JPH02102902A - Pressure control device for hydraulic cylinder - Google Patents

Pressure control device for hydraulic cylinder

Info

Publication number
JPH02102902A
JPH02102902A JP63255869A JP25586988A JPH02102902A JP H02102902 A JPH02102902 A JP H02102902A JP 63255869 A JP63255869 A JP 63255869A JP 25586988 A JP25586988 A JP 25586988A JP H02102902 A JPH02102902 A JP H02102902A
Authority
JP
Japan
Prior art keywords
pressure
signal
controller
output
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63255869A
Other languages
Japanese (ja)
Other versions
JP2592111B2 (en
Inventor
Hajime Hamada
源 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63255869A priority Critical patent/JP2592111B2/en
Publication of JPH02102902A publication Critical patent/JPH02102902A/en
Application granted granted Critical
Publication of JP2592111B2 publication Critical patent/JP2592111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent generation of overshoot or undershoot of pressure by constituting the device to output the output signal from a controller only when the deviation value is within the prescribed range, and not to output the signal when it is beyond the range. CONSTITUTION:A signal ea which oil pressure in the oil chamber A of an injection cylinder detected with a pressure detector 17 is converted into a quantity of electricity, and the command value eset from a pressure command part 16 are always compared by means of a computing element 18 and the deviation signal eb is processed with a controller 19. The deviation signal eb and a feedforward signal ef are added with a computing element 21 and converted into electric current with an amplifier 22, a proportional electromagnetic pressure control valve 23 is driven by this current signal, and precise pressure control is performed. When the value of eset-ea=eb enters within the prescribed range K, following a certain function on a feedback effective range controller 35, an integral reset switch 33 and a feedback switch 34 are on and the feedback becomes effective.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油圧機器、例えば射出成形機の射出圧力の制
御に適用される油圧シリンダの圧力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure control device for a hydraulic cylinder, which is applied to control the injection pressure of a hydraulic device, for example, an injection molding machine.

(従来の技術) 基本的にはオープンループで使用するように設計された
、電気量に比例して油圧を制御する比例電磁式圧力制御
弁を使い、フィードフォワード信号にフィードバック信
号を加算して油圧シリンダの圧力制御を行なうことは、
例えば特開昭63−34302号公報により提案されて
いる。
(Prior technology) Basically, a proportional electromagnetic pressure control valve, which is designed to be used in an open loop and controls hydraulic pressure in proportion to the amount of electricity, is used, and a feedback signal is added to the feedforward signal to control hydraulic pressure. Controlling cylinder pressure is
For example, it has been proposed in Japanese Patent Application Laid-Open No. 63-34302.

第3図はその例を示し、この圧力制御装置では、スクリ
ュ位置検出器15により射出中のスクリュ1の位置が検
出され、スクリュ1が予め設定されて保圧切換位置に到
達すると、射出圧力指令器16に信号が出力され、同射
出圧力指令器16からは時間開数からなる射出圧力の指
令信号e□、が発せられる。
FIG. 3 shows an example of this. In this pressure control device, the screw position detector 15 detects the position of the screw 1 during injection, and when the screw 1 reaches the preset pressure holding switching position, the injection pressure command is A signal is output to the injection pressure controller 16, and the injection pressure command signal e□, which is a time fraction, is outputted from the injection pressure command device 16.

一方、油圧シリンダ5内の圧力は圧力検出器17により
常時検出されており、同検出信号e1は比較器18に送
られ、同比較器18では圧力検出器17の出力信号e、
を前記射出圧力指令r:116からの指令信号e s@
tから減算してその偏差e。
On the other hand, the pressure inside the hydraulic cylinder 5 is constantly detected by the pressure detector 17, and the detection signal e1 is sent to the comparator 18, which outputs the output signal e of the pressure detector 17,
The command signal e from the injection pressure command r:116 s@
Subtract the deviation e from t.

を演算する。制御器19′は前記偏差ebを入力し、P
ID制御(P−・・比例、I −積分、D・・・微分)
を行なう。
Calculate. The controller 19' inputs the deviation eb and calculates P
ID control (P-...proportional, I-integral, D...differential)
Do this.

