JPH02101461A - Material and method for forming fine pattern - Google Patents

Material and method for forming fine pattern

Info

Publication number
JPH02101461A
JPH02101461A JP63255116A JP25511688A JPH02101461A JP H02101461 A JPH02101461 A JP H02101461A JP 63255116 A JP63255116 A JP 63255116A JP 25511688 A JP25511688 A JP 25511688A JP H02101461 A JPH02101461 A JP H02101461A
Authority
JP
Japan
Prior art keywords
resist
film
polymer
pattern
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63255116A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hashimoto
和彦 橋本
Taichi Koizumi
太一 小泉
Kenji Kawakita
川北 憲司
Noboru Nomura
登 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63255116A priority Critical patent/JPH02101461A/en
Publication of JPH02101461A publication Critical patent/JPH02101461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To enable a fine exact pattern to be easily formed without causing charging up by preparing the fine pattern-forming material made of a mixture of a polymer to be polymerized or decomposed by irradiation with ionized beams and a conductive polymer. CONSTITUTION:The fine pattern-forming material to be used as an electron beam resist is prepared by mixing the conductive polymer with the polymer to be polymerized or decomposed by irradiation with ionized beams, thus permitting the obtained electron beam resist to have high conductivity, so to prevent charging up during exposure, and to form an exact fine resist pattern freed of butting errors and deviation from an alignment due to the charging up, and a multilayer resist to be easily formed without attaching an aluminum layer by using these conductive polymers for the upper layer of the multilayer resist.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体素子や集積回路を荷電ビームを用いて
パターン形成して製作する際に使用する微細パターン形
成材料ならびに同材料を用いた微細パターン形成方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a fine pattern forming material used when patterning and fabricating semiconductor elements and integrated circuits using a charged beam, and a fine pattern forming method using the same material. It is about the method.

従来の技術 従来、IC及びLSI等の製造においては、紫外線を用
いだホトリソグラフィーによってパターン形成を行なっ
ている。素子の微細化に伴ない、ステッパーレンズの高
NA化、短波長光源の使用等がすすめられているが、そ
れによって焦点深度が浅くなるという欠点がある。また
、LSI素子のパターン寸法の微細化、ムSICの製造
等にともない、電子ビームリソグラフィーが用いられる
ようになってきている。この電子ビームリソグラフィー
による微細パターン形成にはポジ型電子線レジストは欠
くことのできないものである。その中でポリメチルメタ
クリレート(PMMム)は最も解像性の良いものとして
知られているが、低感度であることが欠点である。それ
故、近年ポジ型電子線レジストの感度を高める多くの報
告が行なワしており、例えばポリメタクリル酸ブチル、
メタクリル酸メチルとメタクリ酸との共重合体、メタク
リル酸とアクリロニトリルとの共重合体、メタクリル酸
メチルとイソブチレンとの共重合体、ポリブテン−1−
スルホン、ポリイソプロペニルケトン、含フツ素ポリメ
タクリレート等のポジ型電子線レジストが発表されてい
る。これらのレジストはいづれも、側鎖に電子吸引性基
を導入、または主鎖に分解しやすい結合を導入すること
によって、電子ビームによる主鎖切断が容易におこるよ
うにしたレジストであシ、高感度化をねらったものであ
るが、解像度と感度の両方を十分に満たしたものである
とはいえない。
2. Description of the Related Art Conventionally, in the manufacture of ICs, LSIs, etc., patterns have been formed by photolithography using ultraviolet rays. With the miniaturization of elements, higher NA of stepper lenses and the use of shorter wavelength light sources are being promoted, but this has the disadvantage that the depth of focus becomes shallower. In addition, electron beam lithography has come to be used as the pattern dimensions of LSI devices become finer and munici (Music ICs) are manufactured. A positive electron beam resist is indispensable for forming fine patterns by electron beam lithography. Among them, polymethyl methacrylate (PMM) is known to have the best resolution, but it has a drawback of low sensitivity. Therefore, in recent years, many reports have been made to improve the sensitivity of positive electron beam resists, such as polybutyl methacrylate,
Copolymer of methyl methacrylate and methacrylic acid, copolymer of methacrylic acid and acrylonitrile, copolymer of methyl methacrylate and isobutylene, polybutene-1-
Positive electron beam resists such as sulfone, polyisopropenyl ketone, and fluorine-containing polymethacrylate have been announced. All of these resists have electron-withdrawing groups in their side chains or easily decomposable bonds in their main chains, making it easy for the main chain to be cleaved by an electron beam. Although this is aimed at increasing sensitivity, it cannot be said that it satisfies both resolution and sensitivity.

