JPH0210380B2 - - Google Patents

Info

Publication number
JPH0210380B2
JPH0210380B2 JP8413680A JP8413680A JPH0210380B2 JP H0210380 B2 JPH0210380 B2 JP H0210380B2 JP 8413680 A JP8413680 A JP 8413680A JP 8413680 A JP8413680 A JP 8413680A JP H0210380 B2 JPH0210380 B2 JP H0210380B2
Authority
JP
Japan
Prior art keywords
solution
guanidine
reaction
aqueous
sodium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8413680A
Other languages
Japanese (ja)
Other versions
JPS578447A (en
Inventor
Toshio Kinoshita
Yayoi Hiraga
Yasuo Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8413680A priority Critical patent/JPS578447A/en
Publication of JPS578447A publication Critical patent/JPS578447A/en
Publication of JPH0210380B2 publication Critical patent/JPH0210380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はグアニジン誘導体の分析法およびそ
の分析装置に関する。 近来、グアニジン誘導体は人体の循環器、消化
器、呼吸器、造血器、神経系に多彩な尿毒症症状
をひきおこす尿毒素として注目されている。従つ
て腎機能検査のため、生体液中のグアニジン誘導
体の分析の重要性が一層高まつている。従来この
分析法としては次のような方法が用いられてき
た。 即ち試料液を強酸性陽イオン交換樹脂を充填し
た内径6〜8mm、ながさ30cm程度のカラムを用い
る液体クロマトグラフイーに付して各グアニジン
誘導体に溶離する。次いでこの溶離液を発蛍光化
反応部の内径0.7〜1mmの反応コイル内でアルカ
リ溶液中9,10―フエナンスレンキノン(PQ)
と反応させた後、蛍光分析法によつて分析され
る。 しかし、この従来法は分析時間が1〜2時間と
いうような長時間を要し、ルーチン分析には適用
しにくい。また反応試薬のPQは水溶性でないの
でエタノールやジメチルホルムアミドに溶解して
使用されるが、溶離液と混合するとしばしば析出
物を生じ分析が中断される。 この発明は上記のごとき欠点を解消するために
なされたものであつて微量のグアニジン誘導体を
含有する試料を高速液体クロマトグラフイに付
し、その溶離液に水酸化ナトリウム水溶液次いで
ニンヒドリン水溶液を連続的に添加して反応さ
せ、その反応液に励起光を照射して発蛍光させ、
その蛍光強度を測定することによりグアニジン誘
導体を定量することを特徴とするグアニジン誘導
体の分析法;ならびに高速液体クロマトグラフ、
該クロマトグラフからの溶離液の発蛍光化反応部
および蛍光強度測定部とが順に連結してなり、高
速液体クロマトグラフのカラムは内径が5mm以下
で長さが5cm以下でありかつ粒径約5μmの強酸
性陽イオン交換樹脂が充填され、発蛍光化反応部
の反応コイルが内径0.3mm以下であり、該反応部
の前に水酸化ナトリウム水溶液の注入手段および
ニンヒドリン水溶液の注入手段を具備するグアニ
ジン誘導体の分析装置を提供するものである。 この発明の特徴は、グアニジン誘導体の発蛍光
化試薬として、まず水酸化ナトリウム水溶液を添
加した後従来用いられていなかつたニンヒドリン
水溶液を添加して用いること、高速液体クロマト
グラフのカラムは内径および長さが極めて小さく
かつ充填される強酸性陽イオン交換樹脂の粒径が
小さいこと、および発蛍光化反応部の反応コイル
の内径が小さいことである。 またこの発明によれば、以下で詳しく説明する
がグアニジン誘導体を短時間で感度よく定量する
ことができる。また溶離液には水酸化ナトリウム
水溶液を加えてからニンヒドリン溶液を添加して
反応させるので通常のアミノ酸は発蛍光化しな
い。また発蛍光化試薬の水酸化ナトリウムおよび
ニンヒドリンは水溶性なので析生物が発生して分
析が中断されるということがない。なお従来法で
は、特に生体液中に存在し尿毒素として注目され
ているクレアチニン、クレアチンの中クレアチニ
ンしか定量できなかつたが、この発明によればク
レアチンも定量できる。さらに分離カラムの内径
および長さが小さいので経済的にも有利であり、
樹脂の出し入れが容易である。 従つて、この発明は特に生体液中のグアニジン
誘導体の臨床試験定量法として極めて優れた発明
といえる。 この発明における微量のグアニジン誘導体を含
有する試料とは、血清、尿、潅流液等の生体液等
が挙げられる。またこの発明においてグアニジン
誘導体と称しているものの中にはグアニジン
(G)、メチルグアニジン(MG)、グアニジノ酢
酸(GAA)、グアニジノプロピオン酸(GPA)
およびグアニジノ酪酸(GBA)、グアニジノコハ
ク酸(GSA)の外に、グアニジン関連物質のク
レアチン(CR)、クレアチニン(CRN)および
アルギニン(ARG)も含まれる。 この発明では試料が生体液試料であれば一般に
脱蛋白処理したものが用いられる。 この試料は、まず高速液体クロマトグラフイー
に付される。そのカラムとしては内径が5mm以下
で長さが50mm以下のもので、粒径が約5μmの強
酸性陽イオン交換樹脂を充填したものが用いられ
る。また移動相としてはクエン酸ナトリウムの水
溶液が用いられ、一般に濃度を順次変化させて傾
斜溶離が行われ、カラムの温度は約50℃である。 次に上記高速液体クロマトグラフから溶出する
溶離液にまず水酸化ナトリウム水溶液を添加し、
次いでニンヒドリン水溶液を添加して反応させ
る。水酸化ナトリウム水溶液は0.75〜1.0規定、
ニンヒドリン水溶液は0.4%以上の濃度のものが
用いられる。次いでこの混合液は発蛍光反応部の
反応コイル(内径0.3mm以下)に送られ約50℃で
発蛍光化反応が行われる。次いで蛍光光度計に送
られ蛍光強度が測定される。 第1図にこの発明の分析装置の一実施例の流路
図を示した。即ち1はステツプワイズグラジエン
ト装置、2は高速液体クロマトグラフ用送液ポン
プ、3は試料導入口、4はカラム、5は水酸化ナ
トリウム水溶液、7はニンヒドリン水溶液、6お
よび8は反応試薬送液ポンプ、9は発蛍光化反応
部、10は反応コイルおよび11は蛍光光度計を
示す。 次にこの発明を実験例および実施例によつて詳
しく説明する。 実験例 1 (発蛍光化反応条件の検討) グアニジン誘導体の水溶液について発蛍光化反
応条件をを検討した結果を述べる。 (1) 水酸化ナトリウム水溶液濃度の影響 MGおよびGSAそれぞれ1nmolおよび
100pmol水溶液の試料について検討した。 第1図において、カラム4には何も充填しな
いまゝで0.15規定のクエン酸ナトリウム水溶液
の移動相を0.7ml/分の流速でで流しながら、
試料導入口3から上記試料を注入した。次いで
種々の濃度の水酸化ナトリウム水溶液を0.6
ml/分の流量で注入した後、0.6%濃度のニン
ヒドリン水溶液を0.4ml/分の流量で注入し、
50℃に保持した内径0.25mm長さ10mの反応コイ
ル中で反応させ、次いで蛍光強度を測定し、水
酸化ナトリウム水溶液濃度の影響を調べた。
MGおよびGSAの場合の測定結果を第2図と第
3図に示した。その結果、水酸化ナトリウム水
