JPH02102354A - Exhaust heat recovery device for engine - Google Patents

Exhaust heat recovery device for engine

Info

Publication number
JPH02102354A
JPH02102354A JP63256228A JP25622888A JPH02102354A JP H02102354 A JPH02102354 A JP H02102354A JP 63256228 A JP63256228 A JP 63256228A JP 25622888 A JP25622888 A JP 25622888A JP H02102354 A JPH02102354 A JP H02102354A
Authority
JP
Japan
Prior art keywords
heat
valve
engine
heat recovery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63256228A
Other languages
Japanese (ja)
Inventor
Hirotomo Matsui
松井 宏友
Isamu Kubomoto
久保元 勇
Tsugunori Hata
畑 継徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63256228A priority Critical patent/JPH02102354A/en
Publication of JPH02102354A publication Critical patent/JPH02102354A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To prevent the overheat of an engine by cooling the engine cooling water with a heat exchanger for recovery of the exhausted heat of the engine in the exhaust heat recovery cycle and radiating the exhausted heat with a radiator when the temperature of the cooling water is elevated over a preset temperature for the sake of the reduction of the radiated heat from the heat exchanger. CONSTITUTION:In the titled device, a water jacket 2 of an engine 1, a heat exchanger 3 for absorption of the exhausted heat and a heat exchanger 6 for recovery of the exhausted heat of the engine are connected successively in series circulatively. In this case, a radiator 9 is connected to the heat exchanger 6 in parallel, and a heat supplying path 7 for heat recovery and a heat radiating path 10 are connected to an engine cooling water path 11 freely switchable with a heat recovering valve 31 and a heat radiating valve 32. When the temperature T1 of the engine cooling water detected with a temperature sensor 13 is elevated over a preset temperature T1H for starting of the heat radiation the valves 31 and 32 are controlled so as to be closed and opened respectively, and when the temperature T1 is lowered below a preset temperature T1L (<T1H) for ending of the heat radiation the valves 31 and 32 are controlled so as to be opened and closed respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの排熱をエンジン冷却水を介してウ
ォータジャケット及び排気熱吸収用熱交換器で吸収する
とともに、その吸収熱をエンジン排熱回収用熱交換器で
回収するようにしたエンジンの排熱回収装置に関し、排
熱回収の負荷が部分負荷又は無負荷の場合でもエンジン
のオーバーヒートを防止できる技術である。
Detailed Description of the Invention (Field of Industrial Application) The present invention absorbs engine exhaust heat through engine cooling water using a water jacket and an exhaust heat absorption heat exchanger, and also absorbs the absorbed heat from the engine exhaust heat. This technology relates to an engine exhaust heat recovery device that recovers heat using a heat recovery heat exchanger, and can prevent engine overheating even when the exhaust heat recovery load is partial or no load.

(従来の技術) この種のエンジンの排熱回収装置には、従来では、米国
特許N o 、 4.226.214に記載されたもの
がある。
(Prior Art) Conventionally, this type of engine exhaust heat recovery device is described in US Pat. No. 4,226,214.

これは、第6図に示すように、エンジン1で発電機Gを
駆動して電力を供給するとともに、エンジン1の排熱を
給湯器等の外部熱負荷100へ回収するようにしたもの
で、次のように構成されている。
As shown in FIG. 6, the engine 1 drives the generator G to supply electricity, and the exhaust heat of the engine 1 is recovered to an external heat load 100 such as a water heater. It is structured as follows.

即ち、エンジン1のウォータンヤケット2に、排気熱吸
収用熱交換器3の排熱吸収路4・温水路5・エンジン排
熱回収用熱交換器6の熱回収用授熱路7・及び冷水路8
を順に直列循環状に連通連結することにより、冷水路8
・ウォータジャケット2・排気熱吸収路4及び温水路5
でエンジン冷却水路101を構成する。そして、エンジ
ン1の排熱をエンジン冷却水路101のエンジン冷却水
を介してウォータンヤケット2及び排気熱吸収用熱交換
器3で吸収するとともに、その吸収熱をエンジン排熱回
収用熱交換器6の受熱路38を介して外部熱負荷100
に放熱するのである。
That is, the water jacket 2 of the engine 1 is provided with the exhaust heat absorption path 4 of the exhaust heat absorption heat exchanger 3, the hot water channel 5, the heat recovery heat transfer path 7 of the engine exhaust heat recovery heat exchanger 6, and cold water. Road 8
By sequentially connecting the cold water channels 8 in a series circulation manner,
・Water jacket 2 ・Exhaust heat absorption path 4 and hot water channel 5
This constitutes the engine cooling water channel 101. The exhaust heat of the engine 1 is absorbed by the water tank jacket 2 and the exhaust heat absorption heat exchanger 3 through the engine cooling water of the engine cooling waterway 101, and the absorbed heat is absorbed by the engine exhaust heat recovery heat exchanger 6. External heat load 100 via the heat receiving path 38 of
It dissipates heat.

(発明が解決しようとする課題) 上記の従来技術では、外部熱負荷100の排熱回収負荷
が部分負荷になったり無負荷になったりした場合に、排
熱回収用熱交換器6の受熱路38からの放熱量が減少す
るか又は無くなるため、エンジン冷却水路101内のエ
ンジン冷却水の温度か上昇して、エンジン1がオーバー
ヒートするという問題がある。
(Problems to be Solved by the Invention) In the above-mentioned conventional technology, when the exhaust heat recovery load of the external heat load 100 becomes a partial load or no load, the heat receiving path of the exhaust heat recovery heat exchanger 6 Since the amount of heat radiated from 38 is reduced or eliminated, there is a problem that the temperature of the engine cooling water in the engine cooling water channel 101 increases, causing the engine 1 to overheat.

