JPH02101943A - Cooling apparatus for turbo-generator - Google Patents

Cooling apparatus for turbo-generator

Info

Publication number
JPH02101943A
JPH02101943A JP25520488A JP25520488A JPH02101943A JP H02101943 A JPH02101943 A JP H02101943A JP 25520488 A JP25520488 A JP 25520488A JP 25520488 A JP25520488 A JP 25520488A JP H02101943 A JPH02101943 A JP H02101943A
Authority
JP
Japan
Prior art keywords
hydrogen gas
hydrogen
gas concentration
cooling water
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25520488A
Other languages
Japanese (ja)
Inventor
Osamu Abe
修 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25520488A priority Critical patent/JPH02101943A/en
Publication of JPH02101943A publication Critical patent/JPH02101943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an explosion by catching fire by releasing hydrogen in the air and by supplying N2 gas when the concentration of hydrogen generated in the tank of cooling water circulating in a generator to be cooled by hydrogen and cooling said hydrogen exceeds a specified value. CONSTITUTION:The inside of a stator winding 2 provided in a generator 1 to be cooled by hydrogen gas is made hollow and cooling water is caused to circulate there. Cooling water goes from reservoir 3 via pump 4, cooler 5, feed water pipe 6, inlet header 7, insulating tube 8, stator winding 2, insulating tube 9, outlet header 10 and return pipe 11 and returns to said reservoir 3. The gas pressure of hydrogen is made larger than the water pressure of cooling water to prevent said cooling water from jetting. Hydrogen gas mixed with cooling water in operation is separated in said reservoir 3. The separated gas is sucked up by a pump 15 and the concentration of hydrogen is detected by detector 13 and monitor 14, and when said concentration exceeds a specified value, an automatic switching valve 16 and N2 gas supply valve 19 are switched to release hydrogen gas into an atmospheric escape pipe 12 and to supply N2 gas from tank 21. Thus, it is possible to prevent an explosion by catching fire.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は水素冷却タービン発電機の冷却装置に係り、特
に固定子巻線を直接、水冷却する機内冷却水系統の異常
を即座に検出し、冷却水系統へ混入する水素ガスを安全
に大気中へ排出する機能を供えた冷却装置の改良に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a cooling system for a hydrogen-cooled turbine generator, and in particular, the present invention relates to a cooling system for a hydrogen-cooled turbine generator, and in particular, to prevent abnormalities in the in-machine cooling water system that directly cools the stator windings with water. This invention relates to an improvement in a cooling system that has the ability to immediately detect hydrogen gas that enters the cooling water system and safely discharge it into the atmosphere.

(従来の技術) 一般に、大容量タービン発電機は、回転子巻線導体を水
素ガスで冷却し、固定子巻線導体を中空構造としこの導
体内を高純度の冷却水により冷却している。例えば、第
3図の概略系統図に示す如く、タービン発電機lの機内
には水素ガスを封大してあり、また機内の固定子巻線2
は中空構造の導体で構成されている。固定子巻線2の一
端部に出口ヘッダ−10を介して接続されている配管を
介して貯水槽3に接続しである。この貯水槽3と、固定
子巻線2の他端部に絶縁管8を介して接続されている入
口ヘッダ−7との間に、給水管6を配管し、この給水管
6の途中にポンプ4および冷却器5を設けである。出口
ヘッダ−10と貯水槽2の間には戻り管11を設けであ
る。貯水槽3の上部は大気放出管12に連結しである。
(Prior Art) Generally, in a large-capacity turbine generator, a rotor winding conductor is cooled with hydrogen gas, a stator winding conductor has a hollow structure, and the inside of this conductor is cooled with high-purity cooling water. For example, as shown in the schematic system diagram in Figure 3, hydrogen gas is sealed inside the turbine generator l, and the stator windings inside the
is composed of a hollow conductor. It is connected to a water storage tank 3 via a pipe connected to one end of the stator winding 2 via an outlet header 10. A water supply pipe 6 is installed between this water storage tank 3 and an inlet header 7 connected to the other end of the stator winding 2 via an insulated pipe 8, and a pump is installed in the middle of this water supply pipe 6. 4 and a cooler 5 are provided. A return pipe 11 is provided between the outlet header 10 and the water tank 2. The upper part of the water storage tank 3 is connected to an atmosphere discharge pipe 12.

