JPH0210239B2 - - Google Patents

Info

Publication number
JPH0210239B2
JPH0210239B2 JP18982882A JP18982882A JPH0210239B2 JP H0210239 B2 JPH0210239 B2 JP H0210239B2 JP 18982882 A JP18982882 A JP 18982882A JP 18982882 A JP18982882 A JP 18982882A JP H0210239 B2 JPH0210239 B2 JP H0210239B2
Authority
JP
Japan
Prior art keywords
diaphragm
electrodeposition
tank
coated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18982882A
Other languages
Japanese (ja)
Other versions
JPS5980794A (en
Inventor
Makoto Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP18982882A priority Critical patent/JPS5980794A/en
Publication of JPS5980794A publication Critical patent/JPS5980794A/en
Publication of JPH0210239B2 publication Critical patent/JPH0210239B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 本発明は、電着塗装装置の改良に関する。[Detailed description of the invention] The present invention relates to improvements in electrodeposition coating equipment.

従来、水分散性または水溶性の電着塗料を満し
た電着槽内に一方の電極を設けるとともに、該電
着槽内を搬送される被塗物を他方の電極とし、両
電極間に被塗物が電着槽に浸漬する前から通電す
るいわゆる通電入槽方式で一定の直流電流を通電
して、上記被塗物上に電着塗料を付着させて行な
うものが知られている。この電着塗装によれば、
自動車車体等の塗装をかなり良好に行なうことが
できるが、上述のように通電入槽方式で電極と被
塗物の間に一定の直流電流を通電して行なうた
め、被塗物の入槽時に電着槽に部分的に浸漬され
る被塗物に大きな電流が流れ、このため塗膜面に
ハツシユマークすなわち波肌が生じてしまうとい
う欠点があつた。
Conventionally, one electrode is provided in an electrodeposition tank filled with water-dispersible or water-soluble electrodeposition paint, and the object to be coated that is transported in the electrodeposition tank is used as the other electrode, and the coating is applied between the two electrodes. A method is known in which electrocoating paint is deposited on the object to be coated by applying a constant direct current using a so-called energization tank method in which electricity is applied before the object is immersed in the electrodeposition tank. According to this electrodeposition coating,
It is possible to paint automobile bodies, etc. fairly well, but as mentioned above, the energizing tank method is used to pass a constant DC current between the electrode and the object to be coated, so when the object to be coated enters the tank, A drawback is that a large current flows through the object partially immersed in the electrodeposition bath, resulting in the formation of hatch marks, or undulations, on the surface of the coating.

このように塗膜面にハツシユマークが生ずるの
を防止するため、特公昭54−41617号においては、
上記被塗物と電極との間に流れる電流を、被塗物
の搬送方向において変化させ、搬送方向に進むほ
ど大きくし、すなわち入槽部での電流値を小さく
した状態で電着塗装を行なう電着塗装方法を提案
している。
In order to prevent hatch marks from forming on the coating surface, in Japanese Patent Publication No. 54-41617,
The electric current flowing between the object to be coated and the electrode is changed in the direction of conveyance of the object to be coated, and increases as it progresses in the direction of conveyance, that is, electrodeposition coating is performed with the current value at the bath entry section being reduced. We are proposing an electrodeposition coating method.

この電着塗装方法によれば、ハツシユマークの
ない一段とすぐれた外観の電着塗膜を得ることが
できるが、この方法においては上記電流の搬送方
向の変化を、電極のサイズ、あるいはこの電極の
被塗物からの距離、またはこの電極と被塗物の間
に印加する電圧値を搬送方向に変化させることに
よつて生じさせているので、電極の大きさを変え
る場合には、種々の大きさの電極を用意するか、
あるいは特殊形状の電極を用意しなければなら
ず、また電極と被塗物の間の距離を変える場合に
は、電極から被塗物までの距離を入槽側ほど大き
くしなければならず、すなわち電極を斜め配置し
なければならず、従つて広いスペースを必要と
し、このため電着槽がかなり大きくなつてしま
い、更に電極と被塗物の間に印加する電圧値を変
える場合には、各電極に印加する電圧を変えるた
めの装置が必要となるほど欠点も多い。
According to this electrodeposition coating method, it is possible to obtain an electrodeposition coating film with a better appearance without hatch marks, but in this method, the change in the current transport direction is It is generated by changing the distance from the object to be coated or the voltage value applied between this electrode and the object to be coated in the transport direction, so when changing the size of the electrode, it is necessary to change the size of the electrode. Prepare electrodes or
Alternatively, a specially shaped electrode must be prepared, and if the distance between the electrode and the object to be coated is changed, the distance from the electrode to the object to be coated must be increased toward the tank side. The electrodes have to be arranged diagonally, which requires a large space, which makes the electrodeposition bath quite large.Furthermore, when changing the voltage value applied between the electrode and the object to be coated, There are many drawbacks, such as the need for a device to change the voltage applied to the electrodes.

