JPH02102166A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH02102166A
JPH02102166A JP63255163A JP25516388A JPH02102166A JP H02102166 A JPH02102166 A JP H02102166A JP 63255163 A JP63255163 A JP 63255163A JP 25516388 A JP25516388 A JP 25516388A JP H02102166 A JPH02102166 A JP H02102166A
Authority
JP
Japan
Prior art keywords
layers
melting point
superconducting material
oxide superconducting
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63255163A
Other languages
Japanese (ja)
Inventor
Seiji Adachi
成司 安達
Osamu Inoue
修 井上
Shunichiro Kawashima
俊一郎 河島
Hirofumi Hirano
平野 洋文
Yukihiro Takahashi
幸宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63255163A priority Critical patent/JPH02102166A/en
Publication of JPH02102166A publication Critical patent/JPH02102166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oxide superconductor having a critical temperature of >=100K by sintering a mixture comprising BiO, SrO, CaO and CuO at specified proportion within the range from the melting point minus 10 deg.C to the melting point. CONSTITUTION:The objective oxide superconductor can be obtained by sintering a mixture comprising BiO, SrO, CaO and CuO at the molar ratio 2:2:n:m (3<n<=10, 4<m<=11, n+1<m) within the range from the melting point minus 10 deg.C to the melting point. This superconducting material, which has a Tc of >=100K, is of such main structure that four Cu-O layers are present between Bi layers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超伝導マグネットやジョセフソン接合素子に
用いられる酸化物超伝導材料の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconducting material used in superconducting magnets and Josephson junction devices.

従来の技術 超伝導材料は、 (1)電気抵抗がゼロである、(2)
完全反磁性である、 (3)ジョセフソン効果があるな
ど、他の材料にない特性を有し、電力輸送、発電機、核
融合炉のプラズマ閉じ込め、磁気浮上列車、磁気シール
ド、超高速コンピュータ等の幅広い応用が考えられてい
る。従来実用化の進んでいる金属系の超伝導材料は、使
用する際に高価な液体ヘリウムと大がかりな断熱装置に
よる冷却を必要とし、工業上の大きな問題点であった。
Conventional technology superconducting materials: (1) have zero electrical resistance; (2)
It has properties not found in other materials, such as being completely diamagnetic and (3) having the Josephson effect, making it useful for power transportation, generators, plasma confinement in nuclear fusion reactors, magnetic levitation trains, magnetic shields, ultra-high-speed computers, etc. A wide range of applications are being considered. Metal-based superconducting materials, which have been put into practical use in the past, require cooling with expensive liquid helium and large-scale insulation equipment, which has been a major industrial problem.

このためより高温で超伝導状態になる材料の探索が行わ
れていた。
For this reason, researchers have been searching for materials that become superconducting at higher temperatures.

1987年2月に、90にで超伝導を示す、YBa2c
uao7−yが発見され、次いでYが他の希土類元素(
LalNdlSms  Eu1GcL  Dy1HCh
  E rlT ms  Y blL u )で置換が
可能であることが確認された。この材料は冷却に安価な
液体窒素を使えるため、従来の金属系のものに比べより
応用範囲が広がるものと期待されている。
In February 1987, YBa2c showed superconductivity at 90
uao7-y was discovered, and then Y was replaced by other rare earth elements (
LalNdlSms Eu1GcL Dy1HCh
It was confirmed that substitution is possible with E rlT ms Y blL u ). Because this material can use inexpensive liquid nitrogen for cooling, it is expected to have a wider range of applications than conventional metal-based materials.

1988年1月、さらに高温の100に以上で超伝導を
示すBi系の酸化物超伝導体が発見された。この材料は
資源的に遍在し戦略物資とも言える高価な希土類元素を
含まない点でさらに優れた材料であることが言える。こ
のため現在この材料について製造、物性、応用等に関す
る多くの研究が進められている。
In January 1988, a Bi-based oxide superconductor was discovered that exhibits superconductivity at even higher temperatures of 100°C or higher. This material can be said to be an even more superior material in that it does not contain expensive rare earth elements, which are ubiquitous in terms of resources and can be considered strategic materials. For this reason, a lot of research is currently underway regarding the production, physical properties, applications, etc. of this material.

発明が解決しようとする課題 最近の研究から、Bi系の超伝導体は層状の化合物で、
100に以上の臨界温度を有するものはBiとBiの層
間に3層以上のCuとOから成る層があることが明らか
になった。しかし、そのような化合物を得ることは非常
に困難で、多くの場合、Bi層間に2届以下のCu−0
層が存在す・る相が混在したものしか得られなかった。
Problems to be solved by the invention Recent research has shown that Bi-based superconductors are layered compounds.
It has been revealed that those having a critical temperature of 100 or more have three or more layers of Cu and O between the Bi and Bi layers. However, it is very difficult to obtain such a compound, and in many cases there are less than two Cu-0 layers between the Bi layers.
Only a mixture of layers and layers could be obtained.