このような構成のものにおいて、ポンプ4を運転するこ
とにより貯水槽3内に貯えられた冷却水は、冷却器5を
経て給水管6によりタービン発電機1の機内に導入され
、入口ヘッダ−7と絶縁管8を介して固定子巻線2へ供
給される。固定子巻線2を冷却することにより、高温と
なった冷却水は、同様に絶縁管9、出口ヘッダ−10お
よび戻り管11を経て貯水槽3へ循環している。
In such a configuration, cooling water stored in the water tank 3 by operating the pump 4 is introduced into the turbine generator 1 through the water supply pipe 6 via the cooler 5, and is introduced into the turbine generator 1 through the inlet header 7. and is supplied to the stator winding 2 via the insulating tube 8. By cooling the stator winding 2, the high temperature cooling water is similarly circulated to the water storage tank 3 via the insulating pipe 9, the outlet header 10 and the return pipe 11.

このような系統において、タービン発電機1の運転中機
内水素ガス圧力は、固定子巻線2の導体内部の水圧より
も高く保持されている。従って、機内での循環経路に微
小のクラックが発生した場合に、例えば固定子巻線2の
導体内部のエンド部の多数の銀ロー付部分などにクラッ
クが発生した場合にはそこから冷却水が噴出するのでは
なく、水素ガスが冷却水中へ侵入してくることになる。
In such a system, during operation of the turbine generator 1, the internal hydrogen gas pressure is maintained higher than the water pressure inside the conductor of the stator winding 2. Therefore, if minute cracks occur in the circulation path inside the machine, for example in the many silver brazed parts of the internal conductor of the stator winding 2, the cooling water will flow from there. Instead of blowing out, hydrogen gas will enter the cooling water.

このため、水素ガスを貯水槽3で冷却水より分離し、さ
らに大気放出管12に導かれ大気中へ放出されるように
している。
For this reason, the hydrogen gas is separated from the cooling water in the water storage tank 3, and further led to the atmosphere discharge pipe 12 and discharged into the atmosphere.

(発明が解決しようとする課題) 従来第3図のようなタービン発電機1内の冷却水系統に
おけるクラック発生等の重大異常事故は、水素ガス冷却
タービン発電機1の保守運用上京に監視されている水素
ガスの消費量が増加することにもとづき、冷却水系統の
クラック発生管を発見するようにしている。
(Problems to be Solved by the Invention) Conventionally, serious abnormal accidents such as the occurrence of cracks in the cooling water system in the turbine generator 1 as shown in FIG. Based on the increased consumption of hydrogen gas in the cooling water system, we are trying to find cracks in the cooling water system.

しかし、この方法は直接的にクラックの発生を見つける
ものではなく、しかも水素ガス消費量の増加する要因と
しては水素冷却タービン発電機1の両輪端の水素ガス軸
封部の不具合や、水素ガス配管の不具合等の他の要因も
あるため、即座には判断することが出来ない場合が多い
。従って、微小クラックのうちに早期にこの異常を発見
するためには、貯水槽3の空間で分離して放出される水
素ガスを監視する必要がある。また、上記絶縁管8.9
はその材料としてポリフッ化エチレン系繊維管等の水素
ガス透過性があるものを用いているため、絶縁管8,9
を含む冷却水系統の要素が正常であっても、数fl/d
ay程度の微少の水素ガスが冷却水系統へ混入すること
もある。
However, this method does not directly detect the occurrence of cracks, and the causes of increased hydrogen gas consumption include defects in the hydrogen gas shaft seals at both wheel ends of the hydrogen-cooled turbine generator 1, and hydrogen gas piping. Because there are other factors such as malfunctions, it is often not possible to make an immediate determination. Therefore, in order to detect this abnormality at an early stage during the microcracks, it is necessary to monitor the hydrogen gas that is separated and released in the space of the water storage tank 3. In addition, the above insulation tube 8.9
The insulation tubes 8 and 9 are made of materials that are permeable to hydrogen gas, such as polyfluoroethylene fiber tubes.
Even if the elements of the cooling water system including
Hydrogen gas as small as ay may enter the cooling water system.

一方、貯水槽3に運ばれてきた水素ガスは、貯水槽3の
水面の変動による呼吸作用や、大気放出管12を通して
の水素ガス、拡散現象のみによるだけでは大気へ十分放
出されにくい。
On the other hand, the hydrogen gas carried to the water storage tank 3 is difficult to be sufficiently released into the atmosphere only by the respiration effect due to fluctuations in the water level of the water storage tank 3, the hydrogen gas passing through the atmospheric release pipe 12, and the diffusion phenomenon.

従って、水素ガスは貯水槽3内の空間および大気放出管
12内の途中に滞留して、水素ガス濃度が大気中におけ
る水素ガスの爆発下限界濃度(4%)に達することがあ
るため、冷却水系統内のクラック発生という重大異常徴
候を早期に発見すると共に、これに対する安全放出対策
を採る必要がある。
Therefore, hydrogen gas may accumulate in the space inside the water storage tank 3 and in the middle of the atmosphere discharge pipe 12, and the hydrogen gas concentration may reach the lower explosive limit concentration (4%) of hydrogen gas in the atmosphere. It is necessary to detect early signs of serious abnormalities such as the occurrence of cracks in the water system, and to take safe release measures against them.