一方、電着槽内での被塗物への塗装が進むと、
塗料中の塗料成分が被塗物に付着されるので、塗
料中の中和剤の濃度が高くなり、従つて塗料のク
ーロン効率が低下し、この結果塗膜の膜厚の低下
という事態を生じる。このため現在は、塗料中の
中和剤の濃度を一定にするため、電着槽内に被塗
物の搬送路に沿つて隔膜室を設け、電着塗装によ
り被塗物に電着した塗膜形成分に見合う量の中和
剤を上記隔膜室で除去して、塗料中の中和剤の濃
度を一定に保つタイプの電着塗装装置を用いるこ
とが多くなつている。このタイプの電着塗装装置
においては、中和剤濃度が槽内塗料の中和剤濃度
と同じ塗料を補給塗料として用いることができ電
着槽の管理が容易である。この隔膜室を備えたタ
イプの電着塗装装置においてはハツシユマークの
発生を防止するために、入槽部付近には隔膜室
(極板)を設置しないようにしているが、これで
は、入槽時に被塗物への塗装が有効に行なわれな
いため、所望の塗膜を得るためには所定数の隔膜
室を出槽側の方へずらして配置しなければならず
電着槽が長くなるという問題がある。
On the other hand, as the coating progresses on the object in the electrodeposition tank,
As the paint components in the paint adhere to the object to be coated, the concentration of the neutralizing agent in the paint increases, and the Coulombic efficiency of the paint decreases, resulting in a decrease in the film thickness of the paint film. . For this reason, in order to maintain a constant concentration of the neutralizing agent in the paint, a diaphragm chamber is installed in the electrodeposition tank along the conveyance path of the object to be coated. Electrodeposition coating equipment of a type that maintains a constant concentration of neutralizing agent in the paint by removing an amount of neutralizing agent commensurate with the film-forming component in the membrane chamber is increasingly used. In this type of electrodeposition coating apparatus, a paint whose neutralizing agent concentration is the same as that of the paint in the tank can be used as a replenishing paint, and the electrodeposition tank can be easily managed. In this type of electrodeposition coating equipment equipped with a diaphragm chamber, the diaphragm chamber (electrode plate) is not installed near the tank entry area in order to prevent the generation of hatch marks. Since the coating cannot be applied effectively to the object to be coated, in order to obtain the desired coating film, a predetermined number of diaphragm chambers must be shifted toward the exit tank, which results in a longer electrodeposition tank. There's a problem.

また、上記の特公昭54−41617号の他に、入槽
時の問題を解決するために、電極各々に可変抵抗
器を設け、入槽時の電流値を下げるもの(実開昭
56−7761号)や、イオン隔膜の濃度を可変とし、
入槽時の電流値を下げるもの(実開昭55−96166
号)がある。
In addition to the above-mentioned Japanese Patent Publication No. 54-41617, in order to solve the problem when entering the tank, a variable resistor is installed on each electrode to lower the current value when entering the tank (see
56-7761) and the concentration of the ion diaphragm is variable.
A device that lowers the current value when entering the tank (Utility Model No. 55-96166)
No.).

しかし、前者では可変抵抗器を設ける必要があ
り、このため制御が複雑化するとともに、塗装が
進むにつれて塗料のクーロン効率が、特公昭54−
41617号と同じく、低下するという問題がある。
後者ではイオン隔膜の濃度を可変にする必要があ
り、このため濃度管理が難しくなるとともに、異
なるイオン濃度のイオン水が必要となり装置等が
複雑化するという問題がある。
However, in the former case, it is necessary to install a variable resistor, which complicates control, and as painting progresses, the coulomb efficiency of the paint decreases.
Like No. 41617, there is a problem of deterioration.
In the latter case, it is necessary to make the concentration of the ion diaphragm variable, which makes concentration management difficult, and requires ionized water with different ion concentrations, which complicates the equipment.