本発明は、排熱回収負荷が部分負荷又は無負荷の場合で
もエンジンのオーバーヒートを防止することを目的とす
る。
An object of the present invention is to prevent engine overheating even when the exhaust heat recovery load is a partial load or no load.

(課題を解決するための手段) 本発明は、上記目的を達成するために、排熱回収装置を
次のように構成したことを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention is characterized in that an exhaust heat recovery device is configured as follows.

例えば第1図と第2図に示すように、 エンジン1のウォータジャケット2に、排気熱吸収用熱
交換器3の排熱吸収路4・温水路5・エンジン排熱回収
用熱交換器6の熱回収用授熱路7・及び冷水路8を順に
直列循環状に連通連結し、冷水路8・ウォータジャケッ
ト2・排熱吸収路4・及び温水路5から成るエンジン冷
却水路11にエンジン冷却水循環ポンプ20を介装して
構成したエンジンの排熱回収装置において、 エンジン排熱回収用熱交換器6の熱回収用授熱路7にラ
ジェータ9の放熱路10を並列状に接続し、エンジン冷
却水路11に対して、熱回収用授熱路7と放熱路10と
を、熱回収用弁31と放熱用弁32との切換開閉により
、切換え接続可能に構成し、 エンジン冷却水路11に温度センサ13を設け、温度セ
ンサ13に弁切換用制御装置14を介して熱回収用弁3
1及び放熱用弁32を切換え開閉制御可能に連携し、 温度センサ13は、エンジン冷却水路11を通過するエ
ンジン冷却水の水温を検出するものであって、 そのエンジン冷却水温の検出温度T、が、放熱開始用設
定温度T107以上になった場合には、弁切換用制御装
置14か熱回収用弁31を閉弁させて熱回収用授熱路7
を閉止させるとともに、放熱用弁32を開弁させて放熱
路10を開通させ、そのエンジン冷却水温の検出温度T
、が、放熱開始用設定温度T IHよりも低い放熱終了
用設定温度T 1L以下になった場合には、放熱用弁3
2を閉弁させて放熱路10を閉止させるとともに、熱回
収用弁31を開弁させて熱回収用授熱路7を開通させる
ように構成し、 温度センサ13か、放熱開始用設定温度T、1.以上、
又は放熱終了用設定温度T1L以下になったことを検出
することに基づき、弁切換用制御装置14が、熱回収用
弁31と放熱用弁32とのうちの、これまで閉じていた
一方の弁を開けて両弁31・32とも一旦開弁状態にし
た後、その前から開いていた他方の弁を閉じるように構
成したものである。
For example, as shown in FIGS. 1 and 2, the water jacket 2 of the engine 1 is connected to the exhaust heat absorption path 4 of the exhaust heat absorption heat exchanger 3, the hot water channel 5, and the engine exhaust heat recovery heat exchanger 6. The heat transfer path 7 for heat recovery and the cold water channel 8 are serially connected in a circulating manner, and the engine cooling water is circulated to the engine cooling channel 11 consisting of the cold water channel 8, the water jacket 2, the exhaust heat absorption channel 4, and the hot water channel 5. In the engine exhaust heat recovery device configured by interposing the pump 20, the heat radiation path 10 of the radiator 9 is connected in parallel to the heat transfer path 7 for heat recovery of the engine exhaust heat recovery heat exchanger 6, and the engine cooling is performed. The heat transfer path 7 for heat recovery and the heat radiation path 10 are configured to be switchable and connectable to the water channel 11 by switching open/close of the heat recovery valve 31 and the heat radiation valve 32, and a temperature sensor is installed in the engine cooling water path 11. 13 is provided, and the heat recovery valve 3 is connected to the temperature sensor 13 via the valve switching control device 14.
The temperature sensor 13 detects the temperature of the engine cooling water passing through the engine cooling water passage 11, and the detected temperature T of the engine cooling water temperature is , when the set temperature for heat radiation start reaches T107 or higher, the valve switching control device 14 or the heat recovery valve 31 is closed and the heat transfer path 7 for heat recovery is closed.
At the same time, the heat radiation valve 32 is opened to open the heat radiation path 10, and the detected temperature T of the engine cooling water temperature is
, is lower than the set temperature for heat dissipation start T IH, which is lower than the set temperature T for heat dissipation end 1L, the heat dissipation valve 3
2 to close the heat radiation path 10, and open the heat recovery valve 31 to open the heat recovery heat transfer path 7, and set the temperature sensor 13 or the set temperature T for starting heat radiation. , 1. that's all,
Or, based on detecting that the temperature has become lower than the set temperature T1L for ending heat radiation, the valve switching control device 14 switches one of the heat recovery valve 31 and the heat radiation valve 32, which has been closed so far. After opening both valves 31 and 32, the other valve, which had been open before, is closed.

上記の場合において、熱回収用弁31と放熱用弁32を
共に開弁状態にしてから、両弁31・32のうちの一方
の弁を閉弁操作するまでの同時開弁時間を設定するため
の手段としては、次のものか考えられる。
In the above case, to set the simultaneous opening time from when both the heat recovery valve 31 and the heat radiation valve 32 are opened to when one of the valves 31 and 32 is closed. Possible ways to do this include:

(1)弁切換用制御装置14に電気式タイマーを設け、
この電気式タイマーを所定の時間に設定することにより
、同時開弁時間Δtを設定する。
(1) An electric timer is provided in the valve switching control device 14,
By setting this electric timer to a predetermined time, the simultaneous valve opening time Δt is set.