本発明は機内の冷却水系統におけるクラック等の重大異
常の徴候を早期にしかも確実に検出でき、且つ水素ガス
の大気への放出を完全に行うことが可能な信頼性の高い
タービン発電機の冷却装置を提供することを目的とする
The present invention provides highly reliable turbine generator cooling that can detect signs of serious abnormalities such as cracks in the in-flight cooling water system at an early stage and reliably, and can completely release hydrogen gas to the atmosphere. The purpose is to provide equipment.

[発明の構成] (課題を解決するための手段) 本発明は前記目的を達成するため水素ガスを封入した機
内に、その内部に冷却水を流通可能な固定巻線を収納し
、この固定子巻線に貯水槽に貯えた冷却水を流通循環さ
せ、かつ前記貯水槽内の上部空間に存在する水素ガスを
屋外の大気中に放出させるための大気放出路を有するタ
ービン発電機の冷却装置において、前記大気放出路と前
記貯水槽上部との間を連通ずる水素ガス濃度検出用通路
と、この水素濃度検出用通路と前記大気放出路および前
記貯水槽との連通部間に設は前記水素ガスの通路を切換
る切換弁と、前記水素ガス濃度検出用通路に設け、前記
貯水槽内の水素ガス濃度を検出する水素ガス濃度検知器
と、この水素ガス濃度検出器で検出された信号にもとづ
き前記機内からの水素ガス漏洩量を演算し、この漏洩量
が所定値をこえたとき前記切換弁に切換指令を与えて前
記大気放出路側を開とする水素ガス濃度監視装置と、こ
の水素ガス濃度監視装置から切換指令が生じたとき、前
記貯水槽内上部にN2ガスを供給可能なN2ガス供給装
置と、を具備したものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention stores a fixed winding in which cooling water can flow inside a machine filled with hydrogen gas. In a cooling device for a turbine generator, the winding has an atmospheric discharge path for circulating cooling water stored in a water tank and for releasing hydrogen gas present in the upper space of the water tank into the outdoor atmosphere. , a hydrogen gas concentration detection passage communicating between the atmospheric discharge passage and the upper part of the water storage tank, and a hydrogen gas concentration detection passage provided between the hydrogen concentration detection passage and the communication portion between the atmospheric discharge passage and the water tank. a switching valve for switching the passage; a hydrogen gas concentration detector provided in the hydrogen gas concentration detection passage for detecting the hydrogen gas concentration in the water storage tank; and a hydrogen gas concentration detector based on the signal detected by the hydrogen gas concentration detector. a hydrogen gas concentration monitoring device that calculates the amount of hydrogen gas leaking from inside the aircraft and gives a switching command to the switching valve to open the atmospheric release path side when the leakage amount exceeds a predetermined value; The apparatus includes a N2 gas supply device capable of supplying N2 gas to the upper part of the water storage tank when a switching command is issued from the monitoring device.

(作 用) 本発明は前記のように構成したので、貯水槽内水素ガス
は、貯水槽、水素ガス濃度検出用通路と水素ガス濃度検
知器および切換弁を循環している。この状態で貯水槽内
の水素が濃度が上昇し゛てくると、水素ガス濃度検知器
で検出し、水素ガス濃度監視装置により水素ガスの濃度
が所望の設定値に達した場合に水素ガス濃度監視装置か
らの信号により切換弁の大気放出路を開とし、貯水槽側
回路を閉とすることにより、貯水槽内の水素ガスは大気
に放出される。これと同時に貯水槽内にN2ガス供給装
置からN2ガスが供給されるので、貯水槽内の水素ガス
とN2ガスはともに完全に掃気される。これらの一連の
操作を行うことにより水素ガス濃度が検出されるととも
に、水素ガス濃度がある所定の濃度以下となる。このと
き、切換弁の操作を貯水槽側水素ガス濃度検出用通路へ
切替えて、N2ガス供給が停止されることにより、再び
水素ガスが循環され、貯水槽内の水素ガス濃度が上昇し
てくる。
(Function) Since the present invention is configured as described above, the hydrogen gas in the water tank circulates through the water tank, the hydrogen gas concentration detection passage, the hydrogen gas concentration detector, and the switching valve. When the concentration of hydrogen in the water tank increases in this state, it is detected by the hydrogen gas concentration detector, and the hydrogen gas concentration monitoring device monitors the hydrogen gas concentration when the concentration of hydrogen gas reaches the desired set value. The hydrogen gas in the water tank is released to the atmosphere by opening the atmospheric release path of the switching valve and closing the water tank side circuit in response to a signal from the device. At the same time, N2 gas is supplied into the water tank from the N2 gas supply device, so that both hydrogen gas and N2 gas in the water tank are completely scavenged. By performing these series of operations, the hydrogen gas concentration is detected, and the hydrogen gas concentration becomes below a certain predetermined concentration. At this time, the operation of the switching valve is switched to the hydrogen gas concentration detection passage on the water tank side, and the N2 gas supply is stopped, so that the hydrogen gas is circulated again and the hydrogen gas concentration in the water tank increases. .