本発明は、上記隔膜室を備えたタイプの電着塗
装装置において、形成される塗膜面にハツシユマ
ークが生ずるのを防止する従来の構成の上記した
ような欠点のない電着塗装装置を提供することを
目的とするものである。
The present invention provides an electrodeposition coating apparatus of the type equipped with the above-mentioned diaphragm chamber, which is free from the above-described drawbacks of the conventional structure and which prevents the formation of hatch marks on the surface of the coated film formed. The purpose is to

本発明は、電着塗料が満たされた電着槽内に被
塗物の搬送路に沿つて複数の隔膜室を設け、該隔
膜室内にそれぞれ電極板を配置し、この電極板
と、前記電着塗料内に浸漬される被塗物との間に
通電入槽方式で直流電圧を印加して、被塗物の表
面に前記電着塗料を電着することによつて塗装を
行なう電着塗装装置において、前記電着槽の入槽
部側の隔膜室に、電導度が他の隔膜室に供給され
る隔膜水の電導度より低い隔膜水を循環供給する
ため、該隔膜水を冷却する冷却器を備えた隔膜水
循環回路を設けたことを特徴とするものである。
The present invention provides a plurality of diaphragm chambers along the conveyance path of the object to be coated in an electrodeposition tank filled with an electrodeposition paint, and arranges an electrode plate in each of the diaphragm chambers. Electrodeposition coating in which the electrodeposition paint is applied to the surface of the object by electrodeposition by applying a DC voltage between the object to be coated and the object immersed in the coating material using an energizing tank method. In the apparatus, in order to circulately supply diaphragm water whose conductivity is lower than the conductivity of diaphragm water supplied to other diaphragm chambers to the diaphragm chamber on the entrance side of the electrodeposition bath, cooling is performed to cool the diaphragm water. It is characterized by having a diaphragm water circulation circuit equipped with a container.

すなわち、本発明の電着塗装装置においては、
上記冷却器を備えた隔膜水循環回路によつて、電
着槽内に被塗物の搬送方向に沿つて配された複数
の隔膜室のうち電着槽の入槽部側の隔膜室内の隔
膜水を冷却することによつて、その電導度を他の
隔膜室内の隔膜水の電導度より低下させて、入槽
部においては被塗物と電極との間に流れる電流を
低下させ、以上により被塗物の入槽時に多大な電
流が流れるのを防止して、塗装面にハツシユマー
クが生ずるのを防止している。このように本発明
によれば、入槽部側の隔膜室内の隔膜水電導度を
他より低下させるだけの簡単な構造で、かつ別に
余分なスペースを必要とすることもなく、有効に
塗膜面上にハツシユマークが生ずるのを防止する
ことができるとともに、電着槽を長くすることな
く入槽直後から有効に塗膜を形成することができ
る。
That is, in the electrodeposition coating apparatus of the present invention,
The diaphragm water circulation circuit equipped with the above-mentioned cooler allows diaphragm water in the diaphragm chamber on the entrance side of the electrodeposition tank among the plurality of diaphragm chambers arranged along the transport direction of the object to be coated in the electrodeposition tank. By cooling the diaphragm water, its conductivity is lowered than that of the diaphragm water in other diaphragm chambers, and the current flowing between the object to be coated and the electrode in the bath entry section is reduced. This prevents a large amount of current from flowing when the coating material is placed in the bath, thereby preventing hatch marks from forming on the coating surface. As described above, according to the present invention, the structure is simple enough to reduce the water conductivity of the diaphragm in the diaphragm chamber on the tank entrance side compared to other diaphragms, and the coating film can be effectively removed without requiring extra space. It is possible to prevent hatch marks from forming on the surface, and to form a coating film effectively immediately after entering the electrodeposition tank without increasing the length of the electrodeposition tank.

次に本発明の好ましい実施例による電着塗装装
置について説明する。
Next, an electrodeposition coating apparatus according to a preferred embodiment of the present invention will be described.

本発明は、アニオン型電着塗装およびカチオン
型電着塗装のいずれの塗装方法にも適用できるも
のであり、第1図にカチオン型電着塗装装置を示
す。
The present invention can be applied to both anionic and cationic electrodeposition coating methods, and FIG. 1 shows a cationic electrodeposition coating apparatus.

