JPH02102733A - Porous fine particles having deodorizing function - Google Patents

Porous fine particles having deodorizing function

Info

Publication number
JPH02102733A
JPH02102733A JP63253930A JP25393088A JPH02102733A JP H02102733 A JPH02102733 A JP H02102733A JP 63253930 A JP63253930 A JP 63253930A JP 25393088 A JP25393088 A JP 25393088A JP H02102733 A JPH02102733 A JP H02102733A
Authority
JP
Japan
Prior art keywords
fine particles
metal
deodorizing
metal complex
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63253930A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Shirai
汪芳 白井
Nagaharu Koaizawa
長治 小相沢
Takashige Murata
村田 敬重
Naoyuki Amaya
直之 天谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP63253930A priority Critical patent/JPH02102733A/en
Publication of JPH02102733A publication Critical patent/JPH02102733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain porous fine particles having superior deodorizing performance by supporting a metal complex having oxidizing-reducing ability on porous fine org. particles having innumerable fine through holes in the entire particles. CONSTITUTION:Porous fine particles of methyl methacrylate, etc., synthesized by suspension polymn. or other method are immersed in an aq. soln. of a metal complex such as iron phthalocyanine.polycarboxylic acid to support the metal complex by >=0.01wt.%. One or more kinds ot metal complexes selected among metal porphyrin, metal porphyrazine, derivs. ot them and polymer-metal complexes may be used. By the interaction between the metal complex and the porous tine particles, the supported metal complex is not easily separated by washing and dehydration and the deodorizing activity is maintained over a long period of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、消臭機能を有する多孔質微粒子に関し、特に
酸化還元触媒機能を有する金属錯体類を担持せしめた連
続性の孔を有する多孔′Jf微粒子に関するものである
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to porous fine particles having a deodorizing function, and in particular to porous fine particles having continuous pores on which metal complexes having a redox catalytic function are supported. This relates to Jf fine particles.

(従来の技術) 例えば硫化水素、アンモニア等の腐敗に基づく悪臭や、
不完全燃焼による悪臭や還元性の臭気成分、あるいは有
害ガスの除去法としては従来より多くのものが知られ、
その代表的なものとしては下記のようなものがある。
(Prior art) For example, bad odor due to decomposition of hydrogen sulfide, ammonia, etc.
Many methods have been known to remove bad odors, reducing odor components, and harmful gases caused by incomplete combustion.
Representative examples include the following.

(イ)燃焼法:直燃法またはアフターバーニング法とも
呼ばれ、火炎を用いて650〜800℃程度の高温で悪
臭成分を燃焼させ、水蒸気、炭酸ガスなどの無臭無害の
物質に酸化分解する方法。
(a) Combustion method: Also called direct combustion method or afterburning method, this method uses flame to burn malodorous components at high temperatures of around 650 to 800°C, and oxidizes and decomposes them into odorless and harmless substances such as water vapor and carbon dioxide gas. .

(ロ)触媒酸化法:触媒燃焼法とも呼ばれ、触媒を使用
して250〜350℃で悪臭成分を酸化処理する方法。
(b) Catalytic oxidation method: Also called catalytic combustion method, this method uses a catalyst to oxidize malodorous components at 250 to 350°C.

(ハ)吸着法:活性炭、ゼオライト、シリカゲルなどの
吸着能を備えた多孔性物質に悪臭成分を吸着させる方法
(c) Adsorption method: A method in which malodorous components are adsorbed onto porous materials with adsorption capacity, such as activated carbon, zeolite, and silica gel.

(ニ)オゾン酸化法ニオシンの酸化力を利用して悪臭成
分を酸化する方法。
(d) Ozone oxidation method A method of oxidizing malodorous components using the oxidizing power of niosin.

(ホ)薬液洗浄法:酸またはアルカリ溶液で悪臭成分を
吸収あるいは洗浄除去する方法。
(e) Chemical cleaning method: A method of absorbing or cleaning odor components with acid or alkaline solution.

(へ)マスキング法;悪臭よりも強い芳香剤などを放散
させる方法。
(f) Masking method: A method of dissipating a fragrance that is stronger than the bad odor.

悪臭発生源の状態や環境などの条件にもとづいて上記諸
法の中から適当な方法が選択使用されている。
An appropriate method is selected from among the above methods based on conditions such as the state of the odor source and the environment.

しかしながら(イ)の燃焼法や(ロ)の触媒酸化法は装
置が大きく、しかもランニングコストが嵩むため、専ら
大規模な悪臭を伴う排気を脱臭する産業用として適用さ
れるのみである。また(二)のオゾン酸化法はオゾンの
発生装置を必要とし、(ホ)の薬液洗浄法にあっては、
酸またはアルカリ溶液に中和され難い悪臭成分を除去で
きないなど、汎用性に欠ける難点がある。
However, since the combustion method (a) and the catalytic oxidation method (b) require large equipment and high running costs, they are only applied to industrial applications for deodorizing large-scale, foul-smelling exhaust gas. In addition, the ozone oxidation method (2) requires an ozone generator, and the chemical cleaning method (e) requires
It lacks versatility, such as the inability to remove malodorous components that are difficult to neutralize with acid or alkaline solutions.

一方(ハ)の吸着法は、古くから行われてきている方法
で汎用性があり、ランニングコストが比較的安価である
ことから、現在各種の分野で広く利用され、一般家庭の
中にまで浸透してきており、例えば、冷蔵庫、トイレ、
押し入れ等の小さな空間の脱臭に多く用いられている。
On the other hand, the adsorption method (c) is a method that has been used for a long time, is versatile, and has relatively low running costs, so it is currently widely used in various fields and has penetrated into ordinary households. For example, the refrigerator, toilet,
It is often used to deodorize small spaces such as closets.