(2)エンジン冷却水循環ポンプ20の吐出側に圧力セ
ンサ21を設け、エンジン運転中のエンジン冷却水の温
度変化に伴って増減する圧力センサ21の検出圧力P1
の増減に対応させて、弁切換用制御装置14て同時開弁
時間Δtを増減させる。即ち、第3図に示すように、エ
ンジン冷却水温が高くて検出圧力P1が高いときには同
時開弁時間△tを長くするとともに、エンジン冷却水温
が低くて検出圧力P1か低いときには同時開弁時間Δt
を短くするのである。
(2) A pressure sensor 21 is provided on the discharge side of the engine coolant circulation pump 20, and the detected pressure P1 of the pressure sensor 21 increases or decreases as the engine coolant temperature changes during engine operation.
The valve switching control device 14 increases or decreases the simultaneous valve opening time Δt in accordance with the increase or decrease in . That is, as shown in FIG. 3, when the engine cooling water temperature is high and the detected pressure P1 is high, the simultaneous valve opening time Δt is lengthened, and when the engine cooling water temperature is low and the detected pressure P1 is low, the simultaneous valve opening time Δt is increased.
It shortens.

(3)第4図に示すように、回収・放熱の切換中に上記
圧力センサ21の検出圧力P1が所定の圧力P。以上と
なっている時間を検出して、その圧力高の時間を同時開
弁時間△tとする。
(3) As shown in FIG. 4, the detected pressure P1 of the pressure sensor 21 is at a predetermined pressure P during switching between recovery and heat radiation. The time when the pressure is higher than that is detected, and the time when the pressure is high is defined as the simultaneous valve opening time Δt.

(4)上記の圧力センサ21の検出圧力P1のうちで、
熱回収用弁31と放熱用弁32のうちの一方の弁だけか
開弁じている切換前の圧力を検出するとともに、両弁3
1・32が共に開弁している切換中の圧力を検出する。
(4) Of the pressure P1 detected by the pressure sensor 21,
The pressure before switching when only one of the heat recovery valve 31 and the heat radiation valve 32 is open is detected, and both the valves 3 and 32 are open.
Detects the pressure during switching when both valves 1 and 32 are open.

そして、第5図に示すように、これら両者の差圧へPが
、所定の差圧ΔPo以上となっている時間を同時開弁時
間Δtとする。
As shown in FIG. 5, the time during which the differential pressure P between the two is equal to or higher than a predetermined differential pressure ΔPo is defined as the simultaneous valve opening time Δt.

(作用) 本発明は、例えば第1図と第2図に示すように、次のよ
うに作用する。
(Operation) The present invention operates as follows, as shown in FIGS. 1 and 2, for example.

エンジン冷却水の水温が、放熱終了用設定温度T 1L
から放熱開始用設定温度T 、、に上昇するまでの間で
は、熱回収用弁(熱回収用電磁弁)31が開弁するとと
もに放熱用弁(放熱用電磁弁)32が閉弁し、エンジン
冷却水が冷水路8・ウォータジャケット2・排熱吸収路
4・エンジン排熱回収用熱交換器6の熱回収用授熱路7
の経路で循環する。
The temperature of the engine cooling water is the set temperature for finishing heat radiation T 1L
In the period from 1 to 2, the heat recovery valve (heat recovery solenoid valve) 31 is opened and the heat radiation valve (heat radiation solenoid valve) 32 is closed until the temperature rises to the set temperature T for starting heat radiation. The cooling water flows through the cold water channel 8, the water jacket 2, the exhaust heat absorption path 4, and the heat transfer path 7 for heat recovery of the engine exhaust heat recovery heat exchanger 6.
It circulates along the route of

これにより、エンジン1の排熱をエンジン排熱回収用熱
交換器6から排熱回収路45の回収液へ放熱して、エン
ジン冷却水を冷却し、エンジン1の一 オーバーヒートを防止する。
As a result, the exhaust heat of the engine 1 is radiated from the engine exhaust heat recovery heat exchanger 6 to the recovery liquid in the exhaust heat recovery path 45, thereby cooling the engine cooling water and preventing the engine 1 from overheating.

この排熱回収状態において、排熱回収負荷か部分負荷又
は無負荷になり、エンジン排熱回収用熱交換器6の受熱
路38からの放熱量が減少して、エンジン冷却水の水温
が放熱開始用設定温度TI)1以上の温度に上昇すると
、熱回収用弁(熱回収用電磁弁)31が閉弁するととも
に放熱用弁(放熱用電磁弁)32が開弁じ、エンジン冷
却水が冷水路8・ウォータジャケット2・排熱吸収路4
・ラジェータ9の放熱路10の経路で循環する。これに
より、エンジン1の排熱をラジェータ9の放熱路10か
ら放熱して、エンジン冷却水を冷却し、エンジン1のオ
ーバーヒートを防止する。
In this exhaust heat recovery state, the exhaust heat recovery load becomes partial load or no load, the amount of heat radiated from the heat receiving path 38 of the engine exhaust heat recovery heat exchanger 6 decreases, and the temperature of the engine cooling water starts to radiate heat. When the temperature rises to 1 or more (set temperature TI), the heat recovery valve (heat recovery solenoid valve) 31 closes and the heat radiation valve (heat radiation solenoid valve) 32 opens, and the engine cooling water flows into the cold water channel. 8・Water jacket 2・Exhaust heat absorption path 4
- Circulate through the heat radiation path 10 of the radiator 9. Thereby, the exhaust heat of the engine 1 is radiated from the heat radiation path 10 of the radiator 9 to cool the engine cooling water and prevent the engine 1 from overheating.