以上の操作により発電機内に異常がなければ冷却水系統
の水素ガスの洩れ量は一定であるため、一定の時間毎に
貯水槽内の水素ガスは掃気され安定した水素ガス濃度の
状態で監視および運転制御が可能である。
As long as there is no abnormality in the generator through the above operations, the amount of hydrogen gas leaking from the cooling water system will be constant. Therefore, the hydrogen gas in the water tank is scavenged at regular intervals and monitored to maintain a stable hydrogen gas concentration. Operation control is possible.

一方、冷却水系統に異常が発生して水素ガス濃度が時間
が所定の時間より早く検出された場合には、水素ガス濃
度監視装置により、異常発生信号を発生されることによ
り早期に適切な対応をとることが出来る。更に水素ガス
濃度が設定値に達したとき、貯水槽内にはN2ガスが供
給され、貯水槽内の水素ガスは早期に大気中へ放出され
る。
On the other hand, if an abnormality occurs in the cooling water system and the hydrogen gas concentration is detected earlier than the predetermined time, the hydrogen gas concentration monitoring device will generate an abnormality signal and take appropriate measures at an early stage. You can take it. Furthermore, when the hydrogen gas concentration reaches a set value, N2 gas is supplied into the water tank, and the hydrogen gas in the water tank is quickly released into the atmosphere.

(実施例) 以下、本発明の一実施例について第1図の概略系統図を
参照して説明するが、ここでは第3図と同一部分は同一
符号を付し説明を省略する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to the schematic system diagram shown in FIG. 1. Here, the same parts as those in FIG.

貯水槽3の上部の2地点間および大気放出管12との間
をそれぞれ連通する水素ガス濃度検出用管17を設け、
この管17に冷却水から分離した水素ガスを含む貯水槽
3内の水素ガスを強制循環させるファン15と、貯水槽
3内のガスに含まれた水素ガス漏洩量を測定するための
水素ガス濃度検出器13と、水素ガス濃度監視装置14
を設けである。更に、管17に自動三方切換弁16を設
け、これは水素ガス濃度監視装置14から後述する出力
信号により大気放出管12側と貯水槽3側とに切換えら
れるものである。また、大気放出管12に大気連通管1
8を連通して設けである。
A hydrogen gas concentration detection pipe 17 is provided that communicates between two points in the upper part of the water storage tank 3 and between the two points and the atmosphere discharge pipe 12, respectively.
This pipe 17 includes a fan 15 for forcibly circulating hydrogen gas in the water storage tank 3 containing hydrogen gas separated from the cooling water, and a hydrogen gas concentration for measuring the leakage amount of hydrogen gas contained in the gas in the water storage tank 3. Detector 13 and hydrogen gas concentration monitoring device 14
This is provided. Further, the pipe 17 is provided with an automatic three-way switching valve 16, which is switched between the atmosphere discharge pipe 12 side and the water storage tank 3 side in response to an output signal from the hydrogen gas concentration monitoring device 14, which will be described later. In addition, the atmosphere communication pipe 1 is connected to the atmosphere discharge pipe 12.
8 are connected to each other.