しかしながら、吸着物質への悪臭の拡散が律速となり、
広域の消臭には不適当であり、吸着平衡に至らしめるた
めに長時間を要し、しかも平衡系のために必ずしも悪臭
のしきい値以下に濃度を低下させることが容易でないこ
と、吸着剤は、あらゆる種類の悪臭に対して活性を有す
るわけではない等の欠点がある。
However, the diffusion of bad odor into the adsorbent becomes rate-limiting.
Adsorbents are unsuitable for wide area deodorization, require a long time to reach adsorption equilibrium, and are not necessarily easy to reduce the concentration below the malodor threshold due to the equilibrium system. has drawbacks such as not having activity against all types of malodors.

その他に、吸着剤による方法は、脱臭効果が時間と共に
低下するため、定期的に新しい吸着剤に取り替えなけれ
ばならない。
In addition, in the method using an adsorbent, the deodorizing effect decreases over time, so that the adsorbent must be periodically replaced with a new adsorbent.

近年、金属錯体の酸化触媒機能を利用する消臭技術の開
発が進められており、その具体例が例えば、米国特許第
3108081号、同第3148156号、同第323
0180号、特開昭55−32519号に記載されてい
る。
In recent years, the development of deodorizing technology that utilizes the oxidation catalytic function of metal complexes has been progressing, and specific examples include U.S. Pat.
No. 0180 and JP-A-55-32519.

特開昭55−32519号によれば、生体酸化酵素、と
りわけ、ある種の金属含有酵素のなかにアンモニア、ア
ミン、硫化水素、メルカプタン類、インドール、カルボ
ニル化合物等を酸化分解する機能をもつものが多いこと
、更に酸素反応そのものが悪臭物質を分解する上で有利
な諸条件を具えていること、従って、生体酸化酵素に類
似した反応挙動を示す金属錯体が悪臭成分の酸化分解に
有効であることが教示されている。
According to JP-A No. 55-32519, some biological oxidases, especially certain metal-containing enzymes, have the ability to oxidize and decompose ammonia, amines, hydrogen sulfide, mercaptans, indoles, carbonyl compounds, etc. Furthermore, the oxygen reaction itself has favorable conditions for decomposing malodorous substances, and therefore metal complexes that exhibit reaction behavior similar to biological oxidases are effective in oxidatively decomposing malodorous components. is taught.

特に、金属ポルフィリン類、金属ポルフィラジン類と、
その誘導体は、(1)反応速度が速く分解効率がよい、
(2)常温で反応が進行する、(3)水系反応であるた
めに環境汚染の心配がない、(4)サイクル反応である
ため、触媒寿命が長いなどの悪臭を分解する上に有利な
諸条件を具備していることが記載されている。さらに、
同公開公報には、これらの金属錯体を活性炭、ゼオライ
ト、繊維、紙、プラス千ツク等に担持させて使用できる
旨記載されている。
In particular, metal porphyrins, metal porphyrazines,
The derivative has (1) a fast reaction rate and good decomposition efficiency;
(2) The reaction proceeds at room temperature, (3) There is no risk of environmental pollution because it is a water-based reaction, and (4) The catalyst has a long life because it is a cycle reaction. It is stated that the conditions are met. moreover,
The publication describes that these metal complexes can be supported on activated carbon, zeolite, fiber, paper, plastic, etc. and used.

(発明が解決しようとする課題) 上記のように金属ポルフィリン、金属ポルフィラジンの
ような金属錯体を酸化触媒として利用する消臭技術は既
に知られているが、上記米国特許による技術は、ガソリ
ンや石油中のメルカプタン類の除去に関するものであり
、その消去処理は油相と多量のアルカリを含む水相の2
相法で行われ、触媒自身も例えば活性炭などの固体表面
に担持させたものが主体となっており、一般の悪臭除去
用としては不満足である。
(Problem to be solved by the invention) As mentioned above, deodorizing technology that uses metal complexes such as metal porphyrin and metal porphyrazine as an oxidation catalyst is already known, but the technology according to the above US patent is This process involves the removal of mercaptans from petroleum, and the elimination process consists of two phases: an oil phase and an aqueous phase containing a large amount of alkali.
It is carried out by a phase method, and the catalyst itself is mainly supported on a solid surface such as activated carbon, which is unsatisfactory for general odor removal.

他方、特開昭55−32519号に記載されている消臭
剤は、悪臭除去作用の持続性に優れ、ランニングコスト
も低く、また吸着能を有する各種の物質に担持せしめて
使用できるという利点を有している。
On the other hand, the deodorant described in JP-A No. 55-32519 has the advantages of excellent long-lasting odor removal action, low running costs, and the ability to be used by supporting various substances with adsorption ability. have.

しかしながら、吸着能を有する物質をゼオライトや活性
炭などの物質に担持させるには、例えば、金属フタロシ
アニン(金属ポルフィラジン)10重景%の水溶液に浸
漬したのち脱水乾燥を行うが、担体が無機物質であり、
金属フタロシアニン類との親和性が低いため、多くの場
合脱水時に金属フタロシアニンが担体から離脱し、乾燥
された物質に付着している金属フタロシアニンの量は極
めて僅かであるという問題点がある。
However, in order to support a substance with adsorption ability on a substance such as zeolite or activated carbon, for example, immersion in an aqueous solution of 10% metal phthalocyanine (metal porphyrazine) and then dehydration drying is performed. can be,
Due to its low affinity with metal phthalocyanines, metal phthalocyanine often separates from the carrier during dehydration, and the amount of metal phthalocyanine attached to the dried substance is extremely small.