上記の回収・放熱の切換時において、熱回収用弁31と
放熱用弁32とのうちの、それまで閉じていた一方の弁
を開けて両弁31・32を共に開弁状態にした後、その
前から開いていた他方の弁を閉じるように構成したので
、一方の弁の開弁作動所要時間に対して他方の弁の閉弁
作動所要時間が短い場合でも、同時閉弁の状態になるの
を防止でき、その結果、エンジン冷却水の循環回路でウ
ォータハンマによる異常圧力上昇が起こらない。これに
より、エンジン1は、ラジェータキャップ等からのエン
ジン冷却水の噴き出しを防止でき、冷却水不足によるオ
ーバーヒートを防止てきる。
At the time of switching between heat recovery and heat dissipation as described above, after opening one of the heat recovery valves 31 and the heat dissipation valve 32, which had been closed until then, and opening both valves 31 and 32, Since the configuration is such that the other valve that was previously open is closed, even if the time required to close one valve is shorter than the time required to open the other valve, the valves will be closed simultaneously. As a result, abnormal pressure increases due to water hammer do not occur in the engine cooling water circulation circuit. Thereby, the engine 1 can prevent engine cooling water from spewing out from the radiator cap, etc., and can prevent overheating due to insufficient cooling water.

(発明の効果) 本発明は、上記のように構成され作用することから次の
効果を奏する。
(Effects of the Invention) The present invention has the following effects because it is configured and operates as described above.

排熱回収状態では、熱回収用弁が開弁するとともに放熱
用弁が閉弁し、エンジンの排熱をエンジン排熱回収用熱
交換器の受熱路から放熱して、エンジン冷却水を冷却し
、エンジンのオーバーヒートを防止する。
In the exhaust heat recovery state, the heat recovery valve opens and the heat radiation valve closes, and the engine exhaust heat is radiated from the heat receiving path of the engine exhaust heat recovery heat exchanger to cool the engine cooling water. , prevent engine overheating.

この排熱回収状態において、排熱回収負荷が部分負荷又
は無負荷になり、エンジン排熱回収用熱交換器の受熱路
からの放熱量か減少するか又は無くなるかして、エン7
ン冷却水の水温が放熱開始用設定温度以」二の温度に上
昇すると、熱回収用弁が閉弁するとともに放熱用弁が開
弁じ、エンジンの排熱をラジェータの放熱路から放熱し
て、エンジン冷却水を冷却し、エンジンのオーバーヒー
トを防止する。
In this exhaust heat recovery state, the exhaust heat recovery load becomes a partial load or no load, and the amount of heat released from the heat receiving path of the engine exhaust heat recovery heat exchanger decreases or disappears.
When the temperature of the engine cooling water rises to a temperature equal to or higher than the set temperature for starting heat radiation, the heat recovery valve closes and the heat radiation valve opens, radiating the exhaust heat from the engine from the heat radiation path of the radiator. Cools the engine coolant and prevents the engine from overheating.

上記の回収・放熱の切換時に熱回収用弁と放熱用弁とが
同時閉弁の状態になるのを防止したので、エンジン冷却
水の循環回路でウオータノ・ンマによる異常圧力上昇か
起こらない。これにより、エンジンは、ラジェータキャ
ップ等からのエンジン冷却水の噴き出しを防止でき、冷
却水不足によるオーバーヒートを防止できる。
Since the heat recovery valve and the heat radiation valve are prevented from being closed simultaneously at the time of switching between recovery and heat radiation, an abnormal pressure increase due to water leakage does not occur in the engine coolant circulation circuit. As a result, the engine can prevent engine cooling water from spewing out from the radiator cap, etc., and can prevent overheating due to insufficient cooling water.

(実施例) 以下、本発明の実施例を図面で説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、エンジンの排熱回収装置の全体系統図を示し
、燃料ガスで運転されるエンジン1で発電機Gを駆動し
て電力を供給するとともに、エンジン1の排熱を給湯器
からなる外部熱負荷100へ回収するように構成したも
のである。
Fig. 1 shows an overall system diagram of the engine exhaust heat recovery device, in which an engine 1 operated with fuel gas drives a generator G to supply electric power, and the exhaust heat of the engine 1 is used by a water heater. It is configured to be recovered to an external heat load 100.

まず、エンジン1の冷却水回路を説明する。First, the cooling water circuit of the engine 1 will be explained.

エンジン1のウォータジャケット2に、排気熱吸収用熱
交換器3の排熱吸収路4・温水路5・エンジン排熱回収
用熱交換器6の熱回収用授熱路7・及び冷水路8か順に
直列循環状に連通連結されるとともに、冷水路8にエン
ジン冷却水循環ポンプ20が介装される。このエンジン
冷却水循環ポンプ20は、電動式に構成されており、バ
ッテリ27の電力で駆動される。また、エンジン排熱回
収用熱交換器6の熱回収用授熱路7にラジェータ9の放
熱路IOが並列状に接続される。ラジェータ9には電動
式のラジェータファン28で冷却風が送風される。なお
、排気熱吸収用熱交換器3の排熱吸収路4の下流側には
サーモスタット弁29が設けられており、エンジン1の
冷機始動時に、エンジン冷却水が、エンジン排熱回収用
熱交換器6及びラジェータ9をバイパスして、定常温度
にまで急速に昇温するようになっている。
The water jacket 2 of the engine 1 is connected to the exhaust heat absorption path 4 of the exhaust heat absorption heat exchanger 3, the hot water channel 5, the heat recovery heat transfer path 7 of the engine exhaust heat recovery heat exchanger 6, and the cold water channel 8. The engine cooling water circulation pump 20 is interposed in the cold water channel 8 while being serially connected to each other in a serial circulation manner. This engine coolant circulation pump 20 is configured to be electric, and is driven by electric power from a battery 27. Further, the heat radiation path IO of the radiator 9 is connected in parallel to the heat transfer path 7 for heat recovery of the heat exchanger 6 for engine exhaust heat recovery. Cooling air is blown to the radiator 9 by an electric radiator fan 28. Note that a thermostatic valve 29 is provided on the downstream side of the exhaust heat absorption path 4 of the exhaust heat absorption heat exchanger 3, so that when the engine 1 is started cold, engine cooling water is transferred to the exhaust heat recovery heat exchanger 3. 6 and the radiator 9 are bypassed, and the temperature is rapidly raised to a steady state temperature.