溶液の濃度は0.75〜1.0規定が適切なことが分
かつた。 (2) ニンヒドリン水溶液濃度の影響 MGの1nmolおよび100pmol水溶液の試料に
ついて検討した。 前記(1)の実験において、0.75規定の水酸化ナ
トリウム水溶液と各種濃度のニンヒドリン水溶
液を用いる以外同様の実験を行いニンヒドリン
水溶液濃度の影響を調べた。結果を第4図に示
したが、ニンヒドリン水溶液の濃度は0.4%以
上必要なことが分かる。 (3) 発蛍光化反応温度の影響 MGの1nmolおよび100pmol水溶液について
検討した。 前記実験(1)において水酸化ナトリウム水溶液
濃度を0.75規定とし、反応温度を変えること以
外同様の実験を行い反応温度の影響を調べた。
結果を第5図に示したが反応温度は50℃が適切
なことが分かる。 実験例 2 (検量線の作製) GSAおよびMGの各種濃度の水溶液を作製し
た。 これらの各試料液について、下記の条件下で実
験例1と同様にして蛍光強度を測定した。 0.15規定クエン酸ナトリウム水溶液の流量:
0.7ml/分 水酸化ナトリウム水溶液濃度および流量:1規
定、0.6ml/分 ニンヒドリン水溶液濃度および流量:0.6%、
0.6ml/分 発蛍光化反応温度:50℃ 結果を第6図に示したが測定値の変動係数は次
のとおりであつた。 濃 度 変動係数(%) GSA 1nmol 1.19 〃 100pmol 2.12 MG 1nmol 2.42 〃 100pmol 2.54 上記の結果からグアニジン誘導体の10pmol程
度が検出可能でかつ1nmolまで良好な直線性が得
られまたよい再現性が得られていることが分か
る。 実験例 3 (高速液体クロマトグラフのカラムの検討) GSA,GAA,GPA,GBA,ARGおよびMG
の濃度が1nmolである混合水溶液について各化合
物の溶離挙動を調べるために下記条件下で実験し
た。 (1) 分析機器 移動相送液ポンプ:島津LC―3A型 高速液体クロマトグラフカラム:内径4mm、長さ
5cm、50℃、粒径5μmの強酸性陽イオン交
換樹脂充填 発蛍光化反応部のコイル:テフロン製内径0.25
mm、長さ10m 蛍光光度計:島津RF―500LCA型(Em500nm,
Ex395nm) (2) 発蛍光化反応条件 水酸化ナトリウム水溶液濃度と流量:0.75規定、
0.6ml/分 ニンヒドリン水溶液濃度と流量:0.6%,0.4ml/
分 反応温度:50℃ (3) 移動相(流量0.7ml/分) 0.2規定のクエン酸ナトリウム水溶液 上記移動相のPHを3.5,4.8,6.0,11.4と変化さ
せて溶離し、それぞれの容量比(k′)を測定し結
果を第7図に示した。 上記の結果から、この発明によれば移動相の一
つのPH領域でたかだか2つのグアニジン誘導体が
溶離できればよいことは明らかである。従つて充
填するイオン交換樹脂の粒径を小さくしておけ
ば、カラムの内径および長さを小さくすることが
可能であり、その結果分析時間が短かくできるこ
とが分かつた。 実施例 1 G,MG,GAA,GPA,GBA,GSA,ARG
およびCRの濃度が各々1nmol,CRNの濃度が3μ
g/の試料液を下記分析機器を用いて下記分析
条件で分析した。 (1) 分析機器 ステツプワイズグラジエント装置:島津SGR―
1A型 移動相送液ポンプ:島津LC―3A型 高速液体クロマトグラフカラム:内径4.6mm、長
さ3.8cm、50℃、粒径5μmの強酸性陽イオン
交換樹脂充填 発蛍光化反応部のコイル:テフロン製内径0.25
mm、長さ10m 蛍光光度計:島津RF―500LCA型(Em500nm,
Ex395nm) (2) 発蛍光化反応条件 水酸化ナトリウム水溶液濃度と流量:0.75規定、
0.6ml/分 ニンヒドリン水溶液濃度と流量:0.6%、0.4ml/
分 反応温度:50℃ (3) 溶離プログラム(移動相流量0.7ml/分)
The present invention relates to a method for analyzing guanidine derivatives and an apparatus for analyzing the same. In recent years, guanidine derivatives have attracted attention as uremic toxins that cause various uremic symptoms in the human body's circulatory system, digestive system, respiratory system, hematopoietic system, and nervous system. Therefore, the importance of analyzing guanidine derivatives in biological fluids for testing renal function is increasing. Conventionally, the following methods have been used for this analysis. That is, the sample solution is subjected to liquid chromatography using a column packed with a strongly acidic cation exchange resin and having an inner diameter of 6 to 8 mm and a length of about 30 cm to elute each guanidine derivative. Next, this eluent was mixed with 9,10-phenanthrenequinone (PQ) in an alkaline solution in a reaction coil with an inner diameter of 0.7 to 1 mm in the fluorescent reaction section.
After reacting with the compound, it is analyzed by fluorescence analysis. However, this conventional method requires a long analysis time, such as 1 to 2 hours, and is difficult to apply to routine analysis. Furthermore, the reaction reagent PQ is not water-soluble, so it is used after being dissolved in ethanol or dimethylformamide, but when mixed with the eluent, a precipitate often forms, causing analysis to be interrupted. This invention was made in order to solve the above-mentioned drawbacks. A sample containing a trace amount of guanidine derivatives was subjected to high-performance liquid chromatography, and the eluent was successively mixed with an aqueous sodium hydroxide solution and then a ninhydrin aqueous solution. The reaction solution is irradiated with excitation light to cause it to emit fluorescence.