また悪臭は、一般にガス状態であることが殆どであり、
消臭に際しては消臭剤と悪臭とを効果的に、かつ短時間
に接触させることが必要で、かかる要求に関して、担体
として連続する孔を有する多孔質微粒子は、その比表面
積は非常に大きく、酸化還元能を有する金属錯体とガス
成分との接触が容易に行われる。また多孔質微粒子を合
成する際の原料の選択により、親水/疎水のバランスを
変えることが容易で金属フタロシアニン類との親和性を
自由にコントロール出来ることも有利な材料と思われる
。また、多孔質微粒子は有機系の物質で合成されている
ためゼオライトや活性炭と異なり、消臭機能を有する金
属錯体との親和性が高く、浸漬した後の脱水や乾燥時で
の消臭剤の脱離が極めて小さいという比較的有利な利点
も挙げられる。
In addition, most bad odors are generally in the gaseous state,
When deodorizing, it is necessary to bring the deodorant into contact with the bad odor effectively and in a short time.Regarding this requirement, porous fine particles having continuous pores as a carrier have a very large specific surface area. The metal complex having redox ability is easily brought into contact with the gas component. It is also considered to be an advantageous material because it is easy to change the hydrophilic/hydrophobic balance by selecting raw materials when synthesizing porous fine particles, and the affinity with metal phthalocyanines can be freely controlled. In addition, because porous fine particles are synthesized from organic substances, unlike zeolites and activated carbon, they have a high affinity with metal complexes that have a deodorizing function, so they can be used as deodorizers during dehydration and drying after soaking. Another relatively advantageous advantage is that the desorption is extremely small.

(課題を解決するための手段) 本発明者らは、種々の有機系多孔質微粒子に酸化還元能
を有する金属錯体を担持せしめて、それらの消臭機能を
検討した結果、全体にわたって微細な貫通孔を無数に有
する多孔質微粒子が、他の担体に比して金属錯体の担持
能に優れ、上述のような従来公知の消臭剤の難点が解決
されることを見出した。
(Means for Solving the Problems) The present inventors investigated the deodorizing function of various organic porous fine particles by carrying metal complexes having redox ability, and found that fine penetrating particles were formed throughout the entire body. It has been found that porous fine particles having countless pores have a superior ability to support metal complexes compared to other carriers, and the above-mentioned difficulties of conventionally known deodorants can be solved.

本発明にかかる消臭機能を有する多孔質微粒子は、粒子
全体に微細な貫通孔を無数に有する粒子に、酸化還元能
を有する金属錯体を0.01重量%以上担持せしめたこ
とを特徴とする。
The porous fine particles having a deodorizing function according to the present invention are characterized in that particles having innumerable fine through holes throughout the particles support 0.01% by weight or more of a metal complex having redox ability. .

本発明で使用する微細な貫通孔を無数に存する多孔質微
粒子は、例えば次のように合成される。
The porous particles having countless fine through holes used in the present invention are synthesized, for example, as follows.

即ち、ラジカル重合性モノマー類、例えば、スチレン、
メチルスチレン、クロロスチレン等のスチレン誘導体、
アクリロニトリル、メタクリレートリル、メチルアクリ
レート、エチルアクリレート、ブチルアクリレート等の
アクリル酸エステル類、メチルメタクリレート、エチル
メタクリレート、ブチルメタクリレート等のメタクリル
酸エステル類、酢酸ビニル、プロピオン酸ビニル等の脂
肪酸ビニル類、酢酸アリル、プロピオン酸アリル等の各
種のアリルエステル類、イソブチルビニルエーテル、フ
ェニルビニルエーテル等のビニルエーテル類、エチレン
グリコールモノビニルエーテル、ジエチレングリコール
モノビニルエーテル等のポリエチレングリコールモノビ
ニルエーテル、あるいはそれらのアリルエーテル、さら
にはポリプロピレングリコール等のビニルあるいは了り
ルエーテル類のようなポリアルキレンゲルコールのビニ
ルあるいはアリルエーテル類、マレイン酸ジメチル、マ
レイン酸ジエチル等のマレイン酸ジエステル類、フマル
酸ジエチル、フマル酸ジプロピル等のフマル酸ジエステ
ル類、イタコン酸ジメチル、イタコン酸ジエチル等のイ
タコン酸ジエステル類、メサコン酸ジエステル類、その
他にチオール脂肪酸ビニルエステル類、アルキルビニル
スルフィド類、ビニルケトン類、アクリルアミド類、ビ
ニルアミド類、ビニルカルバゾール誘導体、各種のジエ
ン誘導体、アリル化合物類、その他各種のラジカル単独
あるいはラジカル共重合反応性を有する各種のモノマー
類と、所定量のラジカル重合性の不飽和二重結合基を二
個以上有する架橋性の七ツマー類、りとエバジビニルエ
ーテル、ジビニルベンゼン、エチレングリコールジアク
リレート、エチレングリコールジメタクリレート、ジエ
チレングリコールジアクリレート、ジエチレングリコー
ルジメタクリレート等のポリエチレングリコール類のジ
アクリレート、あるいはジメタクリレート類、ポリプロ
ピレングリコール類のジアクリレート、あるいはジメタ
クリレート類等のポリアルキレンゲリコール類のジアク
リレート、もしくはジメタクリレート類、その他゛各種
の多価アルコール類のポリアクリレートあるいはポリメ
タクリレート類、さらには、フマル酸、マレイン酸、イ
タコン酸、メサコン酸、コハク酸、アジピン酸、フタル
酸、イソフタル酸、テレフタル酸等の脂肪族あるいは芳
香族のジもしくはトリカルボン酸類のジビニルもしくは
ジアリルエステルのような不飽和二重結合基を有するア
ルコール類のエステルでラジカル架橋性能を有するの七
ツマー類と、所定量のラジカル重合開始剤、例えば過酸
化ベンゾイル、tert−ブチルヒドロパーオキシド、
ジイソプロピルパーオキシカーボネート、クメンヒドロ
パーオキシド、ジクミルパーオキシド等の有機過酸化物
類、アゾビスイソブチロニトリル、アゾビスシクロヘキ
サンカルボニトリル等のアゾ系のラジカル重合開始剤を
加え、さらに適当な溶媒、例えば、ベンゼン、トルエン
、キシレン等の芳香族系の有機溶剤、あるいはトリクロ
ロエタン、テトラクロロエチレン、ヘキサクロロエタン
等のラジカル重合溶剤として良く用いられ、しかも水に
不溶の有機溶剤をモノマー類と同量程度加え、十分に混
合してモノマーオイルを調製しておく。
That is, radically polymerizable monomers such as styrene,
Styrene derivatives such as methylstyrene and chlorostyrene,
Acrylic acid esters such as acrylonitrile, methacrylaterile, methyl acrylate, ethyl acrylate, and butyl acrylate; methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate; fatty acid vinyls such as vinyl acetate and vinyl propionate; allyl acetate; Various allyl esters such as allyl propionate; vinyl ethers such as isobutyl vinyl ether and phenyl vinyl ether; polyethylene glycol monovinyl ethers such as ethylene glycol monovinyl ether and diethylene glycol monovinyl ether; Vinyl or allyl ethers of polyalkylene gelcols such as alcoholic acid ethers, maleic diesters such as dimethyl maleate and diethyl maleate, fumaric diesters such as diethyl fumarate and dipropyl fumarate, dimethyl itaconate, Itaconate diesters such as diethyl itaconate, mesaconate diesters, thiol fatty acid vinyl esters, alkyl vinyl sulfides, vinyl ketones, acrylamides, vinylamides, vinyl carbazole derivatives, various diene derivatives, allyl compounds, In addition, various monomers having radical single or radical copolymerization reactivity, crosslinkable heptamers having two or more radically polymerizable unsaturated double bond groups in a predetermined amount, and evagivinyl ether, Diacrylates of polyethylene glycols such as divinylbenzene, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, dimethacrylates, diacrylates of polypropylene glycols, or polyalkylene gels such as dimethacrylates. Recall diacrylates or dimethacrylates, other polyacrylates or polymethacrylates of various polyhydric alcohols, fumaric acid, maleic acid, itaconic acid, mesaconic acid, succinic acid, adipic acid, phthalic acid. , esters of alcohols having an unsaturated double bond group such as divinyl or diallyl esters of aliphatic or aromatic di- or tricarboxylic acids such as isophthalic acid and terephthalic acid and having radical crosslinking properties; a predetermined amount of a radical polymerization initiator, such as benzoyl peroxide, tert-butyl hydroperoxide,
Organic peroxides such as diisopropyl peroxycarbonate, cumene hydroperoxide, and dicumyl peroxide, and an azo radical polymerization initiator such as azobisisobutyronitrile and azobiscyclohexanecarbonitrile are added, and an appropriate solvent is added. For example, add an aromatic organic solvent such as benzene, toluene, or xylene, or an organic solvent commonly used as a radical polymerization solvent such as trichloroethane, tetrachloroethylene, or hexachloroethane, and which is insoluble in water, in an amount equal to that of the monomers. Mix thoroughly to prepare monomer oil.