また、電子ビームリソグラフィーにおいては、電子ビー
ムレジストの耐ドライエツチ性の悪さ、電子の前方散乱
、後方散乱のだめの近接効果によるパターン精度への影
響、また、露光電子のチャージ・アップによるパターン
描画への影響等の欠点がある。これらの欠点をおぎなう
ために、レジストの働きを感光層と平坦化層とに分けた
多層レジスト法は非常に有効な方法である。第3図は電
子ビームリソグラフィーにおける多層レジストプロセス
を説明する図である。近接効果をおさえるために下層膜
として有機膜を2〜3μm厚塗布し、中間層として8i
02等の無機膜あるいは5oG(スピン オン グラス
)等の無機膜を塗布し、上層に電子線レジストを塗布し
、その上にチャージ・アップを防止するためにアルiを
約100人蒸着する(第3図a)。露光後、アルカリ水
溶液でアルミ層を除去し、その後現像する(第3図b)
In addition, in electron beam lithography, the poor dry etch resistance of the electron beam resist, the impact on pattern accuracy due to the proximity effect of forward scattering and back scattering of electrons, and the impact on pattern writing due to charge-up of exposure electrons. There are drawbacks such as. In order to overcome these drawbacks, a multilayer resist method in which the functions of the resist are divided into a photosensitive layer and a planarization layer is a very effective method. FIG. 3 is a diagram illustrating a multilayer resist process in electron beam lithography. To suppress the proximity effect, an organic film with a thickness of 2 to 3 μm is applied as the lower layer, and 8i is applied as the intermediate layer.
An inorganic film such as 02 or 5oG (spin-on glass) is applied, an electron beam resist is applied as the upper layer, and about 100 aluminum layers are evaporated on top of it to prevent charge-up. Figure 3a). After exposure, the aluminum layer is removed with an alkaline aqueous solution and then developed (Figure 3b)
.

次にこのレジストパターンをマスクとして中間層のドラ
イエツチングを行ない(第3図C)、次に、中間層をマ
スクとして下層のドライエツチングを行なう(第3図d
)。以上のような多層レジストプロセスを用いることに
より、微細なパターンを高アスペクト比で形成すること
ができる。
Next, the intermediate layer is dry-etched using this resist pattern as a mask (Figure 3C), and then the lower layer is dry-etched using the intermediate layer as a mask (Figure 3D).
). By using the multilayer resist process as described above, fine patterns can be formed with a high aspect ratio.

しかし、アルミ層を蒸着する多層レジストでは工程がよ
り複雑となシ、また、コンタミネーション等の問題があ
シ、実用的であるとはいえない。
However, a multilayer resist in which an aluminum layer is vapor-deposited requires a more complicated process and has problems such as contamination, so it cannot be said to be practical.