A method for analyzing guanidine derivatives, which is characterized by quantifying the guanidine derivative by measuring its fluorescence intensity; and high-performance liquid chromatography;
A fluorescent reaction section and a fluorescence intensity measuring section for the eluate from the chromatograph are connected in sequence, and the column of the high performance liquid chromatograph has an inner diameter of 5 mm or less, a length of 5 cm or less, and a particle size of about 5 μm. The guanidine is filled with a strongly acidic cation exchange resin, the reaction coil of the fluorescent reaction section has an inner diameter of 0.3 mm or less, and is equipped with an injection means for an aqueous sodium hydroxide solution and an injection means for an aqueous ninhydrin solution in front of the reaction section. The present invention provides a derivative analysis device. The features of this invention are that as a reagent for making guanidine derivatives fluoresce, first an aqueous sodium hydroxide solution is added, and then an aqueous ninhydrin solution, which has not been used in the past, is added, and the column of high performance liquid chromatograph has an inner diameter and a length. is extremely small, the particle size of the strongly acidic cation exchange resin to be filled is small, and the inner diameter of the reaction coil in the fluorescent reaction section is small. Further, according to the present invention, as will be explained in detail below, guanidine derivatives can be quantified in a short time and with high sensitivity. Furthermore, since an aqueous sodium hydroxide solution is added to the eluent and then a ninhydrin solution is added for reaction, ordinary amino acids do not fluoresce. Furthermore, since the fluorogenic reagents sodium hydroxide and ninhydrin are water-soluble, the analysis will not be interrupted due to the generation of precipitating organisms. In addition, with the conventional method, only creatinine, which is present in biological fluids and attracts attention as a uremic toxin, and creatinine, which is the middle of creatine, could be quantified, but according to the present invention, creatine can also be quantified. Furthermore, the separation column is economically advantageous because its inner diameter and length are small.
Easy to put in and take out resin. Therefore, this invention can be said to be particularly excellent as a method for quantifying guanidine derivatives in biological fluids in clinical trials. Samples containing trace amounts of guanidine derivatives in the present invention include biological fluids such as serum, urine, and perfusion fluid. In addition, guanidine derivatives referred to in this invention include guanidine (G), methylguanidine (MG), guanidinoacetic acid (GAA), and guanidinopropionic acid (GPA).
In addition to guanidinobutyric acid (GBA) and guanidinosuccinic acid (GSA), the guanidine-related substances creatine (CR), creatinine (CRN), and arginine (ARG) are also included. In this invention, if the sample is a biological fluid sample, a sample that has been deproteinized is generally used. This sample is first subjected to high performance liquid chromatography. The column used has an inner diameter of 5 mm or less, a length of 50 mm or less, and is filled with a strongly acidic cation exchange resin having a particle size of about 5 μm. An aqueous solution of sodium citrate is used as the mobile phase, and gradient elution is generally performed by sequentially changing the concentration, and the column temperature is about 50°C. Next, first add an aqueous sodium hydroxide solution to the eluent eluted from the high performance liquid chromatograph,