一方、水にポリビニルアルコール、ポリアクリル酸ナト
リウム、ポリビニルピロリドン等の水溶性高分子として
良く知られ、懸濁重合や乳化重合の増粘剤として、ある
いは分散安定剤として広く用いられているものを適当量
とかしたものに、上記で調製したモノマーオイルの混合
物を加え、高速攪拌してモノマーオイルを十分水に均一
分散させ、そのまま加熱して重合を行い、微粒子を合成
する。重合終了後は濾過して微粒子を単離し、水洗を行
って、水溶性高分子を完全に除去し、次にメタノールあ
るいはエタノールなどのアルコール類もしくはアセトン
、クロロホルム等の比較的低沸点の有機溶剤に浸漬・濾
過を何度も繰り返して重合に使用した有機溶剤を完全に
置換して除去し、最後に減圧乾燥を行い、多孔質微粒子
を得る。
On the other hand, in water, well-known water-soluble polymers such as polyvinyl alcohol, sodium polyacrylate, and polyvinylpyrrolidone, which are widely used as thickeners in suspension polymerization and emulsion polymerization, or as dispersion stabilizers, are suitable. The mixture of monomer oils prepared above is added to the evaporated mixture, stirred at high speed to sufficiently uniformly disperse the monomer oil in water, and heated as it is for polymerization to synthesize fine particles. After the polymerization is complete, fine particles are isolated by filtration, washed with water to completely remove water-soluble polymers, and then treated with an alcohol such as methanol or ethanol or an organic solvent with a relatively low boiling point such as acetone or chloroform. The immersion and filtration are repeated many times to completely replace and remove the organic solvent used in polymerization, and finally drying is performed under reduced pressure to obtain porous fine particles.

この様にして合成した多孔質微粒子に、下記に示す消臭
機能を有する金属錯体を担持させる。金属ポルフィリン
およびその誘導体は、次式:に示す構造式で表され、又
、金属ポルフィラジンに示す構造式で表される。
The porous fine particles synthesized in this manner are loaded with a metal complex having a deodorizing function as shown below. Metal porphyrin and its derivatives are represented by the structural formula shown below, and also represented by the structural formula shown for metal porphyrazine.

両式において、MはFe、 Co、Mn、 Ti、■、
NiN15CuSZnS% Wなどの金属のイオンが挙
げられる。
In both formulas, M is Fe, Co, Mn, Ti,
Examples include metal ions such as NiN15CuSZnS%W.

これら金属イオンのうち消臭効果の点からは鉄、コバル
トが好ましい。両式において、Xは水素または置換基を
示す。置換基としては、アルキル基、置換アルキル基(
例えばクロロアルキル基)、ハロゲン基、ニトロ基、ア
ミノ基、アゾ基、チオシアネート基、カルボキシル基、
カルボニルクロリド基、カルボキシルアミド基、ニトリ
ル基、水酸基、アルコキシル基、フェノキジル基、スル
フォン酸基、スルホニルクロリド基、スルホンアミド基
、チオール基、アルキルケイ素基、ビニル基などの他、
カルボキシル基やスルホン酸基のアルカリ塩などが用い
られる。これらは、単独または二種以上が用いられる。
Among these metal ions, iron and cobalt are preferred from the viewpoint of deodorizing effect. In both formulas, X represents hydrogen or a substituent. As a substituent, an alkyl group, a substituted alkyl group (
For example, chloroalkyl group), halogen group, nitro group, amino group, azo group, thiocyanate group, carboxyl group,
In addition to carbonyl chloride groups, carboxylamide groups, nitrile groups, hydroxyl groups, alkoxyl groups, phenoxydyl groups, sulfonic acid groups, sulfonyl chloride groups, sulfonamide groups, thiol groups, alkyl silicon groups, vinyl groups, etc.
Alkali salts of carboxyl groups and sulfonic acid groups are used. These may be used alone or in combination of two or more.