また、射出圧力指令器16から出力される前記指令信号
es□は所定の関数に従って、フィードフォワード信号
e、を出力するフィードフォワード補償器20に入力さ
れ、前記制御器19′からの出力信号と前記フィードフ
ォワード信号e。
Further, the command signal es□ output from the injection pressure command device 16 is inputted to a feedforward compensator 20 that outputs a feedforward signal e, according to a predetermined function, and the output signal from the controller 19' and the Feedforward signal e.

が加算器21で加算され、同加算器21からの出力は増
幅器22により制御され、比例電磁式圧力制御弁23に
入力される。この比例電磁式圧力制御弁23では前記入
力に略比例して油圧シリンダ5の圧力を調節する。圧油
は油圧源24から油圧シリンダ5へと供給される。
are added by an adder 21, and the output from the adder 21 is controlled by an amplifier 22 and input to a proportional electromagnetic pressure control valve 23. This proportional electromagnetic pressure control valve 23 adjusts the pressure of the hydraulic cylinder 5 approximately in proportion to the input. Pressure oil is supplied from the hydraulic source 24 to the hydraulic cylinder 5.

しかして、上記フィードフォワード信号efを増幅器2
2を介して直接比例電磁式圧力制御弁23に入力すると
、油温変化の影ツや比例電磁式圧力制御弁の欠点である ■ 固体差や経年変化によるバラツキ ■ ヒステリシスによるバラツキ が発生することになり、前記フィードフォワード信号e
tだけでは、圧力指令値e、□と実際の圧力との間に差
が生じる。この差が生ずると比較器18の出力に偏差e
、が生じ、これを制御器19′の制御動作により補償し
た後、加算器21に加算し、フィードフォワード信号e
、が補正される。従って、前記制御器19′の働きによ
り射出圧力が指令射出圧力に一致する様に、すなわち、
偏差ebが零になる様にフィードバック制御されること
になる。
Thus, the feedforward signal ef is transferred to the amplifier 2.
2 directly to the proportional electromagnetic pressure control valve 23, the influence of oil temperature changes and the disadvantages of proportional electromagnetic pressure control valves (variations due to individual differences and aging) variations due to hysteresis will occur. and the feedforward signal e
With only t, a difference occurs between the pressure command value e, □ and the actual pressure. When this difference occurs, the output of the comparator 18 has a deviation e
, which is compensated by the control operation of the controller 19', is added to the adder 21, and the feedforward signal e
, is corrected. Therefore, by the action of the controller 19', the injection pressure is made to match the command injection pressure, that is,
Feedback control is performed so that the deviation eb becomes zero.

こうして、フィードフォワード量の過不足分についての
みフィードバック制御を行なうため、たとえば制御器1
9′を比例制御としてもオフセットはかなり小さくなり
、その結果フィードフォワードにより適応性が、フィー
ドバックによ・り定常特性が、オフセットが小さいため
制?11ゲインを下げることができることにより安定性
が、それぞれ改良されるようになる。
In this way, since feedback control is performed only for the excess or deficiency of the feedforward amount, for example, the controller 1
Even if 9' is proportionally controlled, the offset becomes quite small, resulting in adaptability due to feedforward, steady-state characteristics due to feedback, and control due to the small offset. By being able to lower the 11 gains, the stability is improved respectively.

なお、図中1はスクリュ、2はスクリュシリンダ、3は
ノズル、4はピストン、6はロッド、8は金型、9はキ
ャビティ、10は熔融樹脂、12は油圧モータ、13は
ホッパである。
In the figure, 1 is a screw, 2 is a screw cylinder, 3 is a nozzle, 4 is a piston, 6 is a rod, 8 is a mold, 9 is a cavity, 10 is a molten resin, 12 is a hydraulic motor, and 13 is a hopper.