Next, an aqueous ninhydrin solution is added and reacted. Sodium hydroxide aqueous solution is 0.75 to 1.0 normal,
The ninhydrin aqueous solution used has a concentration of 0.4% or more. Next, this mixed solution is sent to the reaction coil (inner diameter 0.3 mm or less) of the fluorescence reaction section, where a fluorescence reaction is carried out at approximately 50°C. It is then sent to a fluorometer and the fluorescence intensity is measured. FIG. 1 shows a flow path diagram of an embodiment of the analyzer of the present invention. In other words, 1 is a stepwise gradient device, 2 is a high-performance liquid chromatography pump, 3 is a sample inlet, 4 is a column, 5 is an aqueous sodium hydroxide solution, 7 is an aqueous ninhydrin solution, and 6 and 8 are reaction reagent pumps. , 9 is a fluorescent reaction section, 10 is a reaction coil, and 11 is a fluorometer. Next, the present invention will be explained in detail using experimental examples and examples. Experimental Example 1 (Study of fluorescence reaction conditions) The results of examining the fluorescence reaction conditions for an aqueous solution of a guanidine derivative will be described. (1) Effect of sodium hydroxide aqueous solution concentration: 1 nmol and 1 nmol each of MG and GSA
A sample of 100 pmol aqueous solution was investigated. In Fig. 1, while column 4 was not filled with anything and a mobile phase of 0.15N sodium citrate aqueous solution was flowing at a flow rate of 0.7ml/min,
The above sample was injected from the sample inlet 3. Next, aqueous sodium hydroxide solutions of various concentrations were added to 0.6
After injecting at a flow rate of 0.6% concentration ninhydrin at a flow rate of 0.4 ml/min,
The reaction was carried out in a reaction coil with an inner diameter of 0.25 mm and a length of 10 m maintained at 50°C, and then the fluorescence intensity was measured to investigate the influence of the concentration of the sodium hydroxide aqueous solution.
The measurement results for MG and GSA are shown in Figures 2 and 3. As a result, it was found that the appropriate concentration of the sodium hydroxide aqueous solution was 0.75 to 1.0 normal. (2) Effect of ninhydrin aqueous solution concentration Samples of 1 nmol and 100 pmol aqueous solutions of MG were studied. In the experiment (1) above, an experiment similar to the above was conducted except that a 0.75N aqueous sodium hydroxide solution and an aqueous ninhydrin solution of various concentrations were used to investigate the influence of the concentration of an aqueous ninhydrin solution. The results are shown in Figure 4, and it can be seen that the concentration of the ninhydrin aqueous solution needs to be 0.4% or more. (3) Effect of fluorescence reaction temperature 1 nmol and 100 pmol aqueous solutions of MG were investigated. An experiment similar to the above experiment (1) was conducted except that the concentration of the aqueous sodium hydroxide solution was set to 0.75 normal and the reaction temperature was changed to examine the influence of the reaction temperature.