なかでも、好ましくはカルボキシル基やスルホン酸基ま
たはこれらのアルカリ塩類、アミノ基、ハロゲン基、水
酸基などが用いられる。
Among these, carboxyl groups, sulfonic acid groups, alkali salts thereof, amino groups, halogen groups, hydroxyl groups, and the like are preferably used.

また、高分子金属錯体とは、高分子配位子または配位性
のオリゴマーがその連鎖のごく一部に局在または全体に
分散して金属錯体が構成されているもの、又は低分子配
位子と金属イオンとから形成された錯体であるが高分子
量(通常、分子量が約−万以上)であるものをさす。高
分子金属錯体の例としては、ポリビニルアルコールと銅
イオンとの分子内キレート錯体、ポリビニルアミンと鉄
イオンとの錯体、及び金属酵素(例えばカタラーゼ、ペ
ルオキシダーゼ、ペプチダーゼなど)が挙げられる。上
述の金属錯体は単独で用いても、又、二種以上を組み合
わせて用いても良い。
In addition, a polymer metal complex is one in which a metal complex is composed of polymer ligands or coordinating oligomers localized in a small part of the chain or dispersed throughout the chain, or a metal complex composed of a polymer ligand or a coordinating oligomer. A complex formed from a metal ion and a metal ion, but has a high molecular weight (usually, the molecular weight is about -10,000 or more). Examples of polymeric metal complexes include intramolecular chelate complexes of polyvinyl alcohol and copper ions, complexes of polyvinylamine and iron ions, and metalloenzymes (eg, catalase, peroxidase, peptidase, etc.). The above metal complexes may be used alone or in combination of two or more.

金属錯体の所要担持量は金属錯体の種類に応じて変わる
が、一般に0.01重量%以上である。担持量が少ない
と所望レベルの消臭活性が得られず、また、消臭活性の
持続性にも劣る。好ましい担持量は、0.01〜5重量
%の範囲である。
The required amount of metal complex supported varies depending on the type of metal complex, but is generally 0.01% by weight or more. If the supported amount is small, the desired level of deodorizing activity cannot be obtained, and the sustainability of the deodorizing activity is also poor. The preferred amount supported is in the range of 0.01 to 5% by weight.

金属錯体を有機多孔質微粒子に担持させるには、上記金
属錯体類の水溶液中もしくは適当な有機溶剤中に多孔質
微粒子を浸漬し加圧もしくは減圧下で処理して金属錯体
類を十分吸着させれば良い。
In order to support metal complexes on organic porous fine particles, the porous fine particles are immersed in an aqueous solution of the metal complexes mentioned above or in an appropriate organic solvent and treated under pressure or reduced pressure to sufficiently adsorb the metal complexes. Good.

(作用) 本発明で使用する金属錯体の消臭活性は、以下に示す酸
素酸化作用に基づくと考えられる。
(Function) The deodorizing activity of the metal complex used in the present invention is thought to be based on the oxygen oxidation effect shown below.

ポルフィリンおよびポルフィラジン類と配位した金属が
活性中心となり酸化反応が進行する。例えば、メルカプ
タンの酸化を例にとると、その酸化は次の化学反応式で
示される。
The metal coordinated with porphyrin and porphyrazine becomes an active center and the oxidation reaction proceeds. For example, taking the oxidation of mercaptan as an example, the oxidation is shown by the following chemical reaction formula.

2R−SH+ 2011−→2R−S−+ 211□0
(1)2R−3−+ 28tO+ 0□→R−S−S−
R+)l!0!+2011− (21式(1)の反応で
生じたチオラートアニオンは酸素とともにポルフィリン
およびポルフィラジンに配位して三元錯体である活性種
となり、そして、この活性種に配位しているチオラート
アニオンはチイルラジカルを経てジスルフィドに二目化
される。
2R-SH+ 2011-→2R-S-+ 211□0
(1) 2R-3-+ 28tO+ 0□→R-S-S-
R+)l! 0! +2011- (21The thiolate anion produced in the reaction of formula (1) coordinates with oxygen to porphyrin and porphyrazine to become an active species which is a ternary complex, and the thiolate anion coordinated to this active species is It is converted into a disulfide via a thiyl radical.

この反応は生体内酵素酸化反応に非常によく類似してお
り、好気的な反応で類似の酸化反応の例は幾つか知られ
ている。また、その他の悪臭成分として知られているア
ミンやアルデヒドなども、金属錯体による酸化反応をう
け、無害無臭の成分に分解されるため、多くの臭気成分
に対して有効である。さらに、金属錯体による酸化反応
は少量の水分の存在下、常温下またはそれ以下の温度で
進行し、反応速度が速く、反応率も高い。
This reaction is very similar to in vivo enzymatic oxidation reactions, and several examples of similar aerobic oxidation reactions are known. In addition, other known malodorous components such as amines and aldehydes undergo oxidation reactions with metal complexes and are decomposed into harmless and odorless components, so it is effective against many malodorous components. Furthermore, the oxidation reaction by the metal complex proceeds at room temperature or lower in the presence of a small amount of moisture, and the reaction rate is fast and the reaction rate is high.

多孔質微粒子への金属錯体の担持は物理的な吸着だけに
よるとは思われない。特にOH基あるいは親水性の官能
基を有するモノマーを用いて行った場合には、殆ど金属
錯体の溶出が認められないことから、金属錯体とOH基
あるいは親水基との間に配位結合あるいはその他の相互
作用によりがなり強固に吸着が起こっているものと思わ
れる。
It does not seem that the metal complexes are supported on the porous particles only by physical adsorption. In particular, when monomers having OH groups or hydrophilic functional groups are used, almost no elution of metal complexes is observed. It is thought that strong adsorption occurs due to the interaction between the two.