場合らは、BiをPbで置換することにより、Bi層間
に3層のCu−0層が存在するBi系超超伝導体製造す
ることに成功している(U、 Endo(Iンド−)+
 s、 Koyama(コヤマ)  and  T、 
 Kawal(カワイL  Jpn、  J、  Ap
p+、  phys、(シ゛ヤハ“ン シ゛ヤーナル 
オブ アフ゛ライド フィシ゛フクス) 2! (+9
88) 1147G−LI479)が、pbは人体に対
し非常に有害であり、実際の工業化には特殊な設備が必
要となる。
In this case, by replacing Bi with Pb, we succeeded in producing a Bi-based superconductor with three Cu-0 layers between the Bi layers (U, Endo(Indo-) +
s, Koyama and T,
Kawal (Kawai L Jpn, J, Ap
p+, phys,
Of Affirmed Fish) 2! (+9
88) 1147G-LI479) However, PB is extremely harmful to the human body, and special equipment is required for actual industrialization.

課題を解決する為の手段 B101S r OlCa Ol  およびCuOを2
:2:  n: m (3<n≦LO14<m≦11、
n+1〈m)の比で混合し、融点より10°C低い温度
から融点までの温度範囲で焼成することにより酸化物超
伝導材料を製造する。
Means for solving the problem B101S r OlCa Ol and CuO 2
:2: n: m (3<n≦LO14<m≦11,
An oxide superconducting material is produced by mixing in a ratio of n+1<m) and firing in a temperature range from 10° C. below the melting point to the melting point.

作用 上記のように製造したBi系超伝導酸化物は、BiとB
iの層間に少なくとも3層以上のCuと0から成る層が
存在し、100に以上の臨界温度を有する。製造条件に
よっては4層が主たる構造であるBi系超伝導酸化物も
得られる。
Function The Bi-based superconducting oxide produced as described above contains Bi and B.
There are at least three or more layers of Cu and 0 between the layers of i, and has a critical temperature of 100°C or more. Depending on the manufacturing conditions, a Bi-based superconducting oxide having a main structure of four layers can also be obtained.

実施例 本発明を実施例を挙げて具体的に説明する。Example The present invention will be specifically described with reference to Examples.

純度99%のB t20s  S rcO3、CaCO
3、CuO粉末を所定の組成比となるように、それぞれ
秤量し、これをメノウボールミルでエタノールにて20
時時間式混合した。混合物を120″Cで乾燥した後、
アルミナ坩堝に入れ、750°Cで6時間、空気中で仮
焼した。仮焼粉を粗粉砕し、メノウボールミルでエタノ
ールにて20時時間式粉砕し、120°Cで乾燥した。
99% purity B t20s S rcO3, CaCO
3. Weigh each CuO powder so that it has a predetermined composition ratio, and mix it with ethanol in an agate ball mill for 20 minutes.
Mixed time-wise. After drying the mixture at 120″C,
It was placed in an alumina crucible and calcined in air at 750°C for 6 hours. The calcined powder was coarsely ground, milled using ethanol in an agate ball mill for 20 hours, and dried at 120°C.

こうして得た粉末にポリビニルブチラールを5重量%濃
度で溶解したインプロパツール溶液を5重量%加えて造
粒した。
To the thus obtained powder was added 5% by weight of an impropatul solution in which polyvinyl butyral was dissolved at a concentration of 5% by weight and granulated.

この造粒粉0.8gを18mmX5mmの金型で、50
0kg/cm2の圧力で一軸加圧成形した。
Pour 0.8g of this granulated powder into a mold of 18mm x 5mm,
Uniaxial pressure molding was performed at a pressure of 0 kg/cm2.

これらの成形体を600℃で2時間熱処理しバインダを
とばし、昇温速度300″C/時間、焼成750〜90
0°Cで5時間〜30日間、降温速度300’C/時間
の条件で焼成した。ただし雰囲気は空気中とした。
These molded bodies were heat treated at 600°C for 2 hours to remove the binder, heated at a heating rate of 300″C/hour, and fired at 750°C to 90°C.
It was fired at 0°C for 5 hours to 30 days at a temperature drop rate of 300'C/hour. However, the atmosphere was airy.