上記の冷水路8・ウォータジャケット2・排気熱吸収路
4・及び温水路5てエンジン冷却水路11が構成されて
いる。このエンジン冷却水路11に対して、熱回収用授
熱路7と放熱路10とが切換弁12で切換え接続可能に
構成される。この切換弁12は、熱回収用弁である熱回
収用電磁弁31と、放熱用弁である放熱用電磁弁32と
の二つの電磁弁からなる。
The above-mentioned cold water channel 8, water jacket 2, exhaust heat absorption channel 4, and warm water channel 5 constitute an engine cooling water channel 11. A heat transfer path 7 for heat recovery and a heat radiation path 10 are configured to be switchable and connectable to the engine cooling water path 11 using a switching valve 12 . This switching valve 12 consists of two solenoid valves: a heat recovery solenoid valve 31 that is a heat recovery valve, and a heat radiation solenoid valve 32 that is a heat radiation valve.

一方、エンジン1の排気ガスは、排気熱吸収用熱交換器
3の排気ガス流路34を経てマフラ35から外部へ排出
される。
On the other hand, the exhaust gas of the engine 1 is discharged to the outside from the muffler 35 via the exhaust gas passage 34 of the heat exchanger 3 for absorbing exhaust heat.

次に、排熱回収液の回路について説明する。これは、外
部熱負荷100に貯溜した排熱回収液を回収ポンプ37
からエンジン排熱回収用熱交換器6の受熱路38を経て
外部熱負荷100に戻すようになっている。この受熱路
38と回収液入口路41及び回収液出口路42で排熱回
収路45が構成されている。
Next, the exhaust heat recovery liquid circuit will be explained. This transfers the exhaust heat recovery liquid stored in the external heat load 100 to the recovery pump 37.
The heat is then returned to the external heat load 100 via the heat receiving path 38 of the engine exhaust heat recovery heat exchanger 6. The heat receiving path 38, the recovered liquid inlet path 41, and the recovered liquid outlet path 42 constitute an exhaust heat recovery path 45.

上記の排熱回収装置の電気制御装置の構成は次のように
なっている。同上第1図において、符号40は、制御電
源入力用の制御盤である。また、エンジン冷却水路ll
の途中部でサーモスタット弁29の下流側に温度センサ
13が設けられる。
The configuration of the electric control device of the above-mentioned exhaust heat recovery device is as follows. In FIG. 1, reference numeral 40 denotes a control panel for inputting control power. In addition, the engine cooling water
A temperature sensor 13 is provided on the downstream side of the thermostatic valve 29 in the middle.

この温度センサ13は、エンジン冷却水の水温を検出し
て、弁切換用制御装置14を介して切換弁12を切換制
御するようになっている。
This temperature sensor 13 detects the temperature of engine cooling water and controls switching of the switching valve 12 via a valve switching control device 14.

即ち、温度センサ13のエンジン冷却水温の検出温度T
1が、放熱開始用設定温度T1H以上になった場合には
、弁切換用制御装置14が熱回収用電磁弁31を閉じる
とともに放熱用電磁弁32を開いて、切換弁12を熱回
収用状態から放熱用状態へ切換える。これにより、エン
ジン排熱回収用熱交換器6の熱回収用授熱路7が閉止さ
れるとともに、ラジェータ9の放熱路10を開通される
That is, the detected temperature T of the engine cooling water temperature of the temperature sensor 13
1 becomes equal to or higher than the set temperature T1H for starting heat radiation, the valve switching control device 14 closes the heat recovery solenoid valve 31 and opens the heat radiation solenoid valve 32 to set the switching valve 12 to the heat recovery state. Switch from to the heat dissipation state. As a result, the heat transfer path 7 for heat recovery of the engine exhaust heat recovery heat exchanger 6 is closed, and the heat radiation path 10 of the radiator 9 is opened.

一方、晶度センサ13のエンジン冷却水温の検出温度T
、か、放熱開始用設定温度TIHよりも低い放熱終了用
設定温度T1L以下になった場合には、放熱用電磁弁3
2を閉じるとともに回収用電磁弁31を開いて、切換弁
12を放熱用状態から熱回収用状態へ切換える。これに
より、ラジェータ9の放熱路10が閉止されるとともに
、エンジン排熱回収用熱交換器6の熱回収用授熱路7が
開通される。
On the other hand, the detected temperature T of the engine cooling water temperature of the crystallinity sensor 13
, or when the set temperature for heat dissipation end T1L, which is lower than the set temperature for heat dissipation start TIH, is lower, the heat dissipation solenoid valve 3
2 is closed and the recovery solenoid valve 31 is opened to switch the switching valve 12 from the heat radiation state to the heat recovery state. As a result, the heat radiation path 10 of the radiator 9 is closed, and the heat transfer path 7 for heat recovery of the engine exhaust heat recovery heat exchanger 6 is opened.