第1図に示されたカチオン型電着塗装装置は、
電着槽1を有し、この電着槽1内には、その両側
壁1aに沿つて隔膜装置2が配置されている。こ
の隔膜装置2は、複数の隔膜室3を有し、この隔
膜室3の内部には、それぞれ直流電源Vの陽極側
に接続された電極板4が配置されている。上記直
流電源Vの陰極側は、電着槽1内の塗料液5中に
浸漬され、上記隔膜装置2に沿つて、第2図に示
されたコンベアCによつて搬送される被塗物6に
接続されている。電極板4と被塗物6との通電は
被塗物6が電着槽1に浸漬される前から通電する
いわゆる通電入槽方式で行つている。なお、アニ
オン型電着塗装装置は、第1図に示したカチオン
型電着塗装装置と構造は同一であるが、隔膜室3
内の電極板4が上記直流電源Vの陽極に接続され
ており、一方被塗物6が上記直流電源Vの陰極に
接続されている。隔膜室3内には、該隔膜室の上
方から底部近傍まで伸長した供給管7から隔膜水
を供給し、隔膜室の上部側方から外方に延び電着
槽1の側壁を貫通した排出管8から電着槽1の系
外へ排出している。
The cationic electrodeposition coating device shown in Figure 1 is
It has an electrodeposition tank 1, in which a diaphragm device 2 is arranged along both side walls 1a. This diaphragm device 2 has a plurality of diaphragm chambers 3, and inside each of the diaphragm chambers 3, electrode plates 4 connected to the anode side of a DC power source V are arranged. The cathode side of the DC power supply V is immersed in the coating liquid 5 in the electrodeposition tank 1, and the object 6 to be coated is conveyed along the diaphragm device 2 by the conveyor C shown in FIG. It is connected to the. The electrode plate 4 and the object to be coated 6 are energized by a so-called energization bath method in which the electrode plate 4 and the object to be coated 6 are energized before the object to be coated 6 is immersed in the electrodeposition tank 1. The anionic electrodeposition coating device has the same structure as the cationic electrodeposition coating device shown in FIG. 1, but the diaphragm chamber 3
The inner electrode plate 4 is connected to the anode of the DC power supply V, while the object 6 to be coated is connected to the cathode of the DC power supply V. Diaphragm water is supplied into the diaphragm chamber 3 from a supply pipe 7 that extends from the top of the diaphragm chamber to near the bottom, and a discharge pipe that extends outward from the upper side of the diaphragm chamber and penetrates the side wall of the electrodeposition tank 1. 8 to the outside of the electrodeposition tank 1.

上記電着槽1の側壁に沿つて複数配置された隔
膜室3は、第2図に示されているように入槽側隔
膜室3aと残りの隔膜室3bに分けられており、
隔膜室3bには通常の電着塗装に用いられる電導
度(400〜500μ/cm)の隔膜水が、隔膜室3a
には、隔膜室3b内の隔膜水の電導度より低い値
の電導度(50〜100μ/cm)の隔膜水が満たさ
れている。入槽側の隔膜室3aには、該隔膜室3
aに上記低い電導度の隔膜水を循環供給する第1
隔膜水循環回路9が接続されており、残りの隔膜
室3bには、該隔膜室3bに上記通常の電導度の
隔膜水を循環供給する第2隔膜水循環回路10が
接続されている。
A plurality of diaphragm chambers 3 arranged along the side wall of the electrodeposition bath 1 are divided into an entry side diaphragm chamber 3a and a remaining diaphragm chamber 3b, as shown in FIG.
In the diaphragm chamber 3b, diaphragm water with a conductivity (400 to 500 μ/cm) used for ordinary electrodeposition coating is filled in the diaphragm chamber 3a.
is filled with diaphragm water having a lower conductivity (50 to 100 μ/cm) than the conductivity of the diaphragm water in the diaphragm chamber 3b. The diaphragm chamber 3a on the tank entry side includes the diaphragm chamber 3a.
The first part that circulates and supplies the diaphragm water with low conductivity to a.
A diaphragm water circulation circuit 9 is connected to the remaining diaphragm chamber 3b, and a second diaphragm water circulation circuit 10 is connected to the remaining diaphragm chamber 3b for circulating and supplying diaphragm water having the above-mentioned normal conductivity to the diaphragm chamber 3b.