発明が解決しようとする課題 上記のように、アルミ層つきの多層レジストプロセスは
有効な方法であるが、複雑な工程、アルばのコンタミネ
ーション等の課題がある。また、アルミ層をとりのぞい
た多層レジストプロセスではチャージ、アップの問題が
ある。チャージ・アップとは露光電子が絶縁体であるレ
ジスト、中間層または下層にたまる現象である。このチ
ャージ・アップ効果によシ、電子ビームリソグラフィー
において、フィールドバッティング、合わせ精度の劣化
等、大きな課題が生じる。また、単層レジストでもこの
チャージ・アップ現象は見られ、三層レジストと同様に
フィールドバッティング、合わせ精度の劣化をまねく。
Problems to be Solved by the Invention As mentioned above, the multilayer resist process with an aluminum layer is an effective method, but there are problems such as complicated steps and aluminum contamination. Furthermore, a multilayer resist process in which the aluminum layer is removed has problems with charging and build-up. Charge-up is a phenomenon in which exposed electrons accumulate in the resist, intermediate layer, or lower layer, which is an insulator. This charge-up effect causes major problems in electron beam lithography, such as field batting and deterioration of alignment accuracy. Furthermore, this charge-up phenomenon is also observed in single-layer resists, leading to field batting and deterioration of alignment accuracy, just as with three-layer resists.

すなわち、電子ビームリソグラフィーにおいて、露光さ
れた電子はレジスト中を散乱するが、一部がレジスト中
で止り、その領域でチャージがたまってしまう。このた
まったチャージにより電子ビームが曲げられ、フィール
ドバッティング、合わせ精度の劣化をひきおこすと考え
た。
That is, in electron beam lithography, exposed electrons are scattered in the resist, but some of them stop in the resist, and charges accumulate in that region. It was thought that this accumulated charge would bend the electron beam, causing a deterioration in field batting and alignment accuracy.

本発明者らはこの現象を解決するために、導電性電子線
レジスト、また、それらを用いた微細パターン形成方法
を完成した。
In order to solve this phenomenon, the present inventors have completed a conductive electron beam resist and a fine pattern forming method using the same.

課題を解決するだめの手段 すなわち、本発明は、荷電ビームを照射することによっ
て重合または分解がおこる高分子物質に、導電性高分子
を混合したものを電子線レジストとして使用することに
よって、上記のような課題を解消しようというものであ
る。この電子線レジストは高い導電率を示すようになる
ので、露光時における電子のチャージ・アンプを防止す
ることができる。このレジスト材料は、荷電ビームによ
って分解または重合がおこる感光性高分子と、露光時の
チャージを取りのぞく導電性高分子の2相から成ってお
り、電子ビームに対して高い感度を示す導電性電子線レ
ジストになりうる。また、導電性高分子も電子ビームと
反応してもよく、その時は導電性高分子は、現像時の溶
解阻止剤としても働く。
As a means to solve the problem, the present invention solves the above problem by using as an electron beam resist a mixture of a conductive polymer and a polymer material that polymerizes or decomposes when irradiated with a charged beam. The aim is to solve such problems. Since this electron beam resist exhibits high conductivity, it is possible to prevent charge amplification of electrons during exposure. This resist material consists of two phases: a photosensitive polymer that decomposes or polymerizes when exposed to a charged beam, and a conductive polymer that removes charges during exposure. It can be a line resist. The conductive polymer may also react with the electron beam, in which case the conductive polymer also acts as a dissolution inhibitor during development.

導電性高分子としてシリコン含有導電性高分子を使用す
ることによって、耐ドライエツチ性の高い、二層レジス
ト用のシリコン含有導電性レジストになりうる。
By using a silicon-containing conductive polymer as the conductive polymer, a silicon-containing conductive resist for a two-layer resist with high dry etch resistance can be obtained.

これらの導電性高分子物質を多層レジストの上層レジス
トに用いることによって、アルミ層をつけずに多層レジ
ストを容易に形成することができ、チャージアップによ
るバッティングエラー、アライメントずれのない正確な
微細レジストパターンを形成することができる。
By using these conductive polymer materials as the upper resist layer of a multilayer resist, it is possible to easily form a multilayer resist without adding an aluminum layer, allowing accurate fine resist patterns without batting errors or misalignment due to charge-up. can be formed.