The results are shown in Figure 5, and it can be seen that the appropriate reaction temperature is 50°C. Experimental Example 2 (Preparation of calibration curve) Aqueous solutions of GSA and MG at various concentrations were prepared. The fluorescence intensity of each of these sample solutions was measured in the same manner as in Experimental Example 1 under the following conditions. Flow rate of 0.15N sodium citrate aqueous solution:
0.7ml/min Sodium hydroxide aqueous solution concentration and flow rate: 1 normal, 0.6ml/min Ninhydrin aqueous solution concentration and flow rate: 0.6%,
0.6ml/min Fluorescent reaction temperature: 50°C The results are shown in Figure 6, and the coefficient of variation of the measured values was as follows. Concentration Coefficient of variation (%) GSA 1nmol 1.19 〃 100pmol 2.12 MG 1nmol 2.42 〃 100pmol 2.54 From the above results, it was found that approximately 10pmol of the guanidine derivative was detectable, good linearity was obtained down to 1nmol, and good reproducibility was obtained. I know that there is. Experimental example 3 (Study of columns for high performance liquid chromatography) GSA, GAA, GPA, GBA, ARG and MG
An experiment was conducted under the following conditions to investigate the elution behavior of each compound in a mixed aqueous solution with a concentration of 1 nmol. (1) Analytical equipment Mobile phase liquid pump: Shimadzu LC-3A high performance liquid chromatography column: inner diameter 4 mm, length 5 cm, 50°C, coil of fluorescence reaction section filled with strongly acidic cation exchange resin with particle size 5 μm : Teflon inner diameter 0.25
mm, length 10m Fluorometer: Shimadzu RF-500LCA model (Em500nm,
Ex395nm) (2) Fluorescence reaction conditions Sodium hydroxide aqueous solution concentration and flow rate: 0.75 standard,
0.6ml/min Ninhydrin aqueous solution concentration and flow rate: 0.6%, 0.4ml/min
Minute reaction temperature: 50℃ (3) Mobile phase (flow rate 0.7ml/min) 0.2N sodium citrate aqueous solution Elute by changing the pH of the above mobile phase to 3.5, 4.8, 6.0, 11.4, and each volume ratio ( k') was measured and the results are shown in FIG. From the above results, it is clear that according to the present invention, it is sufficient that at most two guanidine derivatives can be eluted in one pH range of the mobile phase. Therefore, it was found that by reducing the particle size of the ion exchange resin packed, it is possible to reduce the inner diameter and length of the column, and as a result, the analysis time can be shortened. Example 1 G, MG, GAA, GPA, GBA, GSA, ARG
and CR concentration is 1 nmol each, CRN concentration is 3μ
g/g of the sample liquid was analyzed using the following analytical equipment under the following analytical conditions. (1) Analytical equipment Stepwise gradient device: Shimadzu SGR
Type 1A mobile phase liquid pump: Shimadzu LC-3A type high performance liquid chromatography column: Internal diameter 4.6 mm, length 3.8 cm, 50°C, strongly acidic cation exchange resin filled with particle size 5 μm Coil of fluorescent reaction section: Teflon inner diameter 0.25
mm, length 10m Fluorometer: Shimadzu RF-500LCA model (Em500nm,
(Ex395nm) (2) Fluorescence reaction conditions Sodium hydroxide aqueous solution concentration and flow rate: 0.75 standard,
0.6ml/min Ninhydrin aqueous solution concentration and flow rate: 0.6%, 0.4ml/min
Min reaction temperature: 50℃ (3) Elution program (mobile phase flow rate 0.7ml/min)