第3図に示されているように、隔膜水の電導度
−温度特性は、ほぼ比例状態にあり、これを利用
して上記第1隔膜水循環回路9には、この回路9
内に流れる隔膜水を冷却してその電導度を上記所
定の低い電導度まで下げる冷却器Cpが設けられて
いる。第3図に示す特性線a,bは基準の温度
(20℃)で160μ/cm、400μ/cmの電導度を有
する隔膜水の温度を変化させた場合の電導度の変
化を示したものであり、後述する実施例では電導
度100μ/cmの隔膜水は特性線aのものを用い、
電導度400〜500μ/cmの隔膜水は特性線bのも
のを用いている。このようにすればそれぞれの隔
膜水の温度を低温にできる利点がある。しかしか
ならずしも異なる特性線a,,bを有する隔膜水
を用いなくてもよく、特性線aを示す隔膜水のみ
を用いてもよい。
As shown in FIG. 3, the conductivity-temperature characteristics of the diaphragm water are almost proportional, and by utilizing this, the first diaphragm water circulation circuit 9 is
A cooler C p is provided for cooling the diaphragm water flowing therein and lowering its conductivity to the predetermined low conductivity. Characteristic lines a and b shown in Figure 3 show changes in conductivity when the temperature of diaphragm water is changed, which has conductivities of 160 μ/cm and 400 μ/cm at the standard temperature (20°C). In the examples described later, the diaphragm water with an electrical conductivity of 100μ/cm is of characteristic line a.
The diaphragm water with an electrical conductivity of 400 to 500 μ/cm is of characteristic line b. This has the advantage that the temperature of each diaphragm water can be lowered. However, it is not necessary to use diaphragm water having different characteristic lines a, , b, and only diaphragm water exhibiting characteristic line a may be used.

上記第1および第2隔膜水循環回路9および1
0には、それぞれ第1および第2隔膜水貯槽11
および12が設けられており、これら第1および
第2隔膜水貯槽11および12内には、隔膜室3
aおよび3bから排出される隔膜水が収容される
ようになつている。従つて、第1隔膜水貯槽11
内の隔膜水の電導度は、隔膜室3a内の隔膜水の
電導度と、また第2隔膜水貯槽12内の隔膜水の
電導度は、隔膜室3bの電導度とそれぞれ同じで
ある。
The first and second diaphragm water circulation circuits 9 and 1
0 have first and second diaphragm water storage tanks 11, respectively.
and 12 are provided, and inside these first and second diaphragm water storage tanks 11 and 12, a diaphragm chamber 3 is provided.
The diaphragm water discharged from a and 3b is accommodated. Therefore, the first diaphragm water storage tank 11
The conductivity of the diaphragm water in the diaphragm chamber 3a is the same as that of the diaphragm water in the diaphragm chamber 3a, and the conductivity of the diaphragm water in the second diaphragm water storage tank 12 is the same as that of the diaphragm chamber 3b.

電着槽1内での被塗物6の塗装が進むと、上記
隔膜室3内には、塗料液5中の被塗物6に電着さ
れた固形物である塗料成分に見合うだけ中和剤が
吸収される。隔膜室3内の隔膜水は、この吸収し
た中和剤の分だけ電導度が上がる。そこで、第1
および第2隔膜水貯槽11,12には、それぞれ
上記隔膜水の電導度を所定の範囲内に保つための
電導度調整装置13,14が設けられている。こ
の電導度調整装置13,14は、純水を隔膜水貯
槽11,12に供給するための純水供給管路1
5,16を備えている。この純水供給管路15,
16には、自動開閉弁17,18が設けられてお
り、この自動開閉弁17,18は、弁駆動装置1
9,20によつてその開閉が制御されるようにな
つている。この弁駆動装置19,20は、第1お
よび第2隔膜水貯槽11,12内の隔膜水の電導
度を検出し、この電導度が上記所定の範囲の値よ
り高くなつたとき信号Sを出力する電導度検出装
置21,22に接続されている。上記弁駆動装置
19,20は、この電導度検出装置21,22か
ら上記信号Sを受けたとき、開閉弁17,18を
開き、純水を隔膜水貯槽11,12に供給して、
該隔膜水貯槽11,12中の隔膜水の電導度を所
定値に保つ。
As the coating of the object 6 in the electrodeposition bath 1 progresses, the diaphragm chamber 3 contains neutralized paint components corresponding to the solid matter electrodeposited on the object 6 in the coating liquid 5. agent is absorbed. The electrical conductivity of the diaphragm water in the diaphragm chamber 3 increases by the amount of the absorbed neutralizing agent. Therefore, the first
The second diaphragm water storage tanks 11 and 12 are respectively provided with conductivity adjusting devices 13 and 14 for maintaining the conductivity of the diaphragm water within a predetermined range. The conductivity adjustment devices 13 and 14 are connected to a pure water supply pipe 1 for supplying pure water to the diaphragm water storage tanks 11 and 12.
5,16. This pure water supply pipe 15,
16 is provided with automatic on-off valves 17 and 18, and these automatic on-off valves 17 and 18 are connected to the valve driving device 1.
Its opening and closing are controlled by 9 and 20. The valve driving devices 19, 20 detect the conductivity of the diaphragm water in the first and second diaphragm water storage tanks 11, 12, and output a signal S when the conductivity becomes higher than the value in the predetermined range. The electrical conductivity detection devices 21 and 22 are connected to the electrical conductivity detection devices 21 and 22. When the valve drive devices 19 and 20 receive the signal S from the conductivity detection devices 21 and 22, they open the on-off valves 17 and 18, supply pure water to the diaphragm water storage tanks 11 and 12, and
The conductivity of the diaphragm water in the diaphragm water storage tanks 11 and 12 is maintained at a predetermined value.