配合組成11m (B r OlS roi  Car
t  CuOのそれぞれの比を2:  2: n: m
で表す)、焼成温度(’C)、焼成時間(h)、Bi層
間のCu−0層数、超伝導転移温度(K)、及び磁化率
を表1に示した。ただし”BiJti間のCu−0層数
”は、X線回折パターンより2θで7.3゛ が1層、
5.7°が2層、4.7°が3層、4.7°よりも低角
度にピークがある場合〉3層として処理した。゛′転移
温度゛°は抵抗値が急激に下がり始める温度Tcとゼロ
抵抗になる温度TlIを、”磁化率”′は100Kにお
ける磁化率−M (emu/g)をそれぞれボした。
Blending composition 11m (Br OlS roi Car
The respective ratios of tCuO were 2: 2: n: m
), firing temperature ('C), firing time (h), number of Cu-0 layers between Bi layers, superconducting transition temperature (K), and magnetic susceptibility are shown in Table 1. However, the "Number of Cu-0 layers between BiJti" is 7.3゛ in 2θ according to the X-ray diffraction pattern.
5.7° was treated as 2 layers, 4.7° was treated as 3 layers, and when there was a peak at an angle lower than 4.7°, it was treated as 3 layers. The ``transition temperature'' is the temperature Tc at which the resistance value begins to rapidly decrease and the temperature TlI at which the resistance value becomes zero, and the ``magnetic susceptibility'' is the magnetic susceptibility -M (emu/g) at 100K.

表1(その1) 表1 (その2) 表1 (その4) 表1 (その3) 表1 (その5) n=4、m=6.5で720時間焼成した試料について
透過型電子顕微鏡で格子像を観察したところ、Bi層間
に3〜7層のCu−0層が観察された。
Table 1 (Part 1) Table 1 (Part 2) Table 1 (Part 4) Table 1 (Part 3) Table 1 (Part 5) Transmission electron microscopy of samples fired for 720 hours at n=4, m=6.5 When the lattice images were observed, 3 to 7 Cu-0 layers were observed between the Bi layers.

最も多く観察されたのは4層で、2層以下の部分はほと
んどなかった。X線回折パターンも2θで4.2゛ に
強いピークがあり4層が主たる構造であることを支持し
ている。
The most commonly observed layer was 4 layers, and there were almost no areas with 2 layers or less. The X-ray diffraction pattern also has a strong peak at 4.2° in 2θ, supporting the fact that the main structure is 4 layers.

実施例においては焼成時間が3日間以上の場合にのみ1
00に以上でゼロ抵抗を示す試料が得られており、長時
間焼成することがより特性を向上させるのに効果的であ
ることを示している。
In the example, 1 is used only when the firing time is 3 days or more.
Samples showing zero resistance at temperatures above 00 were obtained, indicating that firing for a long time is effective in improving the characteristics.

発明の効果 本発明によれば、Pbを用いることなしに、Bi層間に
少なくとも3層以上のCu−0層が存在し、100に以
上の臨界温度を有する酸化物超伝導材料を容易に製造で
きる。
Effects of the Invention According to the present invention, an oxide superconducting material having at least three or more Cu-0 layers between Bi layers and having a critical temperature of 100 or higher can be easily produced without using Pb. .

Claims (1)

【特許請求の範囲】[Claims]  BiO、SrO、CaO、およびCuOを2:2:n
:m(3<n≦10、4<m≦11、n+1<m)の比
で混合し、融点より10℃低い温度から融点までの温度
範囲で焼成することを特徴とする酸化物超伝導材料の製
造方法。
BiO, SrO, CaO, and CuO in 2:2:n
:m (3<n≦10, 4<m≦11, n+1<m) and is fired in a temperature range from 10°C lower than the melting point to the melting point. manufacturing method.
JP63255163A 1988-10-11 1988-10-11 Production of oxide superconducting material Pending JPH02102166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255163A JPH02102166A (en) 1988-10-11 1988-10-11 Production of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255163A JPH02102166A (en) 1988-10-11 1988-10-11 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH02102166A true JPH02102166A (en) 1990-04-13

Family

ID=17274937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255163A Pending JPH02102166A (en) 1988-10-11 1988-10-11 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH02102166A (en)

Similar Documents

Publication Publication Date Title
US5306700A (en) Dense melt-based ceramic superconductors
JPH01138168A (en) Production of melt-formed superconductor
US5084439A (en) Meltable high temperature Tb-R-Ba-Cu-O superconductor
JPH02102166A (en) Production of oxide superconducting material
JPH06219736A (en) Superconductor
US5244868A (en) Method of making high Tc superconductor material, and article produced by the method
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
JPH02116658A (en) Production of oxide superconducting material
JP3163122B2 (en) Manufacturing method of oxide superconductor
JPH02107518A (en) Oxide superconducting material
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH04300202A (en) Superconductor using oxide and production thereof
JPH01126258A (en) Production of oxide high-temperature superconductive material
JPH0769626A (en) Metal oxide and production thereof
JPH02229718A (en) Oxide superconducting material and its production
JPH04202013A (en) Oxide superconducting material and its production
JPH01201060A (en) Production of superconductor
JPH07232917A (en) Oxide superconductor and its production
JPH02133317A (en) Oxide superconducting material
JPH01212222A (en) Oxide superconducting material
JPH01108150A (en) Oxide superconducting material
JPH01108153A (en) Oxide superconducting material
JPH01313325A (en) Production of oxide superconducting material
JPH01212267A (en) Oxide superconducting material
JPH01108151A (en) Oxide superconducting material