【表】【table】

【表】 得られた分析チヤートを第8図に示したが、良
好な感度で32分という短時間で測定できた。
[Table] The analysis chart obtained is shown in Figure 8, and the measurement was possible in a short time of 32 minutes with good sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の分析装置の一実施例の流路
図、第2図および第3図はそれぞれ、MGおよび
GSA水溶液試料についてのこの発明の分析法に
おける水酸化ナトリウム水溶液の影響を示すグラ
フ、第4図および第5図はそれぞれ、MG水溶液
試料についてのこの発明の分析法におけるニンヒ
ドリン水溶液濃度および発蛍光化反応温度の影響
を示すグラフ、第6図はMGおよびMSG水溶液
についての検量線、第7図は、微量グアニジン誘
導体混合水溶液の移動相PHとk′(容量比)との関
係を示すグラフ、第8図は、微量のグアニジン誘
導体およびグアニジン関連物質混合液のこの発明
の分析法によるクロマトグラムである。
FIG. 1 is a flow path diagram of an embodiment of the analyzer of the present invention, and FIGS. 2 and 3 are MG and MG, respectively.
Graphs showing the influence of the sodium hydroxide aqueous solution in the analytical method of this invention for a GSA aqueous solution sample, FIGS. Graph showing the influence of temperature, Figure 6 is a calibration curve for MG and MSG aqueous solutions, Figure 7 is a graph showing the relationship between mobile phase PH and k' (volume ratio) of a trace amount guanidine derivative mixed aqueous solution, Figure 8 The figure is a chromatogram of a trace amount of a mixture of guanidine derivatives and guanidine-related substances obtained by the analytical method of the present invention.

Claims (1)