(発明の効果) このような金属錯体と多孔質微粒子との相互作用により
、担持された金属錯体は水洗や脱水によって容易に離脱
することがなく、ゼオライトや活性炭と比較して多量に
担持することが出来、その消臭活性は長期にわたり持続
する。また、サイクル反応であるため触媒の寿命が長く
、ランニングコストが低廉である。
(Effect of the invention) Due to the interaction between the metal complex and the porous fine particles, the supported metal complex does not easily come off by washing with water or dehydration, and can be supported in a larger amount than zeolite or activated carbon. The deodorizing activity lasts for a long time. Furthermore, since it is a cyclic reaction, the catalyst has a long life and running costs are low.

さらに、有機多孔fm粒子への金属錯体の担持は、不活
性二量体構造をとりにくくせしめることが出来、金属錯
体の活性が高く保持されたまま担持が行われる。多孔質
微粒子に担持することにより金属錯体は高い活性状態で
担持される。
Furthermore, supporting the metal complex on the organic porous fm particles can make it difficult to form an inactive dimer structure, and the metal complex can be supported while maintaining its high activity. By supporting the metal complex on porous fine particles, the metal complex is supported in a highly active state.

また、使用後の消臭機能を有する多孔を微粒子は容易に
焼却でき、微粒子粉体であるため、各種のパウダー類と
同様に用いることができ、しかも消臭機能を有するため
消臭分野に広く利用することができる。
In addition, the porous particles that have a deodorizing function can be easily incinerated after use, and since they are a fine powder, they can be used in the same way as various powders, and because they have a deodorizing function, they are widely used in the deodorizing field. can be used.

(実施例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 多孔N微粒子は、従来より広く行われている懸濁重合法
を利用して合成した。すなわち、メタクリル酸メチル5
0重量部、エチレングリコールジメタクリレート50重
量部、過酸化ベンゾイル1.5重量部、トルエン80重
量部を十分混合してモノマーオイルとし、水に部分ケン
化ポリビニルアルコール(ケン化度95%)を溶かして
0.3重量%の水溶液500重量部とし、これに先程調
製したモノマーオイルを加え、高速攪拌機で十分モノマ
ーオイルを水に分散させ、そのまま80℃に加熱して8
時間重合させた。
Example 1 Porous N fine particles were synthesized using a suspension polymerization method that has been widely used in the past. That is, methyl methacrylate 5
0 parts by weight, 50 parts by weight of ethylene glycol dimethacrylate, 1.5 parts by weight of benzoyl peroxide, and 80 parts by weight of toluene were thoroughly mixed to obtain a monomer oil, and partially saponified polyvinyl alcohol (degree of saponification 95%) was dissolved in water. 500 parts by weight of a 0.3% by weight aqueous solution, the monomer oil prepared earlier was added to this, the monomer oil was sufficiently dispersed in water using a high-speed stirrer, and the mixture was heated to 80°C.
Polymerized for hours.

重合終了後、濾過して微粒子とポリビニルアルコール水
溶液を分け、微粒子を純水で繰り返し洗浄を行った後、
メタノールに浸漬してトルエンをメタノールに置換し、
減圧乾燥を行ってメタクリル酸メチル系の多孔質微粒子
を得た。
After the polymerization is completed, the fine particles are separated from the polyvinyl alcohol aqueous solution by filtration, and the fine particles are repeatedly washed with pure water.
Immerse in methanol to replace toluene with methanol,
Drying under reduced pressure was performed to obtain methyl methacrylate-based porous fine particles.

この微粒子を鉄フタロシアニン・ポリカルボン酸の水溶
液(水溶液濃度3 g/It、 pH12)に浸漬し、
脱水乾燥した。かくして得られた消臭機能を有する多孔
質微粒子には、微粒子3gに対して鉄フタロシアニン・
ポリカルボン酸が約0.06g担持されていた。
The fine particles were immersed in an aqueous solution of iron phthalocyanine polycarboxylic acid (aqueous solution concentration 3 g/It, pH 12),
Dehydrated and dried. The thus obtained porous fine particles with a deodorizing function contain iron phthalocyanine per 3 g of fine particles.
About 0.06 g of polycarboxylic acid was supported.

次に示す方法を用いて、得られた多孔質微粒子の消臭活
性を試験した。すなわちガラス管の内部に上記消臭性微
粒子を5g充填した消臭反応部に、硫化水素ガスを50
0ppm含有する空気を毎分ioo atの割合で10
分間送入し続け、該反応部を通過したガスをバッグに収
容し、該バッグに収容されたガスを成人モニター10人
に嗅がせて臭気に対する官能試験をおこなった。結果は
一部のモニターが硫化水素臭をわずかに感知する程度で
あった。更に、酢酸鉛による呈色反応試験を行ったとこ
ろ、反応は殆ど認られなかった。そしてこれらの実験を
数日間にわたり連続して行ったが、消臭効果の低下は認
られず、消臭能の長時間の持続が確認された。
The deodorizing activity of the obtained porous fine particles was tested using the method shown below. That is, 50 g of hydrogen sulfide gas was added to a deodorizing reaction section in which 5 g of the above-mentioned deodorizing fine particles were filled inside a glass tube.
air containing 0 ppm at a rate of 10 ioo at per minute
The gas that had passed through the reaction section was stored in a bag, and 10 adult monitors were allowed to smell the gas stored in the bag to perform a sensory test on odor. The results showed that some monitors could only slightly detect the odor of hydrogen sulfide. Furthermore, when a color reaction test using lead acetate was conducted, almost no reaction was observed. These experiments were conducted continuously over several days, but no decrease in the deodorizing effect was observed, and it was confirmed that the deodorizing ability lasted for a long time.