(発明が解決しようとする課題) しかるに、圧油の流量と油圧を、その何れかが設定値を
超えようとするとき、それぞれに制御するような場合、
例えば第6図に示す如く、比例電磁式流量制御弁25と
比例電磁式圧力制御弁26を併用して射出成形機の射出
行程における射出速度(圧油流量)と射出圧力(油圧)
の各制御を行おうとする場合、第4図に示す如く圧力実
行値■が圧力設定値のより低いときは比例電磁式流量制
御弁25が有効に働いて速度側?D■がなされ、圧力実
行値Oが圧力設定値のに達すると比例電磁式圧力制御弁
26が有効に働き圧力制御0に切換わる。
(Problem to be Solved by the Invention) However, when the flow rate of pressure oil and the oil pressure are controlled separately when either of them is about to exceed a set value,
For example, as shown in FIG. 6, a proportional electromagnetic flow control valve 25 and a proportional electromagnetic pressure control valve 26 are used together to control the injection speed (pressure oil flow rate) and injection pressure (hydraulic pressure) during the injection stroke of an injection molding machine.
When attempting to perform each of the following controls, as shown in FIG. 4, when the actual pressure value ■ is lower than the pressure setting value, the proportional electromagnetic flow control valve 25 works effectively to control the speed side. When D■ is performed and the actual pressure value O reaches the pressure set value, the proportional electromagnetic pressure control valve 26 effectively operates and switches to pressure control 0.

こうした制御に上記分軸に開示された圧力制御装置を適
用すると、速度制御■の区間における圧力設定値Oと圧
力実行値Oの偏差のために、圧力制御lOの区間に移行
する時点で比例電磁式圧力制御弁26に送られる指令信
号は設定値よりもかなり大となり、第4図に一点鎖線で
示す如く実行値に大きな圧力オーバシュート■が発生す
る。これは、第3図に符号19’で示す制御器に積分要
素Iを加える必要があるため、このままでは如何にして
も避けることのできないものである。
When the pressure control device disclosed in the above-mentioned minute axis is applied to such control, due to the deviation between the pressure set value O and the pressure actual value O in the speed control section 1, the proportional electromagnetic The command signal sent to the formula pressure control valve 26 is considerably larger than the set value, and a large pressure overshoot (2) occurs in the actual value as shown by the dashed line in FIG. This cannot be avoided in any way because it is necessary to add an integral element I to the controller indicated by reference numeral 19' in FIG.

また、圧力設定を多段に変更する必要があり、その設定
値間の差が大きい場合、例えば第5図に示す例の如く射
出圧力が高い設定値(圧力設定値1段の)から低い設定
値(圧力設定2段■)へと切換ねるとき、応答が遅れる
ため第6図に符号26で示す比例電磁式圧力制御弁には
設定された指令信号より可成り低い信号が加えられ、そ
の回復に時間がかか)で圧力のアンダシュート0が発生
する。このアンダシュートOの発生原因も第3図の制御
器19′に積分要素Iが加わっているためであり、圧力
下降時の圧力実行値Oと圧力設定値のとの偏差が積分さ
れ、これを回復するための時間がかかるためである。
In addition, if it is necessary to change the pressure setting in multiple stages and the difference between the set values is large, for example, as in the example shown in Fig. When switching to (pressure setting 2 stage ■), the response is delayed, so a signal considerably lower than the set command signal is applied to the proportional electromagnetic pressure control valve shown with reference numeral 26 in Fig. 6, and the recovery is delayed. 0 pressure undershoot occurs. The cause of this undershoot O is also due to the addition of an integral element I to the controller 19' in Fig. 3, which integrates the deviation between the actual pressure value O and the pressure set value when the pressure decreases. This is because it takes time to recover.

従って本発明の目的は、比例電磁式圧力制御弁を使って
、上記積分要素による無用な影響を極力排除し、圧力制
御の開始点やその切換点において圧力のオーバシュート
或いはアンダシュートが発生しない油圧シリンダの圧力
側411装置を提供することにある。
Therefore, an object of the present invention is to use a proportional electromagnetic pressure control valve to eliminate as much as possible the unnecessary influence of the above-mentioned integral element, and to maintain a hydraulic pressure that does not cause pressure overshoot or undershoot at the starting point or switching point of pressure control. The object of the present invention is to provide a pressure side 411 device for a cylinder.