自動三方切換弁16は水素ガス濃度監視装置14での水
素ガス濃度による出力信号で貯水槽側循環と大気放出の
掃気用とに自動的に切替えられるように構成されている
。一方、貯水槽3内の水素ガス濃度が所定値となったと
き自動三方切換弁16の操作と同一信号により開閉する
貯水槽側循環時は閉とし、大気放出時には開とするN2
ガス供給弁19をN2ガス供給装置21とN2ガス供給
管20を介して貯水槽3へ接続し設ける。このN2ガス
供給弁19の開操作によりN2ガスを供給することによ
り貯水槽3内の水素ガスは掃気される。又、掃気される
ことにより前記水素ガス濃度検出用管17上に設けられ
た水素ガス濃度監視装置14で水素ガス濃度が任意の値
以下となった場合には、自動切換弁16とN2供給弁1
9に信号により大気放出側間となり貯水槽3側が開、又
N2供給弁19は閉となるよう構成されている。
The automatic three-way switching valve 16 is configured to automatically switch between circulation on the water tank side and scavenging air discharged to the atmosphere in response to an output signal from the hydrogen gas concentration monitoring device 14 based on the hydrogen gas concentration. On the other hand, when the hydrogen gas concentration in the water storage tank 3 reaches a predetermined value, the automatic three-way switching valve 16 is operated and the same signal is used to open and close the water storage tank, which is closed during circulation and opened when released into the atmosphere.
A gas supply valve 19 is connected to the water storage tank 3 via an N2 gas supply device 21 and a N2 gas supply pipe 20. The hydrogen gas in the water storage tank 3 is scavenged by supplying N2 gas by opening the N2 gas supply valve 19. In addition, when the hydrogen gas concentration becomes below an arbitrary value in the hydrogen gas concentration monitoring device 14 provided on the hydrogen gas concentration detection pipe 17 due to the scavenging, the automatic switching valve 16 and the N2 supply valve are activated. 1
9, the air discharge side is opened, and the water storage tank 3 side is opened, and the N2 supply valve 19 is closed.

以下、第1図のように構成された本発明のタービン発電
機の冷却装置の動作について述べる。
Hereinafter, the operation of the cooling system for a turbine generator of the present invention configured as shown in FIG. 1 will be described.

第1図において、タービン発電機1の通常運転時は、ま
ず貯水槽3内で分離した水素ガスは、ファン15により
貯水槽3、水素ガス濃度検出用管17と、水素ガス濃度
検知器13および自動三方切換弁16の経路で循環して
いる。タービン発電機1の固定子巻線2の導体を冷却す
る冷却水は、タービン発電機1機内の入口ヘッダ−7と
絶縁管8.9を介して固定子巻線2へ供給されるが、絶
縁管8.9は水素ガスを透過するポリフッ化エチレン系
繊維管等を使用しているため、徐々に貯水槽3の空間で
分離して放出される水素ガスが蓄積され水素ガス濃度が
上昇してくる。従って、ファン15による貯水槽3内の
ガス循環により水素ガス濃度検知器13により検出され
た検出信号を水素ガス濃度監視装置14で増幅され、水
素ガス濃度が任意の設定値たとえば爆発下限界(4%)
以下の値に達した場合に水素ガス濃度監視装置14から
の出力信号で自動切替弁16を大気放出管12側回路を
開とし、貯水槽3側回路を閉とすることにより、貯水槽
3内のガスはファン15により掃気される。
In FIG. 1, during normal operation of the turbine generator 1, hydrogen gas separated in the water storage tank 3 is first transferred by the fan 15 to the water storage tank 3, the hydrogen gas concentration detection pipe 17, the hydrogen gas concentration detector 13, and the hydrogen gas concentration detector 13. It circulates through the automatic three-way switching valve 16. Cooling water for cooling the conductors of the stator winding 2 of the turbine generator 1 is supplied to the stator winding 2 via the inlet header 7 and the insulating pipe 8.9 in the turbine generator 1, but the insulated Since the pipes 8 and 9 are made of polyfluoroethylene fiber pipes that permeate hydrogen gas, the hydrogen gas that is separated and released in the space of the water storage tank 3 gradually accumulates and the hydrogen gas concentration increases. come. Therefore, the detection signal detected by the hydrogen gas concentration detector 13 by the gas circulation in the water storage tank 3 by the fan 15 is amplified by the hydrogen gas concentration monitoring device 14, and the hydrogen gas concentration is set to an arbitrary set value, for example, the lower explosive limit (4 %)
When the following values are reached, the output signal from the hydrogen gas concentration monitoring device 14 causes the automatic switching valve 16 to open the atmosphere discharge pipe 12 side circuit and close the water tank 3 side circuit. The gas is scavenged by the fan 15.

一方、貯水槽3内の水素ガスはファン15だけでの運転
掃気では完全に排出されないため、貯水槽3内にN2ガ
スを供給する。このN2ガスを自動的に自動三方切換弁
16と連動操作するN2ガス供給弁19が開操作される
ことにより、N2ガスが貯水槽3内へ供給され水素ガス
をN2ガスと共にファン15の運転により完全に掃気さ
れる。
On the other hand, since the hydrogen gas in the water storage tank 3 cannot be completely exhausted by the scavenging operation using only the fan 15, N2 gas is supplied into the water storage tank 3. When the N2 gas supply valve 19, which is automatically operated in conjunction with the automatic three-way switching valve 16, is opened, the N2 gas is supplied into the water storage tank 3, and the hydrogen gas is supplied together with the N2 gas by the operation of the fan 15. Completely scavenged.

これにより貯水槽3内の水素ガス濃度が低下し水素ガス
濃度検知器13により検出される水素ガス濃度ある所定
の濃度以下、値たとえば(0,5%)となった場合には
水素ガス濃度監視装置14からの出力信号により自動三
方切換弁16を貯水槽3側の循環回路へ切換えられると
共に、N2ガス供給弁19は閉止されることによりふた
たび貯水槽3内の水素ガスは前述と同様に循環されるこ
とにより発電機1内絶縁管8,9より冷却水系統へ水素
ガスが透過され貯水槽3内の水素ガス濃度が徐々に上昇
してくる。従って、発電機1に異常がなければ絶縁管8
.9から冷却水系統への水素ガス洩れ量は一定であるた
め、一定の時間毎に貯水槽3内の水素ガスは掃気され安
定した水素ガス濃度の状態で監視および運転制御される
As a result, the hydrogen gas concentration in the water storage tank 3 decreases, and if the hydrogen gas concentration detected by the hydrogen gas concentration detector 13 becomes below a certain predetermined concentration, for example (0.5%), the hydrogen gas concentration is monitored. The automatic three-way switching valve 16 is switched to the circulation circuit on the water tank 3 side by the output signal from the device 14, and the N2 gas supply valve 19 is closed, so that the hydrogen gas in the water tank 3 is circulated again in the same manner as described above. As a result, hydrogen gas permeates from the insulating pipes 8 and 9 in the generator 1 to the cooling water system, and the hydrogen gas concentration in the water tank 3 gradually increases. Therefore, if there is no abnormality in the generator 1, the insulation tube 8
.. Since the amount of hydrogen gas leaking from the tank 9 to the cooling water system is constant, the hydrogen gas in the water tank 3 is scavenged at regular intervals, and the hydrogen gas concentration is monitored and the operation is controlled to maintain a stable hydrogen gas concentration.

一方、前述の如くタービン発電機1の冷却水系統に異常
が発生し、冷却水系統へ水素ガスが異常に漏洩した場合
には、貯水槽3内の水素ガス濃度が爆発下限界(4%)
以下に達する時間が所定の時間より異常に早く検出され
た場合に、水素ガス濃度監視装置14により異常信号を
発生されることにより早期に適切な対応を取ることが出
来る。
On the other hand, if an abnormality occurs in the cooling water system of the turbine generator 1 as described above and hydrogen gas abnormally leaks into the cooling water system, the hydrogen gas concentration in the water storage tank 3 will reach the lower explosive limit (4%).
If the time at which the hydrogen gas concentration is reached is detected abnormally earlier than the predetermined time, the hydrogen gas concentration monitoring device 14 generates an abnormality signal, so that appropriate measures can be taken at an early stage.

次に第2図により本実施例の作用を説明する。Next, the operation of this embodiment will be explained with reference to FIG.

第2図において実線で示すのがタービン発電機1に異常
がなく通常運転状態時を示し、点線で示すのがタービン
発電機1の冷却水系統に異常が発生し水素ガスの漏洩量
が増加した場合を示している。
In Figure 2, the solid line indicates normal operation with no abnormality in the turbine generator 1, and the dotted line indicates that an abnormality has occurred in the cooling water system of the turbine generator 1 and the amount of hydrogen gas leaked has increased. It shows the case.

前述の如く貯水槽3内の水素ガス濃度がL2に達した時
、自動三方切換弁16が大気連通管18側に切替えられ
、更にN2ガス供給弁19が開となりN2ガスを貯水槽
3内に供給され、貯水槽3内が掃気されるため水素ガス
濃度検知器13で検出される水素ガス濃度に再びL +
 、方向へ低下する。
As mentioned above, when the hydrogen gas concentration in the water storage tank 3 reaches L2, the automatic three-way switching valve 16 is switched to the atmosphere communication pipe 18 side, and the N2 gas supply valve 19 is opened to supply N2 gas into the water storage tank 3. Since the inside of the water storage tank 3 is scavenged, the hydrogen gas concentration detected by the hydrogen gas concentration detector 13 becomes L + again.
, decreases in the direction.

そして、再び自動三方切換弁16、貯水槽3側循環回路
に切換えられると共に、N2ガス供給弁19が閉止され
ることにより貯水槽3内の水素ガス濃度が再び増加する
。従って、この水素ガス濃度り、−L2の増加時間Tを
測定して水素ガス濃度の増加速度を知ることにより、タ
ービン発電機1、正常運転時において許容される冷却水
系統へ混入する水素ガス量の度合が把握出来、異常時と
の比較が容易に判断出来る。更に前述の如く貯水槽3内
の水素ガス濃度が爆発下限界(4%)以下で検知されN
2ガスが供給され完全に早期に大気中へ水素ガスが放出
される。
Then, the automatic three-way switching valve 16 is switched again to the water tank 3 side circulation circuit, and the N2 gas supply valve 19 is closed, so that the hydrogen gas concentration in the water tank 3 increases again. Therefore, by measuring the increase time T of hydrogen gas concentration -L2 and knowing the rate of increase in hydrogen gas concentration, it is possible to determine the amount of hydrogen gas that can be mixed into the cooling water system of the turbine generator 1 and the cooling water system during normal operation. It is possible to understand the degree of abnormality and easily compare it with abnormal conditions. Furthermore, as mentioned above, the hydrogen gas concentration in the water storage tank 3 was detected to be below the lower explosive limit (4%) and the N
2 gases are supplied and hydrogen gas is completely released into the atmosphere at an early stage.

[発明の効果] 以上説明したように本発明によれば、水素冷却タービン
発電機内の冷却水系統におけるクラック等の重大異常の
徴候を早期にしかも確実に検出でき、且つ水素ガスの放
出を完全に行うことが可能な信頼性の高いタービン発電
機の冷却装置を提供できる。
[Effects of the Invention] As explained above, according to the present invention, signs of serious abnormalities such as cracks in the cooling water system in a hydrogen-cooled turbine generator can be detected early and reliably, and hydrogen gas release can be completely prevented. Accordingly, it is possible to provide a highly reliable cooling system for a turbine generator.

【図面の簡単な説明】 第1図は本発明のタービン発電機の冷却装置の一実施例
を示す概略系統図、第2図は第1図の実施例の作用を説
明するための図、第3図は従来の水素冷却タービン発電
機の固定子巻線冷却装置の一例を示す概略系統図である
。 1・・・タービン発電機、2・・・固定子巻線、3・・
・貯水槽、4・・・ポンプ、5・・・冷却器、6・・・
給水管、7・・・人口ヘッダ−8・・・絶縁管、9・・
・絶縁管、10・・・出口ヘッダ−11・・・戻り管、
12・・・大気放出管、13・・・水素ガス濃度検知器
、14・・・水素ガス濃度監視装置、15・・・ファン
、16・・・自動切換弁、17・・・水素ガス濃度検出
用管、18・・・大気連通管、19・・・N2ガス供給
弁、20・・・N2ガス供給管、21・・・N2ガス供
給装置。 出願人代理人 弁理士 鈴江武彦 第 図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic system diagram showing an embodiment of the cooling system for a turbine generator of the present invention, FIG. 2 is a diagram for explaining the operation of the embodiment of FIG. 1, and FIG. FIG. 3 is a schematic system diagram showing an example of a stator winding cooling device for a conventional hydrogen-cooled turbine generator. 1... Turbine generator, 2... Stator winding, 3...
・Water tank, 4...pump, 5...cooler, 6...
Water supply pipe, 7...Population header-8...Insulation pipe, 9...
・Insulation pipe, 10... Outlet header - 11... Return pipe,
12... Atmospheric discharge pipe, 13... Hydrogen gas concentration detector, 14... Hydrogen gas concentration monitoring device, 15... Fan, 16... Automatic switching valve, 17... Hydrogen gas concentration detection Service pipe, 18... Atmospheric communication pipe, 19... N2 gas supply valve, 20... N2 gas supply pipe, 21... N2 gas supply device. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】 水素ガスを封入した機内に、その内部に冷却水を流通可
能な固定巻線を収納し、この固定子巻線に貯水槽に貯え
た冷却水を流通循環させ、かつ前記貯水槽内の上部空間
に存在する水素ガスを屋外の大気中に放出させるための
大気放出路を有するタービン発電機の冷却装置において
、 前記大気放出路と前記貯水槽上部との間を連通する水素
ガス濃度検出用通路と、 この水素濃度検出用通路と前記大気放出路および前記貯
水槽との連通部間に設け前記水素ガスの通路を切換る切
換弁と、 前記水素ガス濃度検出用通路に設け、前記貯水槽内の水
素ガス濃度を検出する水素ガス濃度検知器と、 この水素ガス濃度検出器で検出された信号にもとづき前
記機内からの水素ガス漏洩量を演算し、この漏洩量が所
定値をこえたとき前記切換弁に切換指令を与えて前記大
気放出路側を開とする水素ガス濃度監視装置と、この水
素ガス濃度監視装置から切換指令が生じたとき、前記貯
水槽内上部にN_2ガスを供給可能なN_2ガス供給装
置と、を具備したタービン発電機の冷却装置。
[Scope of Claims] A fixed winding through which cooling water can flow is housed in a machine filled with hydrogen gas, and cooling water stored in a water tank is circulated through the stator winding, and the above-mentioned In a cooling device for a turbine generator having an atmospheric release path for releasing hydrogen gas present in an upper space in a water storage tank into the outdoor atmosphere, the hydrogen gas that communicates between the atmospheric release path and the upper part of the water storage tank is provided. a gas concentration detection passage; a switching valve provided between a communication portion between the hydrogen concentration detection passage and the atmosphere discharge passage and the water storage tank to switch the hydrogen gas passage; and a switching valve provided in the hydrogen gas concentration detection passage. , a hydrogen gas concentration detector that detects the hydrogen gas concentration in the water storage tank, and a hydrogen gas leakage amount from the inside of the machine based on the signal detected by the hydrogen gas concentration detector, and this leakage amount is a predetermined value. a hydrogen gas concentration monitoring device that issues a switching command to the switching valve to open the atmospheric release path side when the hydrogen gas concentration exceeds 100%; and when a switching command is issued from the hydrogen gas concentration monitoring device, N_2 gas is A cooling device for a turbine generator, which is equipped with an N_2 gas supply device capable of supplying N_2 gas.
JP25520488A 1988-10-11 1988-10-11 Cooling apparatus for turbo-generator Pending JPH02101943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25520488A JPH02101943A (en) 1988-10-11 1988-10-11 Cooling apparatus for turbo-generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25520488A JPH02101943A (en) 1988-10-11 1988-10-11 Cooling apparatus for turbo-generator

Publications (1)

Publication Number Publication Date
JPH02101943A true JPH02101943A (en) 1990-04-13

Family

ID=17275466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25520488A Pending JPH02101943A (en) 1988-10-11 1988-10-11 Cooling apparatus for turbo-generator

Country Status (1)

Country Link
JP (1) JPH02101943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005686A1 (en) * 1995-07-31 1997-02-13 Siemens Aktiengesellschaft Process and device for quickly reducing pressure in an installation, in particular a hydrogen-cooled generator
JP2011182634A (en) * 2010-02-26 2011-09-15 General Electric Co <Ge> Filter system for dynamo-electric machines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005686A1 (en) * 1995-07-31 1997-02-13 Siemens Aktiengesellschaft Process and device for quickly reducing pressure in an installation, in particular a hydrogen-cooled generator
US6086333A (en) * 1995-07-31 2000-07-11 Siemens Aktiengesellschaft Process and device for quickly reducing pressure in an installation, in particular a hydrogen-cooled generator
JP2011182634A (en) * 2010-02-26 2011-09-15 General Electric Co <Ge> Filter system for dynamo-electric machines

Similar Documents

Publication Publication Date Title
US8563196B2 (en) Racked power supply ventilation
KR100852337B1 (en) Shut-down procedure for hydrogen-air fuel cell system
KR101777030B1 (en) Method and device for determining and/or monitoring the airtightness of an enclosed room
JP2775522B2 (en) Gas contamination detection monitor
KR20040076886A (en) Fire Protection
JP2011027308A (en) Ventilation method of central control room and central control room ventilation device
CN114046938B (en) Hydrogen leakage detection method and device for fuel cell system
US4373379A (en) Method and apparatus for detecting defects in a water cooling system of a hydrogen-cooled dynamic electric machine
CN101606259A (en) Be used for fuel supply unit, the fuel cell system of fuel cell system and be used to monitor the method for fuel supply unit
JPH02101943A (en) Cooling apparatus for turbo-generator
JP3789478B2 (en) Rapid decompression method and equipment for equipment, especially hydrogen-cooled generators
CN217091833U (en) Liquid cooling PACK of energy storage system is directly hung to well high pressure
JPH03254070A (en) Fuel cell power generating plant
JP3791339B2 (en) Rotating machine and method for detecting abnormality of rotating machine
CN1836106B (en) Integration of automated cryopump safety purge
JPH01295641A (en) Abnormality detector of cooling water circulation system for rotary electric machine
JPS59153436A (en) Water cooler of winding for rotary electric machine
JPH0451472A (en) Method and device for protection of stationary high-temperature battery
CN220827460U (en) Air source cabinet
JPH037040A (en) Cooling apparatus for electrical rotary machine
JP3330614B2 (en) How to deactivate a generator in a power plant
JPS6133338B2 (en)
JPH0360350A (en) Cooling water equipment for gas cooling rotary electric machine
US11355998B2 (en) Method and equipment for cooling generators
JPS589547A (en) Hydrogen gas cooling rotary electric machine