このように両電磁弁31・32を開閉操作することによ
り、第2図に示すように、エンジン冷却水の温度が放熱
開始用設定温度T 、H(90°C)と放熱終了用設定
温度T1L(82°C)との間に保たれるのである。
By opening and closing both the solenoid valves 31 and 32 in this way, the temperature of the engine cooling water changes to the heat radiation start temperature T, H (90°C) and the heat radiation end temperature T1L, as shown in FIG. (82°C).

」ユニの回収・放熱の切換時において、熱回収用電磁弁
31と放熱用電磁弁32とが、弁切換用制御装置14に
付設の電気式タイマで、所定の時間だけ共に開弁するよ
うに制御される。
” When switching between heat recovery and heat dissipation, the heat recovery solenoid valve 31 and the heat dissipation solenoid valve 32 are both opened for a predetermined time using an electric timer attached to the valve switching control device 14. controlled.

即ち、同上第2図に示すように、回収状態では熱回収用
電磁弁31が開弁するとともに放熱用電磁弁32が閉弁
している。この回収状態から放熱状態へ切換わるときに
は、まず放熱用電磁弁32が開弁じ、次いで、同時量弁
時間Δtの経過後に熱回収用電磁弁31が閉弁する。さ
らに、この放熱状態から回収状態に切換わるときには、
まず熱回収用電磁弁31が開弁じ、次いて同時量弁時間
Δtの経過後に放熱用電磁弁32が閉弁する。
That is, as shown in FIG. 2, in the recovery state, the heat recovery solenoid valve 31 is open and the heat radiation solenoid valve 32 is closed. When switching from the recovery state to the heat radiation state, the heat radiation solenoid valve 32 is first opened, and then, after the simultaneous valve time Δt has elapsed, the heat recovery solenoid valve 31 is closed. Furthermore, when switching from this heat dissipation state to the recovery state,
First, the heat recovery solenoid valve 31 is opened, and then, after the simultaneous valve time Δt has elapsed, the heat radiation solenoid valve 32 is closed.

上記のように、回収・放熱の切換時に、熱回収用電磁弁
31及び放熱用電磁弁32を設定時間だけ同時に開くよ
うに構成したので、切換え時のウォータハンマを防止で
き、エンジン冷却水の圧力が異常に上昇することを防止
できる。
As mentioned above, when switching between heat recovery and heat dissipation, the heat recovery solenoid valve 31 and the heat dissipation solenoid valve 32 are configured to open simultaneously for a set time, so water hammer can be prevented when switching, and the engine cooling water pressure can be prevented from rising abnormally.

なお、同時間弁用時間Δtを設定するための手段は、上
記の電気式タイマに代えて、第3図から第5図にそれぞ
れ示すように変形できる。
Note that the means for setting the same time valve time Δt can be modified as shown in FIGS. 3 to 5, instead of the above-mentioned electric timer.

第3図は第1変形例を示している。これは、エンジン冷
却水循環ポンプ20の吐出側に圧力センサ21を設け(
第1図参照)、エンジン冷却水温が高くて検出圧力P1
が高いときには、同時量弁時間Δtを長くするとともに
、エンジン冷却水温が低くて検出圧力P1が低いときに
は、同時量弁時間Δtを短くするのである。これにより
、同時量弁時間Δtか、ウォータハンマを防止するのに
必要な最小時間ですみ、回収・放熱の切換えの遅れが短
くてすむ。
FIG. 3 shows a first modification. This is achieved by installing a pressure sensor 21 on the discharge side of the engine coolant circulation pump 20 (
(see Figure 1), the engine cooling water temperature is high and the detected pressure is P1.
When P1 is high, the simultaneous valve time Δt is lengthened, and when the engine cooling water temperature is low and the detected pressure P1 is low, the simultaneous valve time Δt is shortened. As a result, the simultaneous valve time Δt, or the minimum time required to prevent water hammer, is sufficient, and the delay in switching between heat recovery and heat radiation can be shortened.

第4図は第2変形例を示している。これは、回収・放熱
の切換中に前記圧力センサ21の検出圧力P、が所定の
圧力P。以上となっている時間を検出して、その圧力高
の時間を同時量弁時間Δtとすることにより、回収・放
熱の切換え遅れを短くするのである。
FIG. 4 shows a second modification. This means that the pressure P detected by the pressure sensor 21 during switching between recovery and heat radiation is the predetermined pressure P. The delay in switching between recovery and heat radiation is shortened by detecting the time when the pressure is high and setting the time of the pressure high as the simultaneous valve time Δt.

第5図は第3変形例を示している。これは、圧力センサ
21の検出圧力P、のうちで、熱回収用弁31と放熱用
弁32のうちの一方の弁だけが開弁じている切換前の圧
力を検出するとともに、両弁31・32が共に開弁じて
いる切換途中状態の圧力を検出し、これら両者の差圧Δ
Pが、所定の差圧△Po以上となっている時間を同時量
弁時間Δtとすることにより、回収・放熱の切換え遅れ
を短(するのである。
FIG. 5 shows a third modification. This detects the pressure before switching when only one of the heat recovery valve 31 and the heat radiation valve 32 is open among the detected pressure P of the pressure sensor 21, and also detects the pressure before switching when only one of the heat recovery valve 31 and the heat radiation valve 32 is open. The pressure in the middle of switching when both valves 32 and 32 are open is detected, and the differential pressure Δ between these two is detected.
By setting the time during which P is equal to or higher than a predetermined pressure difference ΔPo as the simultaneous valve time Δt, the delay in switching between recovery and heat radiation is shortened.