第1および第2隔膜水循環回路9,10の供給
側の管路にはポンプPが介設されており、このポ
ンプPにより、電導度が一定に保たれた隔膜水を
隔膜水貯槽11,12から隔膜室3に供給する。
従つて、隔膜室3b内の隔膜水の電導度は、上記
所定範囲内の通常の電導度に保たれ、隔膜室3a
内の隔膜水の電導度は、上記通常の電導度より低
い所定範囲の電導度に保たれる。
A pump P is interposed in the pipelines on the supply side of the first and second diaphragm water circulation circuits 9 and 10, and this pump P supplies diaphragm water whose conductivity is kept constant to the diaphragm water storage tanks 11 and 12. from the diaphragm chamber 3.
Therefore, the conductivity of the diaphragm water in the diaphragm chamber 3b is maintained at the normal conductivity within the above-mentioned predetermined range, and the conductivity of the diaphragm water in the diaphragm chamber 3a
The conductivity of the diaphragm water within the diaphragm is maintained within a predetermined range lower than the above-mentioned normal conductivity.

なお、上記複数の隔膜室3内の隔膜水の電導度
を入槽側から段階的に高くするため、入槽側の隔
膜室3aに近い隔膜室3bにも第2図に想像線で
示したように第1隔膜水循環回路9を延ばし、こ
の隔膜室3bには、隔膜水貯槽11および12か
ら隔膜水が供給されるようにして、この内部の隔
膜水の電導度を、第1および第2貯槽11および
12内の隔膜水の電導度の中間の電導度としても
よい。
In addition, in order to gradually increase the conductivity of the diaphragm water in the plurality of diaphragm chambers 3 from the tank entry side, the diaphragm chamber 3b near the diaphragm chamber 3a on the tank entry side is also shown by imaginary lines in FIG. The first diaphragm water circulation circuit 9 is extended as shown in FIG. The conductivity may be intermediate between the conductivities of the diaphragm water in the storage tanks 11 and 12.

以上説明した構造のカチオン型電着塗装装置を
用いて、次の電着条件により電着塗装を行なつた
場合の本発明の実施例と、同じようにカチオン型
電着塗装装置を用いて後述の電着条件で電着塗装
した場合の比較例1、2とを第4図に示す。第4
図は被塗物を搬送しながらら電着槽に浸漬してい
つた場合の経過時間と被塗物と電極板との間に流
れる電流変化の関係を示す。
Examples of the present invention will be described below in which electrodeposition coating is performed using the cationic electrodeposition coating apparatus having the structure described above and under the following electrodeposition conditions, and in which the cationic electrodeposition coating apparatus is similarly used. Comparative Examples 1 and 2 in which electrodeposition was performed under the following electrodeposition conditions are shown in FIG. Fourth
The figure shows the relationship between the elapsed time and the change in the current flowing between the object to be coated and the electrode plate when the object to be coated is immersed in the electrodeposition bath while being conveyed.