(課題を解決するための手段) この目的を達成するため、本発明は圧力指令器の指令信
号を受けてフィードフォワード信号を出力するフィード
フォワード補償器と、前記指令信号と圧力検出器の出力
信号との偏差信号を出力しフィードバック制御を行う制
御器と、前記フィードフォワード信号と前記制御器から
の出力信号とを加算し、油圧シリンダの圧力を調節する
比例電磁式圧力制御弁とからなる油圧シリンダの圧力制
御装置において、前記制御器からの出力信号は、偏差値
が所定の範囲にあるときのみ出力され、その範囲外にあ
るときは出力されないことを構成とし、これを上記課題
の解決手段とするものである。
(Means for Solving the Problem) In order to achieve this object, the present invention provides a feedforward compensator that outputs a feedforward signal in response to a command signal from a pressure command device, and a feedforward compensator that receives a command signal from a pressure command device and outputs a feedforward signal, and a A hydraulic cylinder consisting of a controller that performs feedback control by outputting a deviation signal from the controller, and a proportional solenoid pressure control valve that adds the feedforward signal and the output signal from the controller to adjust the pressure of the hydraulic cylinder. In the pressure control device, the output signal from the controller is configured to be output only when the deviation value is within a predetermined range, and not output when it is outside the range, and this is a means for solving the above problem. It is something to do.

(作用) 基本的にフィードフォワード信号のみで機能する制御系
において、設定値と実行値の偏差があるレベルの範囲内
にある時にのみ、フィードバックをかけることにより、
実行値と設定値の偏差が大きい時のフィードバック制御
器の積分要素による偏差信号のたまりを排除する。尚、
フィードバックを切っている区間は、当然積分はリセッ
トされている。
(Function) In a control system that basically functions only with feedforward signals, by applying feedback only when the deviation between the set value and the actual value is within a certain level,
Eliminates the accumulation of deviation signals due to the integral element of the feedback controller when the deviation between the actual value and the set value is large. still,
Naturally, the integral is reset in the section where feedback is turned off.

(実施例) 以下、本発明の実施例を図面に従って説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る圧力制御装置を射出成形機の射出
シリンダに適用した場合の制御′fIIブロック線図を
示し、第2図はその要部である制御器19の実施例を拡
大して示している。
FIG. 1 shows a control 'fII block diagram when the pressure control device according to the present invention is applied to an injection cylinder of an injection molding machine, and FIG. 2 shows an enlarged example of the controller 19, which is the main part. It shows.

図中1は射出成形機のスクリュであり、同スクリュ1の
回転によりホッパ13内の粒状の樹脂ペレットが送られ
ながら溶融し、この溶融樹脂lOを金型8内のキャビテ
ィ9にノズル3を介して射出し所望の成形品を得る。
In the figure, 1 is a screw of an injection molding machine, and as the screw 1 rotates, granular resin pellets in a hopper 13 are fed and melted, and this molten resin lO is introduced into a cavity 9 in a mold 8 through a nozzle 3. The desired molded product is obtained by injection.

油圧シリンダ5に内挿された射出ラム4には、比例電磁
式圧力制御弁23により圧力をコントロールされた油圧
源からの圧油が送られ、射出ラム4に結合されたスクリ
ュの前進圧力、即ち射出圧力の制御を行なう。
Pressure oil from a hydraulic source whose pressure is controlled by a proportional electromagnetic pressure control valve 23 is sent to the injection ram 4 inserted in the hydraulic cylinder 5, and the forward pressure of the screw connected to the injection ram 4, i.e. Controls injection pressure.

射出成形において、この射出圧力制御は成形品質に重大
な影響を与えるものであり、非常に重要な制御となる。
In injection molding, this injection pressure control has a significant effect on molding quality and is a very important control.

そのため射出圧力、即ち射出シリンダの油室A内の油圧
を圧力検出器17で検出し、電気量に変換して減算器1
8に送り、この変換された信号e1と圧力指令値16の
指令値e getとを減算器18により常時比較し、そ
の偏差信号e、を制御器19により処理する。この偏差
信号e、とフィードフォワード補償器20により処理さ
れた指令信号e□1、即ちフィードフォワード信号e、
とが加算器21により加算され、増幅器22により電流
変換される。この電流信号により比例電磁式圧力制御弁
23が駆動され、正確な圧力制御が行なわれる。
Therefore, the injection pressure, that is, the oil pressure in the oil chamber A of the injection cylinder, is detected by the pressure detector 17 and converted into an electrical quantity.
The converted signal e1 and the command value e get of the pressure command value 16 are constantly compared by a subtractor 18, and the deviation signal e is processed by a controller 19. This deviation signal e and the command signal e□1 processed by the feedforward compensator 20, that is, the feedforward signal e,
are added by an adder 21, and converted into a current by an amplifier 22. This current signal drives the proportional electromagnetic pressure control valve 23 to perform accurate pressure control.