なお、回収・放熱の切換えは、前記の温度センサ13で
単独に行うことに代えて、次のようにすることも可能で
ある。即ち、第1図に示すように、エンジン冷却水路1
1に温度センサ13を設けるとともに、回収液出口路4
2に他の温度センサ43を設ける。そして、一方の温度
センサ13でエンジン冷却水の温度制御を行うとともに
、他方の温度センサ43で排熱回収液の温度制御を行う
のである。この場合、例えば、エンジン冷却水の検出温
度T、を放熱開始用設定温度T、H(90°C)と放熱
終了用設定温度T 、I、(82°C)との間に保つと
ともに、排熱回収液の検出温度T、を放熱開始用設定温
度T20(80’C)と放熱終了用設定温度T2L(7
2°C)との間に保つように制御することか考えられる
Note that instead of switching between recovery and heat radiation using the temperature sensor 13 described above, it is also possible to perform the following switching. That is, as shown in FIG.
1 is provided with a temperature sensor 13, and the recovered liquid outlet path 4
2 is provided with another temperature sensor 43. One temperature sensor 13 controls the temperature of the engine cooling water, and the other temperature sensor 43 controls the temperature of the exhaust heat recovery liquid. In this case, for example, the detected temperature T of the engine cooling water is maintained between the set temperature T,H for the start of heat radiation (90°C) and the set temperature T,I, (82°C) for the end of heat radiation, and The detected temperature T of the heat recovery liquid is the set temperature T20 (80'C) for the start of heat radiation and the set temperature T2L (70'C) for the end of heat radiation.
It may be possible to control the temperature to maintain the temperature between 2°C and 2°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図は本発明の実施例を示している。 第1図と第2図はその一実施例を示し、第1図は全体系
統図で、第2図は、エンジン冷却水温の時間変化及び弁
の開閉状態を示す図である。 第3図から第5図は、それぞれ、同時量弁時間を設定す
るための変形例を示す図である。 第6図は、従来例を示す全体系統図である。 20・・エンジン冷却水循環ポンプ、 31 熱回収用弁(熱回収用電磁弁)、32・・・放熱
用弁(放熱用電磁弁)、T1・・エンジン冷却水温の検
出温度、T I)I・放熱開始用設定温度、 T1L・・放熱終了用設定温度。 1・・・エンジン、2・・・ウォータジャケット、3・
・・排気熱吸収用熱交換器、4・・・排熱吸収路、5・
・・温水路、6・・・エンジン排熱回収用熱交換器、7
・・・熱回収用電磁弁、8・・・冷水路、9・・・ラジ
ェータ、10・・・放熱路、11・・エンジン冷却水路
、13・・・温度センサ、14・・弁切換用制御装置、 第3図 第2図
1 to 5 show embodiments of the invention. FIG. 1 and FIG. 2 show one embodiment of the present invention. FIG. 1 is an overall system diagram, and FIG. 2 is a diagram showing changes over time in engine cooling water temperature and the opening and closing states of valves. FIGS. 3 to 5 are diagrams each showing a modification for setting the simultaneous amount valve time. FIG. 6 is an overall system diagram showing a conventional example. 20... Engine coolant circulation pump, 31 Heat recovery valve (heat recovery solenoid valve), 32... Heat radiation valve (heat radiation solenoid valve), T1... Detection temperature of engine cooling water temperature, T I) I・Set temperature for heat radiation start, T1L... Set temperature for heat radiation end. 1...Engine, 2...Water jacket, 3.
...Exhaust heat absorption heat exchanger, 4...Exhaust heat absorption path, 5.
...Hot water channel, 6...Heat exchanger for engine exhaust heat recovery, 7
... Solenoid valve for heat recovery, 8... Cold water channel, 9... Radiator, 10... Heat radiation path, 11... Engine cooling channel, 13... Temperature sensor, 14... Valve switching control Equipment, Figure 3, Figure 2

Claims (1)