同様にして、メチルメルカプタン、硫化メチル、アンモ
ニアホルムアルデヒド、吉草酸、スカトール等の臭気に
ついて同様の試験を実施した。それらの官能試験結果を
表1にまとめたが、該消臭性多孔質微粒子の消臭効果が
十分認られた。
Similar tests were conducted on the odors of methyl mercaptan, methyl sulfide, ammonia formaldehyde, valeric acid, skatole, and the like. The results of the sensory tests are summarized in Table 1, and the deodorizing effect of the deodorizing porous fine particles was sufficiently recognized.

実施例2 メタクリル酸メチルのかわりにステアリルメタクリレー
ト50重量部を用いた他は、実施例1と同様に行って、
ステアリルメタクリレート系の多孔質微粒子を合成し、
これをコバルトフタロシアニン・ポリカルボン酸の水溶
液(水溶液濃度3g/β、pH12)に浸漬したのち脱
水乾燥して、コバルトフタロシアニン・ポリカルボン酸
を3.5重量%含有の消臭機能を有する多孔質微粒子を
得た。
Example 2 The same procedure as Example 1 was carried out except that 50 parts by weight of stearyl methacrylate was used instead of methyl methacrylate.
Synthesize stearyl methacrylate-based porous particles,
This is immersed in an aqueous solution of cobalt phthalocyanine polycarboxylic acid (aqueous solution concentration 3 g/β, pH 12) and then dehydrated and dried to form porous fine particles containing 3.5% by weight of cobalt phthalocyanine polycarboxylic acid and having a deodorizing function. I got it.

この多孔質微粒子を再度水洗し乾燥し、コバルトフタロ
シアニン・ポリカルボン酸の離脱量を調べたところ、コ
バルトフタロシアニン・ポリカルボン酸の減量は殆ど見
られなかった。
When the porous fine particles were washed again with water and dried, and the amount of cobalt phthalocyanine/polycarboxylic acid released was examined, almost no loss of cobalt phthalocyanine/polycarboxylic acid was observed.

実施例1と同様の装置を用いて、ヒトによる官能試験を
行い、コバルトフタロシアニン含有の消臭性多孔質微粒
子の種々の悪臭に対する消臭活性を調べた。それらの結
果を表1にまとめた。
A human sensory test was conducted using the same apparatus as in Example 1 to examine the deodorizing activity of the deodorizing porous fine particles containing cobalt phthalocyanine against various malodors. The results are summarized in Table 1.

実施例3 実施例1のメタクリル酸メチル50重量部のかわりに、
メタクリル酸メチル25重量部とポリエチレングリコー
ル200のモノメタクリレート(市販品、ブレンマーP
 E−200) 25重量部を用いた他は、実施例1と
同様に行い、ポリエチレングリコール鎖を含む親水化メ
タクリル酸メチル系の多孔’Jim粒子を得た。この微
粒子を鉄フタロシアニン・ポリカルボン酸の水溶液(水
溶液濃度3g/l、pH12)に浸漬し、脱水乾燥した
。かくして得られた消臭性微粒子には、微粒子3gに対
し、鉄フタロシアニン・ポリカルボン酸が約0.06 
g tB持されていた。実施例1と同様にヒトによる官
能試験から、消臭性多孔’i微粒子の消臭性能を調べた
。その結果を表1にまとめた。
Example 3 Instead of 50 parts by weight of methyl methacrylate in Example 1,
Monomethacrylate of 25 parts by weight of methyl methacrylate and 200 parts of polyethylene glycol (commercial product, Bremmer P
E-200) The same procedure as in Example 1 was carried out except that 25 parts by weight was used to obtain hydrophilized methyl methacrylate-based porous 'Jim particles containing polyethylene glycol chains. The fine particles were immersed in an aqueous solution of iron phthalocyanine polycarboxylic acid (aqueous solution concentration 3 g/l, pH 12) and dehydrated and dried. The thus obtained deodorizing fine particles contain approximately 0.06 iron phthalocyanine polycarboxylic acid per 3 g of fine particles.
g tB was held. As in Example 1, the deodorizing performance of the deodorizing porous 'i fine particles was investigated through a human sensory test. The results are summarized in Table 1.

実施例4 実施例1のメタクリル酸メチル50重量部のかわりに、
2−ヒドロキシエチルメタクリレート25重量部、メタ
クリル酸メチル25重量部を用いた他は同様に行い、ヒ
ドロキシエチルメタクリレート系の多孔質微粒子を合成
し、実施例2と同様にコバルトフタロシアニン・ポリカ
ルボン酸を担持させたところ、微粒子3gに対し、コバ
ルトフタロシアニン・ポリカルボン酸が約0.04g担
持されていた。実施例1と同様にヒトによる官能試験か
ら、消臭性多孔質微粒子の消臭性能を調べた。その消臭
試験の結果を表1にまとめた。
Example 4 Instead of 50 parts by weight of methyl methacrylate in Example 1,
Hydroxyethyl methacrylate-based porous fine particles were synthesized in the same manner as in Example 2, except that 25 parts by weight of 2-hydroxyethyl methacrylate and 25 parts by weight of methyl methacrylate were used, and cobalt phthalocyanine polycarboxylic acid was supported in the same manner as in Example 2. As a result, approximately 0.04 g of cobalt phthalocyanine polycarboxylic acid was supported on 3 g of fine particles. As in Example 1, the deodorizing performance of the deodorizing porous fine particles was investigated through human sensory tests. The results of the deodorization test are summarized in Table 1.