(1) 実施例の電着条件 電着槽:長さ35m、幅2.5m、深さ2m 隔膜室:高さ2m、厚さ0.1m、幅1m(なお、入
槽側から第1番目の隔膜室の高さは
1.5mである) 片側配置の個数17個 被塗物:自動車の車体 総表面積 60m2 塗 料:OTO−U−52(日本ペイント社製) 電導度 1400μ/cm 温 度 27℃ 濃 度 21% クーロン効率 33mg/c 印加電圧:330V(カチオン型) 入槽側の隔膜室中の隔膜水の電導度(この時の
隔膜水の温度:10℃、第3図に示す特性線a)
100μ/cm 他の隔膜室中の隔膜水の電導度(この時の隔膜
水の温度:20〜40℃、第3図に示す特性線b)
400〜500μ/cm 被塗物の電着槽への全没時間 2.5分 (2) 比較例1の電着条件 上記実施例の全部の隔膜室の電導度を400〜
500μ/cmとしたもの。
(1) Electrodeposition conditions in the example Electrodeposition tank: 35 m long, 2.5 m wide, 2 m deep Diaphragm chamber: 2 m high, 0.1 m thick, 1 m wide (the first diaphragm from the tank entry side) The height of the room is
1.5m) Number of pieces placed on one side: 17 Object to be coated: Car body Total surface area: 60m 2 Paint: OTO-U-52 (manufactured by Nippon Paint Co., Ltd.) Electrical conductivity: 1400μ/cm Temperature: 27℃ Concentration: 21% Coulombs Efficiency 33mg/c Applied voltage: 330V (cation type) Conductivity of diaphragm water in the diaphragm chamber on the entry side (temperature of diaphragm water at this time: 10℃, characteristic line a shown in Figure 3)
100μ/cm Electrical conductivity of diaphragm water in other diaphragm chambers (temperature of diaphragm water at this time: 20 to 40℃, characteristic line b shown in Figure 3)
400 to 500 μ/cm Total immersion time of the object to be coated in the electrodeposition bath 2.5 minutes (2) Electrodeposition conditions for Comparative Example 1 The conductivity of all the membrane chambers in the above example was set to 400 to 400 μ/cm.
500μ/cm.

他の電着条件は上記実施例と同じ。 Other electrodeposition conditions were the same as in the above example.

(3) 比較例2の電着条件 電着槽内両側の入槽部の隔膜室を3個ずつ除
去して残りの隔膜室(片側14個ずつ配置)の電
導度を400〜500μ/cmとしたもの。
(3) Electrodeposition conditions for Comparative Example 2 Three of the diaphragm chambers in the entrance part on both sides of the electrodeposition tank were removed, and the conductivity of the remaining diaphragms (14 on each side) was set to 400 to 500 μ/cm. What I did.

他の電着条件は上記実施例と同じ。 Other electrodeposition conditions were the same as in the above example.

第4図の特性線bに示すように、比較例1は被
塗物の入槽時には大きな電流が流れてハツシユマ
ークが生じた。第4図の特性線cに示す比較例2
は、入槽時にハツシユマークは生じなかつたが、
被塗物の入槽時に流れる電流は極わずかなものな
ので入槽時においては塗膜を有効に形成できない
ため、所望の塗膜を得るには所定数の隔膜室を出
槽側の方へずらして配置しなければならず電着槽
が長くなるという問題がある。
As shown by the characteristic line b in FIG. 4, in Comparative Example 1, a large current flowed when the object to be coated entered the bath, resulting in hash marks. Comparative example 2 shown in characteristic line c in Fig. 4
Although no hash mark appeared when entering the tank,
Since the current that flows when the object to be coated enters the tank is extremely small, a coating film cannot be effectively formed when the object enters the tank. Therefore, in order to obtain the desired coating film, a predetermined number of diaphragm chambers are shifted toward the exit side of the tank. There is a problem in that the electrodeposition tank must be arranged in such a way that the electrodeposition bath becomes long.

一方、第3図の特性線aに示す本発明の実施例
では被塗物である車体に電着塗装を行なつたとこ
ろ、入槽時に大きな電流が流れることなくハツシ
ユマークのない良好な塗装面を得ることができ
た。
On the other hand, in the embodiment of the present invention shown in characteristic line a in Fig. 3, when the object to be coated, which is a car body, was electrocoated, a good painted surface without any hash marks was obtained without a large current flowing when entering the tank. I was able to get it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を適用することのできるカチ
オン型電着塗装装置を示す断面図、第2図は、本
発明の実施例による電着塗装装置を示す概略図、
第3図は、隔膜水の電導度温度特性を示すグラ
フ、第4図は本発明の実施例と比較例との電着条
件で被塗物を電着槽に浸漬していつた場合の経過
時間と被塗物と電極板との間に流れる電流変化の
関係を示したグラフである。 1……電着槽、3……隔膜室、3a……入槽側
の隔膜室、3b……他の隔膜室、9……第1隔膜
水循環回路、10……第2隔膜水循環回路、11
……第1隔膜水貯槽、12……第2隔膜水貯槽、
Cp……冷却器。
FIG. 1 is a sectional view showing a cationic electrodeposition coating apparatus to which the present invention can be applied, and FIG. 2 is a schematic diagram showing an electrodeposition coating apparatus according to an embodiment of the present invention.
Figure 3 is a graph showing the conductivity temperature characteristics of diaphragm water, and Figure 4 is the elapsed time when the object to be coated is immersed in the electrodeposition tank under the electrodeposition conditions of the example of the present invention and the comparative example. 2 is a graph showing the relationship between changes in the current flowing between the object to be coated and the electrode plate. DESCRIPTION OF SYMBOLS 1...electrodeposition tank, 3...diaphragm chamber, 3a...diaphragm chamber on tank entry side, 3b...other diaphragm chamber, 9...first diaphragm water circulation circuit, 10...second diaphragm water circulation circuit, 11
...first diaphragm water storage tank, 12...second diaphragm water storage tank,
C p ...Cooler.