ここで、前記フィードバック制御器19は比例要素(P
)31、積分要素(1)32、積分リセソトスインチ(
SWI)33、フィードバンク切スィッチ(SW2)3
4、及びフィードバンク有効範囲制御器35からなって
いる。
Here, the feedback controller 19 is a proportional element (P
) 31, integral element (1) 32, integral lycesotos inch (
SWI) 33, feed bank off switch (SW2) 3
4, and a feedbank effective range controller 35.

フィードバック有効範囲制御器35には、圧力指令値信
号eastと偏差信号e、が入り、ある関数に従い、e
5□−e、=ebO値が設定された範囲Kに入ったら、
積分リセットスイッチ33及びフィードバックスイッチ
34をオンし、フィードバックが有効となり、ebO値
がKを外れたときは、前記各スイッチ33.34をオフ
して、フィードバックを無効とし、かつ積分をリセット
する。
The feedback effective range controller 35 receives the pressure command value signal east and the deviation signal e, and according to a certain function, e
5□-e,=ebO When the value enters the set range K,
When the integral reset switch 33 and the feedback switch 34 are turned on to enable feedback and the ebO value is out of K, the switches 33 and 34 are turned off to disable the feedback and reset the integral.

これをまとめると、以下の表の如くなる。This can be summarized as shown in the table below.

さて、上記フィードバンクの有効範囲を決める関数とし
ては、以下のような関数が用いられる。
Now, as a function that determines the effective range of the feed bank, the following function is used.

eset   6.=13b e61<e、。、×(1−α)=に ここで、αは0.8近傍が良好な結果が得られる。この
関数は目的により次のように決めることもある。
eset 6. =13b e61<e,. , x(1-α)=where α is around 0.8 to obtain good results. This function may be determined as follows depending on the purpose.

et、l<K  (K=定数) (発明の効果) 以上、詳細に説明した如く本発明によれば、従来技術の
欠点を解消し、以下の効果を奏する。
et, l<K (K=constant) (Effects of the Invention) As described in detail above, according to the present invention, the drawbacks of the prior art are eliminated and the following effects are achieved.

(1)  例えば、射出速度行程から圧力行程への移行
時、即ち流量制御から圧力制御への移行時の圧力のオー
バシュートを無くし、良好な圧力制御が可能となる。
(1) For example, pressure overshoot at the time of transition from the injection speed stroke to the pressure stroke, that is, at the time of transition from flow rate control to pressure control, is eliminated, and good pressure control is possible.

