A (en) 1988-10-11 1988-10-11 Heat generating device

Country Status (1)

Country Link
JP (1) JPH02103885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395096B2 (en) 2009-02-05 2013-03-12 Sandvik Thermal Process, Inc. Precision strip heating element
WO2015016070A1 (en) * 2013-07-31 2015-02-05 イビデン株式会社 Graphite structure, graphite heater, method for producing graphite structure, and method for producing graphite heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395096B2 (en) 2009-02-05 2013-03-12 Sandvik Thermal Process, Inc. Precision strip heating element
WO2015016070A1 (en) * 2013-07-31 2015-02-05 イビデン株式会社 Graphite structure, graphite heater, method for producing graphite structure, and method for producing graphite heater
JP2015030626A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Graphite structure, graphite heater, manufacturing method of graphite structure, and manufacturing method of graphite heater

Similar Documents

Publication Publication Date Title
US11414321B2 (en) Carbon nanotube composite material and method for producing carbon nanotube composite material
Savage The properties of carbon-carbon composites
CN102822119A (en) Carbon/carbon composite material and method of manufacture for same
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
EP2289861A1 (en) Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof
JPH02103885A (en) Heat generating device
JPS6332863A (en) Carbon-graphite reservoir layer and manufacture of the same
JP2628879B2 (en) Surface heating element made of carbon fiber / carbon composite
JP3900947B2 (en) Manufacturing method of fuel cell separator, fuel cell separator and fuel cell
JP2001079977A (en) Composite body and its manufacture
JP2009043672A (en) Conductive carbon composite material mixed with carbon nanotube, metal solder material, conductive material, and semiconductive material
JP3015806B2 (en) Electric resistance heating device
JPH02114483A (en) Conductive connecting member of heating body
CN113292352B (en) Preparation method of unidirectional high-thermal-conductivity carbon/carbon composite material
JP3003935B2 (en) Molded heat insulating material and its manufacturing method
JP2620270B2 (en) Heating equipment
JP2648349B2 (en) Bonding method of carbon fiber / carbon composite member
EP0806285A2 (en) Fiber structure for fiber reinforced composite material and method of making fiber reinforced composite material
KR20210110612A (en) Methods of manufacturing composites
JPH10121371A (en) Fiber structure for fiber-reinforced composite material and production of fiber reinforced composite material
JP2008184655A (en) Carbon fiber composite metal material
Fergus et al. Refractory metals, ceramics, and composites for high-temperature structural and functional applications
JP3036039B2 (en) Graphite block and method of manufacturing the same
JP7320578B2 (en) Screw part made of two-dimensional carbon/carbon composite material laminated with anisotropic nonwoven fabric
JPH0314665A (en) High density felt made of carbon fiber and its production