実施例5 実施例1のメタクリル酸メチル50重量部のかわりに、
スチレン50重量部、ポリエチレングリコールジメタク
リレート50重量部を用いた他は同様に行い、スチレン
系の親水性の多孔質微粒子を合成し、実施例2と同様に
コバルトフタロシアニン・ポリカルボン酸を担持させた
ところ、微粒子3gに対し、コバルトフタロシアニン・
ポリカルボン酸が約0.05 g担持されていた。実施
例1と同様にヒトによる官能試験から、消臭性多孔質微
粒子の消臭性能を調べた。その消臭試験の結果を表1に
まとめた。
Example 5 Instead of 50 parts by weight of methyl methacrylate in Example 1,
The same procedure was repeated except that 50 parts by weight of styrene and 50 parts by weight of polyethylene glycol dimethacrylate were used to synthesize styrene-based hydrophilic porous fine particles, and cobalt phthalocyanine/polycarboxylic acid was supported in the same manner as in Example 2. However, for 3g of fine particles, cobalt phthalocyanine
Approximately 0.05 g of polycarboxylic acid was supported. As in Example 1, the deodorizing performance of the deodorizing porous fine particles was investigated through human sensory tests. The results of the deodorization test are summarized in Table 1.

なお、表1に示す数値は、各実施例について10人のモ
ニターによる官能試験結果である。すなわち、官能試験
はlO大のモニターに、消臭性の多孔質微粒子中に表1
に示す臭気成分500ppmを含有する空気を通過させ
、バッグに収容したガスを嗅いでもらい、その臭いにつ
いて、下記のような判定基準で評価してもらい、その平
均値を記入したものである。
The numerical values shown in Table 1 are the results of sensory tests conducted by 10 monitors for each example. In other words, the sensory test was carried out using a 100 liter monitor, containing Table 1 in deodorizing porous fine particles.
Air containing 500 ppm of odor components shown in Figure 1 was passed through the bag, and the participants were asked to smell the gas contained in the bag.The participants were asked to evaluate the odor using the following criteria, and the average value was recorded.

非常に強く感じる    4 強く感じる       3 少し感じる       2 わずかに感じる     1 全く感じない      0 参考例は、各実施例の多孔質微粒子を使用して脱臭する
前の各ガスについて、同様に10人のモニターにより嗅
いでもらった官能試験結果である。
I feel it very strongly 4 I feel it strongly 3 I feel it a little 2 I feel it a little 1 I don't feel it at all 0 In the reference example, 10 monitors similarly smelled each gas before deodorizing it using the porous fine particles of each example. These are the sensory test results I received.

Claims (1)

【特許請求の範囲】 1)連続性の孔を無数に有する多孔質微粒子に、酸化還
元能を有する金属錯体を0.01重量%以上担持せしめ
たことを特徴とする消臭機能を有する多孔質微粒子。 2)金属錯体が金属ポルフィリン、金属ポルフィラジン
及びこれらの誘導体ならびにこれらの高分子金属錯体群
の中から選ばれた少なくとも1種以上を含有することを
特徴とする請求項1記載の消臭機能を有する多孔質微粒
子。
[Scope of Claims] 1) A porous material having a deodorizing function, characterized in that 0.01% by weight or more of a metal complex having redox ability is supported on porous fine particles having countless continuous pores. Fine particles. 2) The deodorizing function according to claim 1, wherein the metal complex contains at least one selected from metal porphyrin, metal porphyrazine, derivatives thereof, and polymer metal complexes thereof. porous fine particles.
JP63253930A 1988-10-11 1988-10-11 Porous fine particles having deodorizing function Pending JPH02102733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253930A JPH02102733A (en) 1988-10-11 1988-10-11 Porous fine particles having deodorizing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253930A JPH02102733A (en) 1988-10-11 1988-10-11 Porous fine particles having deodorizing function

Publications (1)

Publication Number Publication Date
JPH02102733A true JPH02102733A (en) 1990-04-16

Family

ID=17257997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253930A Pending JPH02102733A (en) 1988-10-11 1988-10-11 Porous fine particles having deodorizing function

Country Status (1)

Country Link
JP (1) JPH02102733A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095914A (en) * 2000-09-25 2002-04-02 Sanyo Electric Co Ltd Air cleaning filter and air treatment apparatus using the same
WO2002070122A1 (en) * 2001-03-06 2002-09-12 Wako Pure Chemical Industries, Ltd. Absorbent for planar polycyclic aromatic compound
JP2017227714A (en) * 2016-06-21 2017-12-28 コニカミノルタ株式会社 Image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095914A (en) * 2000-09-25 2002-04-02 Sanyo Electric Co Ltd Air cleaning filter and air treatment apparatus using the same
WO2002070122A1 (en) * 2001-03-06 2002-09-12 Wako Pure Chemical Industries, Ltd. Absorbent for planar polycyclic aromatic compound
JPWO2002070122A1 (en) * 2001-03-06 2004-07-02 和光純薬工業株式会社 Adsorbent for planar polycyclic aromatic compounds
JP2017227714A (en) * 2016-06-21 2017-12-28 コニカミノルタ株式会社 Image forming apparatus

Similar Documents

Publication Publication Date Title
JPH0474024B2 (en)
JPH0657240B2 (en) Deodorant
JPH02102733A (en) Porous fine particles having deodorizing function
KR101369021B1 (en) Low temperature oxidation catalyst improved water-stability for removal of toxic gases
JPH0373155A (en) Water absorptive resin composition and deodorizing method using the same composition
JPH02102268A (en) Fine porous particle
JPH0242946B2 (en)
JP2007038106A (en) Deodorization method
JPS62163726A (en) Simple deodorizer
JPS63264137A (en) Deodorizer
JPH1156990A (en) Manufacture of odor removing filter
JP2642106B2 (en) Deodorant fiber and method for producing the same
JPS63245468A (en) Deodorizing high-molecular material
JPS6233900A (en) Paper equipped with deodorizing function
JPS61258806A (en) Polymeric material with deodorant function
JPS626984A (en) Deodorizing fiber
JPS643137B2 (en)
JP3854393B2 (en) Deodorant and deodorant composition
JPH0620539B2 (en) Deodorant
JPS626985A (en) Deodorizing fiber
JP2001190649A (en) Deodorizing porous body
JPS61258077A (en) Deodorizing fiber
JPH05317399A (en) Deodorizing material
JPS6357054A (en) Deodorizing material
JP2000084058A (en) Deodorizing material and deodorizing filter using same