【特許請求の範囲】 1 微量のグアニジン誘導体類を含有する試料
を、強酸性陽イオン交換樹脂を用いPH値を3から
12へと変化させた移動相で傾斜溶離する高速液体
クロマトグラフイに付して各グアニジン誘導体に
分離し、その溶離液に水酸化ナトリウム水溶液次
いでニンヒドリン水溶液を連続的に添加して反応
させ、その反応液に励起光を照射して発蛍光さ
せ、その蛍光強度を測定することにより各グアニ
ジン誘導体を定量することを特徴とするグアニジ
ン誘導体の分析法。 2 PH値を3から12へと変化させた移動相を供給
する移動相傾斜供給部、高速液体クロマトグラ
フ、該クロマトグラフからの溶離液の発蛍光化反
応部および蛍光強度測定部とが順に連結してな
り、高速液体クロマトグラフのカラムは内径が5
mm以下で長さが5cm以下でありかつ粒径約5μm
の強酸性陽イオン交換樹脂が充填され、発蛍光化
反応部の反応コイルが内径0.3mm以下であり、該
反応部の前に水酸化ナトリウム水溶液の注入手段
およびニンヒドリン水溶液の注入手段を具備する
グアニジン誘導体の分析装置。
[Claims] 1. A sample containing a trace amount of guanidine derivatives is treated with a pH value of 3 to 3 using a strongly acidic cation exchange resin.
Each guanidine derivative was separated by high performance liquid chromatography using a gradient elution with a mobile phase changed to 12, and a sodium hydroxide aqueous solution and a ninhydrin aqueous solution were continuously added to the eluent to react. A method for analyzing guanidine derivatives, which comprises irradiating a reaction solution with excitation light to cause it to emit fluorescence, and quantifying each guanidine derivative by measuring the intensity of the fluorescence. 2. A mobile phase gradient supply unit that supplies a mobile phase with a pH value changed from 3 to 12, a high performance liquid chromatograph, a fluorescent reaction unit for eluent from the chromatograph, and a fluorescence intensity measurement unit are connected in sequence. The inner diameter of a high-performance liquid chromatograph column is 5.
mm or less, length is 5cm or less, and particle size is approximately 5μm
The guanidine is filled with a strongly acidic cation exchange resin, the reaction coil of the fluorescent reaction section has an inner diameter of 0.3 mm or less, and is equipped with an injection means for an aqueous sodium hydroxide solution and an injection means for an aqueous ninhydrin solution in front of the reaction section. Analyzer for derivatives.
JP8413680A 1980-06-20 1980-06-20 Method and apparatus for analysis of guanidine derivative Granted JPS578447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8413680A JPS578447A (en) 1980-06-20 1980-06-20 Method and apparatus for analysis of guanidine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8413680A JPS578447A (en) 1980-06-20 1980-06-20 Method and apparatus for analysis of guanidine derivative

Publications (2)

Publication Number Publication Date
JPS578447A JPS578447A (en) 1982-01-16
JPH0210380B2 true JPH0210380B2 (en) 1990-03-07

Family

ID=13822073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8413680A Granted JPS578447A (en) 1980-06-20 1980-06-20 Method and apparatus for analysis of guanidine derivative

Country Status (1)

Country Link
JP (1) JPS578447A (en)

Also Published As

Publication number Publication date
JPS578447A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
Marton et al. More sensitive automated detection of polyamines in physiological fluids and tissue extracts with o-phthalaldehyde
Rigas liquid chromatography—post-column derivatization for amino acid analysis: strategies, instrumentation, and applications
Su et al. Analysis of alendronate in human urine and plasma by magnetic solid‐phase extraction and capillary electrophoresis with fluorescence detection
JP2782470B2 (en) Glycohemoglobin separation method and separation apparatus and separation column
CN112782328A (en) Method and kit for detecting catecholamine and metabolites thereof in urine and application of kit
Doetsch et al. Determination of total urinary protein, combining Lowry sensitivity and biuret specificity
Koizumi et al. Influence of glycosylation on the drug binding of human serum albumin
Jung et al. A semi-micromethod for the determination of serum iron and iron-binding capacity without deproteinization
Han et al. Determination of tetracycline, chlortetracycline and oxytetracycline by flow injection with inhibitory chemiluminescence detection using copper (II) as a probe ion
Scott et al. Advances in the application of high resolution liquid chromatography to the separation of complex biological mixtures
JPH0210380B2 (en)
Lustig et al. Capability of flatbed electrophoresis (IEF and native PAGE) combined with sector field ICP-MS and autoradiography for the speciation of Cr, Ga, In, Pt and V in incubated serum samples
Yamamoto et al. Quantitative analysis of methylguanidine and guanidine in physiologic fluids by high-performance liquid chromatography—fluorescence detection method
Mrštná et al. Advances in kynurenine analysis
JPH0650953A (en) Glutathione analysis method
McIntire Determination of histamine by chemical means
JPH0321863A (en) Method and apparatus for analyzing triethylene tetramine or the like
JPS5961777A (en) Analytical system of bile acid
Michalowski et al. Flow-injection chemiluminescence determination of epinephrine in pharmaceutical formulations using N-bromosuccinimide as oxidant
Kunesh et al. Adaptation of the zak-epstein automated micromethod for serum iron to determine iron-binding capacity and urinary iron
CN115754041B (en) Detection method and detection kit for taurine serving as eye protection substance in eye washing liquid
Higashidate et al. New high-speed fully automated guanidino compound analyzer
JP3704594B2 (en) Catecholamine analysis method
JPS5942450A (en) Qualitative and quantitative analysis of catechols
JP3435265B2 (en) Method for separating proteins having an isoelectric point of 3.3 or less