(2)作動圧力を多段に制御する場合にも、高圧から低
圧へ移行する時の圧力アンダシュート、低圧から高圧へ
移行する時のオーバシュートを無くし、良好な制御が可
能となる。
(2) Even when controlling the operating pressure in multiple stages, good control is possible by eliminating pressure undershoot when transitioning from high pressure to low pressure and overshoot when transitioning from low pressure to high pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を射出成形機に組込んだ実施例を示す全
体システム図、第2図は本発明の要部をなすフィードバ
ック制御器の構成図、第3図は従来の成形機における射
出圧力制御装置の全体システム図、第4図は射出成形時
の射出速度と射出圧力の制御特性図、第5図は設定圧力
を多段に変更するときの圧力制御特性図、第6図は比例
電磁弁を使った射出速度及び射出圧力の制御装置をもつ
射出成形機の要部構成図である。 図の主要部分の説明 4・・−射出ラム 5・・・油圧シリンダ 16−・−(圧力)指令器 17−・・圧力検出器 18・−・比較器 19−・制御器 20−一・フィードフォワード補償器 21・・・加算器 23・・・比例電磁式圧力制御弁 35・・−フィードバック有効範囲制御器第1図 第4図 第5図 第6図
Fig. 1 is an overall system diagram showing an example in which the present invention is incorporated into an injection molding machine, Fig. 2 is a configuration diagram of a feedback controller that forms the main part of the present invention, and Fig. 3 is a diagram showing an injection molding machine in a conventional molding machine. The overall system diagram of the pressure control device. Figure 4 is a control characteristic diagram of injection speed and injection pressure during injection molding. Figure 5 is a pressure control characteristic diagram when changing the set pressure in multiple stages. Figure 6 is a proportional electromagnetic control characteristic diagram. FIG. 1 is a configuration diagram of main parts of an injection molding machine having an injection speed and injection pressure control device using valves. Explanation of main parts of the figure 4...-Injection ram 5...Hydraulic cylinder 16--(Pressure) command unit 17--Pressure detector 18--Comparator 19--Controller 20-1/Feed Forward compensator 21... Adder 23... Proportional electromagnetic pressure control valve 35... - Feedback effective range controller Fig. 1 Fig. 4 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 圧力指令器の指令信号を受けてフィードフォワード信号
を出力するフィードフォワード補償器と、前記指令信号
と圧力検出器の出力信号との偏差信号を出力しフィード
バック制御を行う制御器と、前記フィードフォワード信
号と前記制御器からの出力信号とを加算し、油圧シリン
ダの圧力を調節する比例電磁式圧力制御弁とからなる油
圧シリンダの圧力制御装置において、前記制御器からの
出力信号は、偏差値が所定の範囲にあるときのみ出力さ
れ、その範囲外にあるときは出力されないことを特徴と
する油圧シリンダの圧力制御装置。
a feedforward compensator that receives a command signal from a pressure command device and outputs a feedforward signal; a controller that outputs a deviation signal between the command signal and the output signal of the pressure detector to perform feedback control; and the feedforward signal. and a proportional electromagnetic pressure control valve that adjusts the pressure of the hydraulic cylinder by adding the output signal from the controller and the output signal from the controller, the output signal from the controller has a predetermined deviation value. A pressure control device for a hydraulic cylinder, characterized in that an output is output only when the range is within the range, and no output is output when the range is outside the range.
JP63255869A 1988-10-13 1988-10-13 Hydraulic cylinder pressure control device Expired - Fee Related JP2592111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255869A JP2592111B2 (en) 1988-10-13 1988-10-13 Hydraulic cylinder pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255869A JP2592111B2 (en) 1988-10-13 1988-10-13 Hydraulic cylinder pressure control device

Publications (2)

Publication Number Publication Date
JPH02102902A true JPH02102902A (en) 1990-04-16
JP2592111B2 JP2592111B2 (en) 1997-03-19

Family

ID=17284707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255869A Expired - Fee Related JP2592111B2 (en) 1988-10-13 1988-10-13 Hydraulic cylinder pressure control device

Country Status (1)

Country Link
JP (1) JP2592111B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242831B1 (en) * 2010-12-22 2013-03-12 주식회사 포스코 Method for controlling air knife in plating process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151315A (en) * 1985-12-26 1987-07-06 Nissei Plastics Ind Co Controller of fluid pressure actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151315A (en) * 1985-12-26 1987-07-06 Nissei Plastics Ind Co Controller of fluid pressure actuator

Also Published As

Publication number Publication date
JP2592111B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
EP0429959B1 (en) Apparatus for controlling a heating temperature
US5380181A (en) Control device for an electric injection molding machine
JPH0490314A (en) Method and apparatus for controlling injection molding machine
JPH02102902A (en) Pressure control device for hydraulic cylinder
JPH0241645B2 (en)
JPH02102903A (en) Speed control device for hydraulic cylinder
US5533884A (en) Speed control unit for an injection molding machine
JPH0661810B2 (en) Control device for fluid pressure actuator
JPH02120019A (en) Control method of injection molding machine and device
JPH0124055B2 (en)
JPS6032621A (en) Method and apparatus for controlling dwell pressure of injecton molder
JPS6334302A (en) Pressure control device for hydraulic cylinder
JPH0619162B2 (en) Fluid actuator control device
JPS6237711Y2 (en)
JP3299112B2 (en) Method for controlling pressure-holding process of injection molding machine
JPS63140301A (en) Electric final control element controller
JPS58602A (en) Hydraulic controller
JP3260413B2 (en) Method and apparatus for controlling position and speed of driven part by hydraulic pressure
JPH0544115Y2 (en)
JPH08284840A (en) Controller of variable displacement pump
JP2746473B2 (en) Injection speed control method for electric injection molding machine
JPH0479289B2 (en)
JPH03255205A (en) Closed loop pressure control device
JPS63109035A (en) Method and apparatus for controlling first molding transition in injection molder
JPH0262221A (en) Device for controlling injection pressure of injection molder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees