JPS6133338B2 - - Google Patents

Info

Publication number
JPS6133338B2
JPS6133338B2 JP10592477A JP10592477A JPS6133338B2 JP S6133338 B2 JPS6133338 B2 JP S6133338B2 JP 10592477 A JP10592477 A JP 10592477A JP 10592477 A JP10592477 A JP 10592477A JP S6133338 B2 JPS6133338 B2 JP S6133338B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
atmosphere
cooling water
concentration
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10592477A
Other languages
Japanese (ja)
Other versions
JPS5439803A (en
Inventor
Akira Asakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10592477A priority Critical patent/JPS5439803A/en
Publication of JPS5439803A publication Critical patent/JPS5439803A/en
Publication of JPS6133338B2 publication Critical patent/JPS6133338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

【発明の詳細な説明】 本発明は水素ガス冷却回転電機の巻線の導体内
部を高純度純粋の冷却水により冷却している大容
量回転電機において、機内冷却水系統におけるク
ラツクの発生等により水素ガスが冷却水側へ漏洩
した場合に、この水素ガスを検出する水素ガス冷
却回転電機のガス漏洩検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides hydrogen gas cooling in large-capacity rotating electric machines in which the inside of the conductors of the windings of hydrogen gas-cooled rotating electric machines is cooled with high-purity cooling water. The present invention relates to a gas leak detection device for a hydrogen gas-cooled rotating electrical machine that detects hydrogen gas when gas leaks to the cooling water side.

大容量回転電機は一般に回転子導体の外部を水
素ガスで冷却し、固定子導体内を高純度純水の冷
却水により冷却している。第1図は従来の水素ガ
ス冷却回転電機の固定子導体の冷却水系統図であ
る。1は水素ガス冷却回転電機、2は固定子子導
体であつて純水ポンプ4を運転することにより貯
水槽3内の冷却水を熱交換器5へ送り、冷却した
後に給水管6を通つて機内に導体される。なお、
この貯水槽3は冷却水に含まれる水素ガスを分離
するためのものである。更に、この給水管6に接
続された分岐管8より分岐された絶縁ホース7を
経て固定子導体5へ供給する。この供給された冷
却水により固定子導体2を冷却し温度上昇した冷
却水は同様に絶縁ホース7a、分岐管8a、戻り
管6aを経て貯水槽3へ循環させている。
In large-capacity rotating electric machines, the outside of the rotor conductor is generally cooled with hydrogen gas, and the inside of the stator conductor is cooled with high-purity cooling water. FIG. 1 is a diagram of a cooling water system for a stator conductor of a conventional hydrogen gas-cooled rotating electric machine. Reference numeral 1 denotes a hydrogen gas-cooled rotating electric machine, and 2 a stator conductor. By operating a pure water pump 4, cooling water in a water tank 3 is sent to a heat exchanger 5, and after being cooled, it is passed through a water supply pipe 6. Conducted inside the aircraft. In addition,
This water storage tank 3 is for separating hydrogen gas contained in the cooling water. Further, the water is supplied to the stator conductor 5 through an insulating hose 7 branched from a branch pipe 8 connected to the water supply pipe 6. The supplied cooling water cools the stator conductor 2, and the cooling water whose temperature has increased is similarly circulated to the water storage tank 3 via the insulating hose 7a, the branch pipe 8a, and the return pipe 6a.

このような系統に於ては常時運転時は機内水素
ガス圧力は固定子導体内部の冷却水圧力よりも高
く保持しているのが普通である。従つて、機内で
の循環経路、例えば固定子導体2のエンド部のろ
う付部分などにクラツクが発生した場合には、そ
こから冷却水が噴出するのではなく、水素ガスが
冷却水中へ侵入してくることになる。従つて機内
冷却水系統のクラツクの発生等の重大事故は水素
ガス消費量によつて知ることになるが、これは直
接的検出方法でなく、また水素ガス消費が増加す
る要因は軸水素シール部の不具合や他の原因もあ
るため、すぐに判断が出来ない場合が多い。
In such a system, during continuous operation, the in-machine hydrogen gas pressure is normally maintained higher than the cooling water pressure inside the stator conductor. Therefore, if a crack occurs in the circulation path inside the machine, such as the brazed part at the end of the stator conductor 2, the cooling water will not blow out from there, but hydrogen gas will enter the cooling water. It will come. Therefore, serious accidents such as cracks in the in-flight cooling water system can be detected by measuring hydrogen gas consumption, but this is not a direct detection method, and the cause of increased hydrogen gas consumption is the shaft hydrogen seal. In many cases, it is not possible to make an immediate determination because there are problems with the system and other causes.

また、直接的な水素ガスの検出方法としては水
素ガスを検出する検出器のセンサを貯水槽3へ取
付ける方法があるが、検出器のセンサは非常に湿
分を嫌うことおよび次のような欠点がある。
In addition, as a direct method of detecting hydrogen gas, there is a method of attaching a hydrogen gas detector sensor to the water storage tank 3, but the detector sensor is extremely sensitive to moisture and has the following disadvantages: There is.

すなわち、前記機内に位置する絶縁ホース7,
7aには絶縁性が優れ、耐久力がきわめて強いふ
つ素樹脂例えばテフロン(デユポン社商品)のよ
うなガス溪透性のある絶縁材料を使用している。
しかしながら、この部分より水素ガス冷却水中に
浸透し、最終的には前記貯水槽3の上部へ滞溜し
てくる。このため貯水槽3内の上部空所と大気中
とを連通するとともに、その中途にV字形または
U字形に屈曲させた連通パイプに液体を貯溜して
大気としや断するエアーシール部10を形成した
大気放出管9を設けてある。したがつて、貯水槽
3内の気圧は水素ガスの滞溜することによつて上
昇し、一時的なエアーシール部10のシール作用
の破壊によつて水素ガスは大気放出管9へ放出さ
れる。また運転条件の変化によつて液面が変動し
て気圧が変化して、一定していない。このためこ
のガス検出器によつて通常運転と絶縁ホースのク
ラツク発生などの異常運転との区別がつかず、異
常漏洩の確認は困難であつた。
That is, the insulating hose 7 located inside the machine,
The material 7a is made of an insulating material that is gas permeable, such as Teflon (a product of DuPont), which has excellent insulating properties and is extremely durable.
However, the hydrogen gas permeates into the cooling water from this portion and eventually accumulates in the upper part of the water storage tank 3. For this purpose, an air seal portion 10 is formed that communicates the upper space in the water storage tank 3 with the atmosphere, and stores liquid in a communication pipe bent in a V-shape or U-shape in the middle and disconnects it from the atmosphere. An atmosphere discharge pipe 9 is provided. Therefore, the atmospheric pressure in the water storage tank 3 increases due to the accumulation of hydrogen gas, and when the sealing action of the air seal portion 10 is temporarily broken, the hydrogen gas is released to the atmosphere release pipe 9. . In addition, the liquid level fluctuates due to changes in operating conditions, and the atmospheric pressure changes, making it inconsistent. Therefore, this gas detector cannot distinguish between normal operation and abnormal operation such as cracking of an insulated hose, making it difficult to confirm abnormal leakage.

本発明は上記の欠点に鑑みなされたもので、貯
水槽のエアーシール部の外側に設けた大気放出管
に水素ガス濃度検出装置を取付け、検出器と継電
器との組合せにより、常時運転では作動せず、水
素ガスは冷却水系統へ異常漏洩した場合にのみ確
実に検出することができる水素ガス冷却回転電機
のガス漏洩検出装置を提供することを目的とす
る。
The present invention was developed in view of the above-mentioned drawbacks, and a hydrogen gas concentration detection device is attached to the atmosphere discharge pipe provided outside the air seal part of the water storage tank. First, it is an object of the present invention to provide a gas leak detection device for a hydrogen gas-cooled rotating electrical machine that can reliably detect only when hydrogen gas abnormally leaks into a cooling water system.

以下本発明を第2図に示す一実施例について説
明する。第2図において第1図と同じ作用をする
部品は同一符号としたので説明は省略する。ガス
漏洩検出装置15は水素ガス濃度の変化を電気量
に変換して出力する検出器11を大気放出管9の
エアーシール部10より大気側に装着している。
検出器11の出力端は接続線を介して継電器12
へ接続している。継電器12には時間計13が組
込まれてあり、警報器14に接続されている。検
出器11は大気放出管9から排気させる途中の水
素ガス濃度の変化を電気的に変換して出力する。
水素ガス濃度を示す電気量が所定の設定値を超え
ると時間計13が作動し、所定の設定時間継続す
ると電気信号を出力する。この電気信号によつて
警報器14が動作して警報を発する。時間計13
は電気量が所定の設定値より小さくなると時間は
0点に自動復帰する。
The present invention will be described below with reference to an embodiment shown in FIG. In FIG. 2, parts having the same functions as those in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. The gas leak detection device 15 is equipped with a detector 11 that converts changes in hydrogen gas concentration into an electrical quantity and outputs the same, which is attached to the atmosphere side of the atmosphere discharge pipe 9 from the air seal portion 10 .
The output end of the detector 11 is connected to the relay 12 via a connecting wire.
is connected to. A time meter 13 is built into the relay 12 and connected to an alarm 14. The detector 11 electrically converts and outputs changes in the concentration of hydrogen gas during exhaust from the atmosphere discharge pipe 9.
When the amount of electricity indicating hydrogen gas concentration exceeds a predetermined set value, the time meter 13 is activated and outputs an electric signal when the time continues for a predetermined set time. This electric signal causes the alarm device 14 to operate and issue an alarm. time meter 13
When the amount of electricity becomes smaller than a predetermined set value, the time automatically returns to zero.

次に作用を説明する。水素ガス冷却回転電機の
通常運転においては、機内に位置する絶縁ホース
7,7aから冷却水中に溪透した水素ガスは貯水
槽3で分離蓄積される。そして、戻り管6aの冷
却水によつて貯水槽3の水面変動を生じ、エアー
シール部10の液体の液面が変動してエアーシー
ル部10から水素ガスの漏洩が生じて、液体の中
を気泡となつて微少量の水素ガスが通り大気放出
管9内に排出させる、このとき貯水槽3内は大気
へ連通して圧力が下がり、前記の押し上げられた
液体は戻り、貯水槽3内は大気としや断されて元
の状態に戻る。この場合検出器11は一時的に高
い水素ガス濃度を検出するが次第に減衰して元の
状態に戻る。
Next, the effect will be explained. During normal operation of the hydrogen gas-cooled rotating electric machine, hydrogen gas that permeates into the cooling water from the insulating hoses 7, 7a located inside the machine is separated and stored in the water storage tank 3. The cooling water in the return pipe 6a causes the water level in the water tank 3 to fluctuate, and the liquid level in the air seal part 10 fluctuates, causing hydrogen gas to leak from the air seal part 10. A small amount of hydrogen gas passes through as bubbles and is discharged into the atmosphere discharge pipe 9. At this time, the inside of the water storage tank 3 is communicated with the atmosphere, the pressure decreases, and the liquid pushed up returns, and the inside of the water storage tank 3 is It is cut off by the atmosphere and returns to its original state. In this case, the detector 11 temporarily detects a high hydrogen gas concentration, but it gradually attenuates and returns to its original state.

したがつて、検出器11で検出される大気放出
管9内の水素ガス濃度は、前記大気放出管9内を
水素ガス上昇気流となつて排出される水素ガス速
度は貯水槽3から大気放出管9内へ放出された水
素ガス量が平衡状態にあり、常に所定の値を示
す。一般には大気放出管9内の水素ガス検出濃度
は水素ガスの気中に於ける爆発下限濃度(約4%
水素濃度)を100%とした百分率で表わし100%
LEL(LELは爆発下限レベルLimted Exprosion
Levelを意味する)と表示すると、10〜25%LEL
(気中水素濃度で0.4〜10%)で推移する。
Therefore, the concentration of hydrogen gas in the atmosphere discharge pipe 9 detected by the detector 11 is determined by the hydrogen gas velocity which is discharged from the atmosphere discharge pipe 9 as a rising hydrogen gas flow from the water storage tank 3 to the atmosphere discharge pipe. The amount of hydrogen gas released into the chamber 9 is in an equilibrium state and always shows a predetermined value. In general, the detected concentration of hydrogen gas in the atmosphere discharge pipe 9 is the lower explosive limit concentration of hydrogen gas in the air (approximately 4%).
Expressed as a percentage with the hydrogen concentration (hydrogen concentration) as 100%.
LEL (LEL is the lower limit of explosion level)
10-25% LEL
(Atmospheric hydrogen concentration remains at 0.4-10%).

さらに、通常運転時には純水ポンプ4の起動停
止や切替運転等による貯水槽3の液面変動または
貯水槽3内の水温の変動による貯水槽3内の圧力
上昇時には一時的なシール作用の破壊を生じ、エ
アーシール部10の液体が押されて貯水槽3の水
素ガスが瞬間的に大気放出管9内に排出され、貯
水槽3内の圧力が下がつてエアーシール部10の
液体は元に戻り、シール作用が〓復する。
Furthermore, during normal operation, when the liquid level in the water tank 3 changes due to starting/stopping or switching operation of the pure water pump 4, or when the pressure in the water tank 3 increases due to fluctuations in the water temperature in the water tank 3, the sealing action is temporarily destroyed. The liquid in the air seal part 10 is pushed and the hydrogen gas in the water tank 3 is momentarily discharged into the atmosphere discharge pipe 9, the pressure in the water tank 3 decreases and the liquid in the air seal part 10 returns to its original state. The sealing action is restored.

第3図は通常運転時における検出器11の水素
ガス濃度を示す特性曲線図である。横軸は時間、
縦軸は水素ガス濃度(%LEL)を示し、aは平
常時、bは一時的なシール作用の破壊を示す曲
線、cは継電器12に後述する第6図によつて設
定された水素ガス濃度の設定値、toは曲線bの設
定値c以上の継続時間、Poは一時的なエアーシ
ール部10のシール作用の破壊が起つた時点を示
す。
FIG. 3 is a characteristic curve diagram showing the hydrogen gas concentration of the detector 11 during normal operation. The horizontal axis is time;
The vertical axis shows the hydrogen gas concentration (%LEL), a is the curve under normal conditions, b is the curve showing temporary breakdown of the sealing action, and c is the hydrogen gas concentration set in the relay 12 according to FIG. 6, which will be described later. , to is the duration of the curve b to exceed the set value c, and Po is the point in time when the sealing action of the temporary air seal portion 10 breaks down.

継電器12に設定されるべき水素ガスの警報設
定値は、通常運転時の大気放出管9内の水素ガス
検出濃度に対し検出濃度の変動幅等を考慮しても
明らかに検出濃度の増加が所定の値(通常20%
LEL以上)にする。第3図は一般なタービン発
電機の発電プラントに於ける大気放出管9内の水
素濃度10〜25%LELに対し警報設定値Cを50%
LELとした例を示す。
The alarm setting value for hydrogen gas that should be set in the relay 12 is such that the detected concentration clearly increases as compared to the detected concentration of hydrogen gas in the atmosphere discharge pipe 9 during normal operation, even considering the variation range of the detected concentration. value (usually 20%
LEL or higher). Figure 3 shows an alarm set value C of 50% for a hydrogen concentration LEL of 10 to 25% in the atmosphere discharge pipe 9 in a typical turbine generator power generation plant.
An example with LEL is shown.

前述の如く、絶縁ホース7,7aから冷却水中
に浸透した微少量の水素ガスは常時は貯水槽3内
で分離蓄積されるため、貯水槽3内の水素ガス濃
度は通常100%LEL以上の高い濃度になつてい
る。従つて、この場合検出器11は第3図に示す
如くエアーシール破壊直後に一時的に高い水素ガ
ス濃度を検出するが、水素ガスは時間の経過とと
もに徐々に大気放出管9内の大気へ拡散上昇し排
出されるため次第に減衰して元の状態に戻る。
As mentioned above, the small amount of hydrogen gas that permeates into the cooling water from the insulating hoses 7 and 7a is normally separated and accumulated in the water storage tank 3, so the hydrogen gas concentration in the water storage tank 3 is usually as high as 100% LEL or higher. It's becoming concentrated. Therefore, in this case, the detector 11 detects a temporarily high concentration of hydrogen gas immediately after the air seal is broken, as shown in FIG. 3, but the hydrogen gas gradually diffuses into the atmosphere inside the atmosphere discharge pipe 9 over time. As it rises and is discharged, it gradually attenuates and returns to its original state.

第4図は絶縁ホース7.7aから冷却水中に水
素ガスの微少リークが発生した場合における検出
器11の水素ガス濃度を示す特生曲線図である。
dは継続的なシール作用の破壊を示す曲線、P1
初期シール作用の破壊が起つた時点、P2,P3はそ
れぞれ第2図、第3回目のシール作用の破壊が起
つた時点を示し、T1,T2は前記シール作用の破
壊が起つた時点P1―P2,P2―P3間のそれぞれの次
のシール破壊が起るまでの時間を示す。t1は初期
シール作用の破壊時の設定以上の継続時間、t2
2回目シール作用の破壊時の設定値以上の継続時
間であり、他は第3図と同じである。
FIG. 4 is a characteristic curve diagram showing the hydrogen gas concentration of the detector 11 when a slight leak of hydrogen gas occurs from the insulating hose 7.7a into the cooling water.
d is the curve showing the failure of the continuous sealing action, P 1 is the point at which the initial failure of the sealing action occurs, and P 2 and P 3 are the points at which the third failure of the sealing action occurs in Fig. 2, respectively. , and T 1 and T 2 indicate the time until the next seal failure occurs between the times P 1 -P 2 and P 2 -P 3 when the failure of the seal action occurs, respectively. t 1 is the duration time equal to or greater than the set value at the time of failure of the initial sealing action, and t 2 is the duration time equal to or greater than the set value at the time of failure of the second sealing action, and other aspects are the same as in FIG. 3.

機内冷却水系統においてクラツクが発生した場
合は連続的に水素ガスが冷冷却水系統に流入して
貯水槽3内の圧力上昇が起り、前述の如くエアー
シール部10のシール作用の破壊を起し貯水槽3
内が大気と連通した時点で元のシール状態に戻る
が、すぐに貯水槽3内の圧力上昇が起るため再び
次のシール作用の破壊が起る。このようにして、
大気放出管9内に排出された水素ガスが完全に大
気へ放出されないで、大気放出管9内に一部の水
素ガスが滞洩してaの状態の濃度に戻らないうち
にシール作用の破壊が繰返され、そのたびに貯水
槽3内の高濃度の水素ガスが大気放出管9内に排
出されるため、大気放出管9内の水素ガス濃度は
シール作用の破壊が繰返される度に蓄積されて高
くなり、従つて検出器11で検出される水素ガス
濃度は高くなる。
If a crack occurs in the in-flight cooling water system, hydrogen gas will continuously flow into the cooling water system, causing a pressure increase in the water tank 3, which will cause the sealing action of the air seal part 10 to break as described above. Water tank 3
When the inside communicates with the atmosphere, the original sealing state is restored, but the pressure inside the water storage tank 3 immediately increases, causing the sealing action to break again. In this way,
The sealing action is destroyed before the hydrogen gas discharged into the atmosphere discharge pipe 9 is not completely discharged into the atmosphere and some of the hydrogen gas stagnates inside the atmosphere discharge pipe 9 and the concentration does not return to the state in a. is repeated, and each time the highly concentrated hydrogen gas in the water storage tank 3 is discharged into the atmosphere discharge pipe 9, the hydrogen gas concentration in the atmosphere discharge pipe 9 accumulates each time the sealing action is repeatedly broken. Therefore, the hydrogen gas concentration detected by the detector 11 becomes high.

前記機内冷却水系統のクラツチが増大する等に
より水素ガスリーク量が増加した場合はエアーシ
ール部10のシール作用の破壊、すなわち第4図
T1,T2が次第に短かくなり、遂には第5図に示
すように連続するシール作用の破壊を起し、水素
ガス濃度は曲線eのように高い水素ガス濃度が連
続的に検出される。
If the amount of hydrogen gas leaks increases due to an increase in the clutch of the in-flight cooling water system, etc., the sealing action of the air seal portion 10 will be destroyed, that is, as shown in FIG.
As T 1 and T 2 gradually become shorter, the sealing action is finally broken as shown in Figure 5, and a high hydrogen gas concentration is continuously detected as shown in curve e. .

時間計13の設定時間は水素ガスのリーク量が
同一であつても、大気放出管9の敷設長さや配置
等によつて変化するため、各プラント毎にシール
作用の破壊時における検出器11の水素ガス検知
濃度の減衰特性を測定して決定する。すなわち、
第3図におおけるt0に対して所定の時間差をもつ
た長い時間Tを設定とする。通常は大気放出管9
内の水素ガス濃度は100%LELを超えることはな
く、かつシール作用破壊から大気放出管9内の水
素ガス濃度の最高濃度を検出するまでの経過時間
はきわめて短かいため、水素ガス最高検知濃度か
らの大気放出管9内の水素ガス濃度減衰特性を測
定して設定する。すなわち、第6図のようにあら
かじめ検出器11が検出できる水素ガス最高濃度
100%LELからの減衰特性曲線fを測定し、継電
器12に設定される水素ガス濃度C、例えば通常
プラントにおいては50%LELまで減衰する時間
T0を時間計13の設定時間Tとして使用する。
Even if the amount of hydrogen gas leaks is the same, the set time of the time meter 13 varies depending on the installation length and arrangement of the atmospheric release pipe 9, so the time set by the time meter 13 varies depending on the installation length and arrangement of the atmospheric discharge pipe 9. Determine by measuring the attenuation characteristics of the detected concentration of hydrogen gas. That is,
A long time T with a predetermined time difference from t 0 in FIG. 3 is set. Usually atmospheric discharge pipe 9
Since the hydrogen gas concentration within the atmosphere does not exceed 100% LEL, and the elapsed time from the failure of the seal to the detection of the maximum concentration of hydrogen gas inside the atmospheric release pipe 9 is extremely short, the maximum detected hydrogen gas concentration The hydrogen gas concentration attenuation characteristic in the atmosphere discharge pipe 9 is measured and set. That is, as shown in FIG. 6, the maximum concentration of hydrogen gas that can be detected by the detector 11 in advance
Measure the decay characteristic curve f from 100% LEL, and determine the hydrogen gas concentration C set in the relay 12, for example, the time it takes to decay to 50% LEL in a normal plant.
T 0 is used as the set time T of the time meter 13.

従つて、通常運転時においては第3図のt0は設
定時間Tより短かいため警報は発せられない。機
内冷却水系統にクラツクが発生した場合は、水素
ガスのリークでは第4図t1,t2…はシール作用の
破壊を繰返す度に長くなり、遂にはTより長くな
つて警報を発する。リークが多い場合は第5図の
ようにTより長くなつて警報を発する。すなわ
ち、水素ガスの冷却水中への異常漏洩を検出する
ことができる。
Therefore, during normal operation, no alarm is issued because t 0 in FIG. 3 is shorter than the set time T. If a crack occurs in the in-flight cooling water system, t 1 , t 2 . . . in Fig. 4 will become longer each time the sealing action is repeatedly broken in the case of a hydrogen gas leak, and will eventually become longer than T and an alarm will be issued. If there is a large amount of leakage, the length becomes longer than T as shown in Fig. 5 and a warning is issued. That is, abnormal leakage of hydrogen gas into the cooling water can be detected.

なお本発明は前記一実施例に於ける固定子導体
のみならず、回転子導体等の機内に位置する冷却
水系統のすべてに適用することはもちろんであ
る。
It goes without saying that the present invention is applicable not only to the stator conductor in the above embodiment, but also to all cooling water systems located in the machine, such as the rotor conductor.

以上のように本発明によれば、大気放出管に装
着したカス漏洩検出装置の検出器は大気放出管内
にシール作用の破壊によつて放出された水素ガス
濃度の変化を電気的に変換して出力し、継電器に
検出器の電気信号を受け水素ガス濃度が設定値以
上になると、継電器に組込まれた時間計によつて
所定時間を継続した時にのみ応動して警報器を動
作させるようにしので、通常運転のシール作用の
破壊では警報を発せず、クラツクの発生等の水素
ガスの冷却水中に異常漏洩した場合にのみ確実に
区別されて警報を発する。すなわち、水素ガスの
異常漏洩を確実にしかも早期に検出し、早い機会
に発電機を停止し修理する等の処理をすることが
できるなどのすぐれた効果が得られる。
As described above, according to the present invention, the detector of the scum leakage detection device attached to the atmosphere discharge pipe electrically converts changes in the concentration of hydrogen gas released into the atmosphere discharge pipe due to breakdown of the sealing action. When the relay receives an electric signal from the detector and the hydrogen gas concentration exceeds the set value, a time meter built into the relay will respond and activate the alarm only after a predetermined period of time. An alarm will not be issued if the sealing action is broken during normal operation, but will be reliably distinguished and an alarm will be issued only if hydrogen gas leaks abnormally into the cooling water, such as when a crack occurs. In other words, excellent effects such as being able to detect abnormal leakage of hydrogen gas reliably and early on, and taking measures such as stopping and repairing the generator at an early opportunity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水素ガス冷却回転電機の固定子
導体の冷却水系統図、第2図は本発明の水素ガス
冷却回転電機のガス漏洩検出装置の一実施例を示
す要部の説明図、第3図は通常運転時における検
出された水素ガス濃度の変化を示す特性曲線図、
第4図は微少リークが発生した場合に検出された
水素ガス濃度の変化を示す特性曲線図、第5図は
リークが多い場合に検出された水素ガス濃度の変
化を示す特性曲線図、第6図は時間計の設定時間
を設定する場合における水素ガス濃度の変化を示
す特性曲線図である。 1……水素ガス冷却回転電機、2……固定子導
体、3……貯水槽、4……純水ポンプ、5……熱
交換器、6……給水管、6a……戻り管、7,7
a……絶縁ホース、8,8a……分岐管、9……
大気放出管、10……エアーシール部、11……
検出器、12……継電器、13……時間計、14
……警報器、15……ガス漏洩検出装置。
FIG. 1 is a cooling water system diagram for the stator conductor of a conventional hydrogen gas-cooled rotating electrical machine, and FIG. 2 is an explanatory diagram of the main parts showing an embodiment of the gas leak detection device for a hydrogen gas-cooled rotating electrical machine of the present invention. Figure 3 is a characteristic curve diagram showing changes in detected hydrogen gas concentration during normal operation;
Figure 4 is a characteristic curve diagram showing changes in hydrogen gas concentration detected when a small leak occurs, Figure 5 is a characteristic curve diagram showing changes in hydrogen gas concentration detected when a large leak occurs, and Figure 6 is a characteristic curve diagram showing changes in hydrogen gas concentration detected when a small leak occurs. The figure is a characteristic curve diagram showing changes in hydrogen gas concentration when setting the set time of the hour meter. 1...Hydrogen gas cooled rotating electric machine, 2...Stator conductor, 3...Water tank, 4...Pure water pump, 5...Heat exchanger, 6...Water supply pipe, 6a...Return pipe, 7, 7
a... Insulated hose, 8, 8a... Branch pipe, 9...
Atmospheric discharge pipe, 10... Air seal section, 11...
Detector, 12... Relay, 13... Hour meter, 14
...Alarm, 15...Gas leak detection device.

Claims (1)

【特許請求の範囲】[Claims] 1 水素ガス冷却回転電機の巻線の導体内に熱交
換器を通した冷却水を管により導いて循環する冷
却装置、この冷却装置には冷却水に含入した水素
ガスを分離する貯水槽および冷却水管と上記導体
とを接続しふつ素樹脂のようにガス浸透性のある
絶縁材料からなる絶縁ホースを備え、上記貯水槽
にこの貯水槽内の上部空所と大気中とを連通する
とともにその中途に液体を貯溜したエアーシール
部を形成した大気放出管を備え、冷却水中に漏洩
した水素ガスを検出するガス漏洩検出装置を設け
たものにおいて、前記ガス漏洩検出装置は前記大
気放出管の上記エアーシール部より大気側に設け
られ大気放出管内の水素ガス濃度の変化を電気量
に変換して出力する検出器と、この検出器の電気
信号を受け水素ガス濃度が設定値以上でありかつ
所定時間を継続した時にのみ応動し警報器を動作
させる継電器とからなることを特徴とする水素ガ
ス冷却回転電機のガス漏洩検出装置。
1. A cooling device that circulates cooling water that has passed through a heat exchanger through the conductor of the winding of a hydrogen gas-cooled rotating electric machine by guiding it through a pipe, and this cooling device includes a water storage tank that separates hydrogen gas contained in the cooling water, and An insulated hose made of a gas-permeable insulating material such as fluororesin is provided to connect the cooling water pipe and the conductor, and to communicate the upper space in the water tank with the atmosphere and the atmosphere. In a device comprising an atmosphere discharge pipe having an air seal part in which liquid is stored in the middle thereof, and a gas leak detection device for detecting hydrogen gas leaked into the cooling water, the gas leak detection device is configured to A detector is installed on the atmosphere side of the air seal section and converts changes in hydrogen gas concentration in the atmosphere discharge pipe into an electrical quantity and outputs the same. A gas leak detection device for a hydrogen gas-cooled rotating electrical machine, characterized by comprising a relay that responds and activates an alarm only when the time period continues.
JP10592477A 1977-09-05 1977-09-05 Hydrogen gas leakage detector Granted JPS5439803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10592477A JPS5439803A (en) 1977-09-05 1977-09-05 Hydrogen gas leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10592477A JPS5439803A (en) 1977-09-05 1977-09-05 Hydrogen gas leakage detector

Publications (2)

Publication Number Publication Date
JPS5439803A JPS5439803A (en) 1979-03-27
JPS6133338B2 true JPS6133338B2 (en) 1986-08-01

Family

ID=14420399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10592477A Granted JPS5439803A (en) 1977-09-05 1977-09-05 Hydrogen gas leakage detector

Country Status (1)

Country Link
JP (1) JPS5439803A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440017A (en) * 1982-02-08 1984-04-03 General Electric Company Hydrogen leak monitor for a turbine-generator
JPH0211724A (en) * 1988-06-29 1990-01-16 Kawasaki Steel Corp Method for preventing of hardening cracks at the time of subjecting steel tube to immersion hardening
JPH0581264U (en) * 1992-04-06 1993-11-05 第一熱処理工業株式会社 Heat treatment equipment for tubular long metal
US5379632A (en) * 1992-10-29 1995-01-10 Westinghouse Electric Corporation Method of testing a gas cooled electrical generator
CN109347262B (en) * 2018-09-29 2020-12-04 东方电气自动控制工程有限公司 Anti-siphon method for generator stator cooling water system

Also Published As

Publication number Publication date
JPS5439803A (en) 1979-03-27

Similar Documents

Publication Publication Date Title
US4300066A (en) Leakage measuring apparatus for a gas-cooled, liquid-cooled, dynamoelectric machine
US5228304A (en) Refrigerant loss detector and alarm
CN1998266A (en) Water heater and method of operating the same
JP2775522B2 (en) Gas contamination detection monitor
CA2114046A1 (en) Method and apparatus for sampling and detecting gases in a fluid
JPS6133338B2 (en)
US4373379A (en) Method and apparatus for detecting defects in a water cooling system of a hydrogen-cooled dynamic electric machine
EP0124691A2 (en) Heating of a liquid in a container
CN101777405B (en) flowing water resistor and device for carrying out on-line insulation detection by using the same
US2004769A (en) Means for and method of detecting and ascertaining the region of oil leaks in cable systems
US6609411B1 (en) Apparatus for removing water from dielectric oil in electrical power transformers
JP4405066B2 (en) Fluid leak detection system
JP3028941B2 (en) Multi-sheath type sodium leak detection device
JPH02115755A (en) Abnormality detector for cooling water circulating system of rotating electric machinery
CN108443129B (en) Submersible pump control device
KR20090018739A (en) A method and apparatus for monitoring hydrogen leakage into the generator stator cooling water system
KR20090018741A (en) A method and apparatus for monitoring hydrogen leakage into the generator stator cooling water system
US3564527A (en) Alarm scheme for waste fluid drain
CN201413876Y (en) Running water resistor and device employing same for on-line insulation detection
GB2033092A (en) Detecting coolant circuit leaks in an electrical machine
JPS59149757A (en) Water cooler for rotary electric machine
JPH09117091A (en) Drainage unit in generator
JP2509705Y2 (en) Liquid helium replenishing device
JPS589547A (en) Hydrogen gas cooling rotary electric machine
CA1092652A (en) Measuring apparatus for measuring a charging degree of liquid