【特許請求の範囲】 1、エンジン(1)のウォータジャケット(2)に、排
気熱吸収用熱交換器(3)の排熱吸収路(4)・温水路
(5)・エンジン排熱回収用熱交換器(6)の熱回収用
授熱路(7)・及び冷水路(8)を順に直列循環状に連
通連結し、冷水路(8)・ウォータジャケット(2)・
排熱吸収路(4)・及び温水路(5)から成るエンジン
冷却水路(11)にエンジン冷却水循環ポンプ(20)
を介装して構成したエンジンの排熱回収装置において、
エンジン排熱回収用熱交換器(6)の熱回収用授熱路(
7)にラジエータ(9)の放熱路(10)を並列状に接
続し、エンジン冷却水路(11)に対して、熱回収用授
熱路(7)と放熱路(10)とを、熱回収用弁(31)
と放熱用弁(32)との切換開閉により、切換え接続可
能に構成し、 エンジン冷却水路(11)に温度センサ(13)を設け
、温度センサ(13)に弁切換用制御装置(14)を介
して熱回収用弁(31)及び放熱用弁(32)を切換え
開閉制御可能に連携し、 温度センサ(13)は、エンジン冷却水路(11)を通
過するエンジン冷却水の水温を検出するものであって、 その冷却水温の検出温度(T_1)が、放熱開始用設定
温度(T_1_H)以上になった場合には、弁切換用制
御装置(14)が熱回収用弁(31)を閉弁させて熱回
収用授熱路(7)を閉止させるとともに、放熱用弁(3
2)を開弁させて放熱路(10)を開通させ、 その冷却水温の検出温度(T_1)が、放熱開始用設定
温度(T_1_H)よりも低い放熱終了用設定温度(T
_1_L)以下になった場合には、放熱用弁(32)を
閉弁させて放熱路(10)を閉止させるとともに、熱回
収用弁(31)を開弁させて熱回収用授熱路(7)を開
通させるように構成し、 温度センサ(13)が、放熱開始用設定温度(T_1_
H)以上、又は放熱終了用設定温度(T_1_L)以下
になったことを検出することに基づき、弁切換用制御装
置(14)が、熱回収用弁(31)と放熱用弁(32)
とのうちの、これまで閉じていた一方の弁を開けて両弁
(31)(32)とも一旦開弁状態にした後、その前か
ら開いていた他方の弁を閉じるように構成したことを特
徴とするエンジンの排熱回収装置。
[Claims] 1. The water jacket (2) of the engine (1) includes an exhaust heat absorption path (4) of the exhaust heat absorption heat exchanger (3), a hot water channel (5), and an engine exhaust heat recovery path. The heat transfer path (7) for heat recovery of the heat exchanger (6) and the cold water channel (8) are serially connected in a serial circulation manner, and the cold water channel (8), water jacket (2),
An engine cooling water circulation pump (20) is connected to an engine cooling water channel (11) consisting of an exhaust heat absorption channel (4) and a hot water channel (5).
In an engine exhaust heat recovery device configured by interposing
Heat transfer path for heat recovery of engine exhaust heat recovery heat exchanger (6)
7), the heat radiation path (10) of the radiator (9) is connected in parallel, and the heat transfer path (7) and the heat radiation path (10) for heat recovery are connected to the engine cooling water channel (11). Valve (31)
The engine cooling water channel (11) is provided with a temperature sensor (13), and the temperature sensor (13) is equipped with a valve switching control device (14). The heat recovery valve (31) and the heat dissipation valve (32) are linked to enable switchable opening/closing control through the heat recovery valve (31) and the heat radiation valve (32), and the temperature sensor (13) detects the temperature of the engine cooling water passing through the engine cooling water channel (11). If the detected temperature of the cooling water (T_1) exceeds the set temperature for starting heat radiation (T_1_H), the valve switching control device (14) closes the heat recovery valve (31). to close the heat transfer path (7) for heat recovery, and close the heat radiation valve (3).
2) Open the valve to open the heat radiation path (10), and set the temperature at which the detected cooling water temperature (T_1) is lower than the set temperature for heat radiation start (T_1_H) (T
_1_L) or less, the heat radiation valve (32) is closed to close the heat radiation path (10), and the heat recovery valve (31) is opened to close the heat recovery heat transfer path ( 7) is configured to open, and the temperature sensor (13) detects the set temperature for starting heat radiation (T_1_
H) or lower than the set temperature for ending heat radiation (T_1_L), the valve switching control device (14) switches between the heat recovery valve (31) and the heat radiation valve (32).
One of the valves (31) and (32), which had been closed, was opened and both valves (31) and (32) were once opened, and then the other valve, which had been open, was closed. Features: Engine exhaust heat recovery device.
JP63256228A 1988-10-11 1988-10-11 Exhaust heat recovery device for engine Pending JPH02102354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63256228A JPH02102354A (en) 1988-10-11 1988-10-11 Exhaust heat recovery device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63256228A JPH02102354A (en) 1988-10-11 1988-10-11 Exhaust heat recovery device for engine

Publications (1)

Publication Number Publication Date
JPH02102354A true JPH02102354A (en) 1990-04-13

Family

ID=17289716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63256228A Pending JPH02102354A (en) 1988-10-11 1988-10-11 Exhaust heat recovery device for engine

Country Status (1)

Country Link
JP (1) JPH02102354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900563A (en) * 2012-10-22 2013-01-30 广西柳工机械股份有限公司 Engineering machinery engine tail gas waste heat utilization system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900563A (en) * 2012-10-22 2013-01-30 广西柳工机械股份有限公司 Engineering machinery engine tail gas waste heat utilization system

Similar Documents

Publication Publication Date Title
JP2609577B2 (en) Heating system for the interior space of electric vehicles
US5765511A (en) Method and switching arrangement for operating heat accumulators, in particular for sensible heat
JP3326976B2 (en) Vehicle air conditioner
JPH11117739A (en) Cooling water circulating device for internal combustion engine
JPH031600B2 (en)
JPH02102354A (en) Exhaust heat recovery device for engine
JP5480679B2 (en) Engine cooling system
JP2003247750A (en) Cogenerator, hot water supply system and engine warming-up system
JPH05157006A (en) Engine exhaust heat recovery device
JPH0742856B2 (en) Exhaust heat recovery device for water-cooled engine
JP2704725B2 (en) Engine driven air conditioner
JP2582301B2 (en) Engine exhaust heat recovery device
JPH06280722A (en) Heat accumulator for engine
JP2691372B2 (en) Engine exhaust heat recovery device for engine work equipment
JPH0768891B2 (en) Cogeneration system
JPH02102353A (en) Exhaust heat recovery device for engine
JPH01155020A (en) Exhaust heat recovering device for engine
JPH02102355A (en) Exhaust heat recovery device for engine
KR100191660B1 (en) A regenerator for quick heating and heating room of a vehicle
KR0138051B1 (en) A preheating device of engine in a vehicle
JPH02102356A (en) Exhaust heat recovery device for engine
JP2571723Y2 (en) Exhaust heat exchange control device of heat supply power generation system
JPH02104956A (en) Device for recovering exhaust heat of engine
JPH06249067A (en) Device for recovering exhaust heat of engine
JPH0647973B2 (en) Exhaust heat recovery device for engine