Claims (1)

【特許請求の範囲】[Claims] 1 電着塗料が満たされた電着槽内に被塗物の搬
送路に沿つて複数の隔膜室を設け、該隔膜室内に
それぞれ電極板を配置し、この電極板と、前記電
着塗料内に浸漬される被塗物との間に通電入槽方
式で直流電圧を印加して、被塗物の表面に前記電
着塗料を電着することによつて塗装を行なう電着
塗装装置において、前記電着槽の入槽部側の隔膜
室に、電導度が他の隔膜室に供給される隔膜水の
電導度より低い隔膜水を循環供給するため、該隔
膜水を冷却する冷却器を備えた隔膜水循環回路を
設けたことを特徴とする電着塗装装置。
1. A plurality of diaphragm chambers are provided along the conveyance path of the object to be coated in an electrodeposition bath filled with the electrodeposition paint, and an electrode plate is arranged in each of the diaphragm chambers. In an electrodeposition coating device that performs painting by electrodepositing the electrodeposition paint on the surface of the object to be coated by applying a DC voltage between the object to be coated and the object to be immersed in the bath, In order to circulately supply diaphragm water having a conductivity lower than that of diaphragm water supplied to other diaphragm chambers to the diaphragm chamber on the bath entrance side of the electrodeposition tank, a cooler is provided to cool the diaphragm water. An electrodeposition coating device characterized by being provided with a diaphragm water circulation circuit.
JP18982882A 1982-10-28 1982-10-28 Electrodeposition painting device Granted JPS5980794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18982882A JPS5980794A (en) 1982-10-28 1982-10-28 Electrodeposition painting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18982882A JPS5980794A (en) 1982-10-28 1982-10-28 Electrodeposition painting device

Publications (2)

Publication Number Publication Date
JPS5980794A JPS5980794A (en) 1984-05-10
JPH0210239B2 true JPH0210239B2 (en) 1990-03-07

Family

ID=16247884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18982882A Granted JPS5980794A (en) 1982-10-28 1982-10-28 Electrodeposition painting device

Country Status (1)

Country Link
JP (1) JPS5980794A (en)

Also Published As

Publication number Publication date
JPS5980794A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
US3871982A (en) Apparatus for treatment of metal strip with a liquid
US6527920B1 (en) Copper electroplating apparatus
EP0008875B1 (en) Device and apparatus for and method of electrolytically treating the surface of a metal strip
US5429738A (en) Method for forming printed circuits by elctroplating
US7981259B2 (en) Electrolytic capacitor for electric field modulation
JP2023062067A (en) System for chemical and/or electrolytic surface treatment
JPH0210239B2 (en)
US4302316A (en) Non-contacting technique for electroplating X-ray lithography
JPS5989798A (en) Electrodeposition painting device
US5342503A (en) Method for high speed continuous wire plating
KR910007161B1 (en) Systeme for producing electroplated and treated metal foil
JPS5980792A (en) Electrodeposition painting device
US3649510A (en) Coating system with coating medium circulation
CA2350147A1 (en) Electrodeposition painting systems and methods
US7887687B2 (en) Method and system for coating a workpiece
JPS59100292A (en) Electrodeposition painting device
JPS5980795A (en) Electrodeposition painting device
JPH04504444A (en) Equipment for electrodepositing metal on one or both sides of a strip
US3658677A (en) Electroflow method of electrocoating
US20040077140A1 (en) Apparatus and method for forming uniformly thick anodized films on large substrates
JPS5980796A (en) Electrodeposition painting device
KR102242959B1 (en) Electro-deposition coating method
KR102215512B1 (en) Electro-deposition coating method and electro-deposition coating equipment
JPS5980797A (en) Electrodeposition painting device
JP3277064B2 (en) Electrodeposition coating equipment