作用 本発明は前記した導電性電子線レジスト、および、それ
を用いたレジストプロセスによす、容易に、チャーハア
ップのおこらない正確な微細パターンを形成することが
できる。特に、アルミ層を蒸着する必要がなく、コンタ
ミネーシコンの問題もなく、また、工程も簡略化するこ
とができ、電子によるチャージ・ア多プを防止して、正
確な微細パターンを形成することができる。従って、本
発明を用いることによって、正確な高解像度な微細パタ
ーン形成に有効に作用する。
Effect of the Invention The present invention uses the above-described conductive electron beam resist and a resist process using the resist to easily form an accurate fine pattern that does not cause char-up. In particular, there is no need to evaporate an aluminum layer, there is no problem of contamination, the process can be simplified, and accurate fine patterns can be formed by preventing charge build-up due to electrons. Can be done. Therefore, by using the present invention, it is possible to effectively form accurate, high-resolution fine patterns.

実施例 (実施例1) 分子量約20万のポリメチルメタクリレート(PMM人
)01 fをメチルイソブチルケトン10C,C,に溶
解させた後、分子量約10万のポリジブチルチオフェン
0.1yを加えて、不溶分をろ別しレジスト溶液とした
。このレジスト溶液を半導体基板上に滴下し200 O
rpmでスピンコードし15′0℃、30分間のベーキ
ングを行ない、12μm厚のレジスト膜を得ることがで
きだ。次に、加速電圧20KV、照射量1.OX 10
 ’ c/CXPテ電子線露光を行なった後、メチルイ
ンブチルケトン(MIBK)とイソプロピルアルコール
(IFム)の混合液で現像を行なった所、チャージアッ
プによるフィールドバッティングエラーのない、正確な
ポジ型レジストパターンを得ることができた。
Example (Example 1) After dissolving polymethyl methacrylate (PMM) 01f with a molecular weight of about 200,000 in methyl isobutyl ketone 10C, C, add polydibutylthiophene 0.1y with a molecular weight of about 100,000, Insoluble matter was filtered off to obtain a resist solution. This resist solution was dropped onto the semiconductor substrate at 200 O
By spin-coding at rpm and baking at 15'0°C for 30 minutes, a resist film with a thickness of 12 μm could be obtained. Next, the acceleration voltage was 20KV and the irradiation amount was 1. OX10
' After performing c/CXP electron beam exposure, development was performed with a mixture of methyl imbutyl ketone (MIBK) and isopropyl alcohol (IFum), resulting in an accurate positive type image with no field batting errors due to charge-up. I was able to obtain a resist pattern.

まだ、末照射部の膜減りはほとんどなかった。There was still almost no film loss in the last irradiated area.

(実施例2) 分子量約10万の含フツ素ポリメタクリレート01yを
MIBKloccに溶解させた後、分子量約1万のラダ
ー型ジメチルポリシラン0.1yを加えて、不溶分をろ
別しレジスト溶液とした。このレジスト溶液を半導体基
板上に滴下し200Orpmでスピンコードし、150
’C,30分間のベーキングを行ない、12μm厚のレ
ジスト膜を得ることができた。次に、加速電圧20KV
、照射量10 X 10−6c/(がで電子線露光を行
なった後、IP人で現像を行なった所、チャージ・アン
プによるフィールドバッティングエラーのない、正確な
ポジ型レジストパターンを得ることができた。
(Example 2) After dissolving fluorine-containing polymethacrylate 01y with a molecular weight of about 100,000 in MIBKlocc, 0.1y of ladder-type dimethyl polysilane with a molecular weight of about 10,000 was added, and insoluble matter was filtered out to obtain a resist solution. . This resist solution was dropped onto the semiconductor substrate and spin coded at 200 rpm.
'C: After baking for 30 minutes, a resist film with a thickness of 12 μm was obtained. Next, acceleration voltage 20KV
, after electron beam exposure with a radiation dose of 10 x 10-6c/(Ga), an accurate positive resist pattern without field batting errors due to charge amplifiers could be obtained when development was performed with an IP person. Ta.

また、末照射部の膜減りはほとんどなかった。In addition, there was almost no film loss in the end irradiation area.

(実施例3) 実施例2においてラダー型ジメチルポリシランのかわり
に、パーシラポリアセチレンを加えることによってレジ
スト膜を形成した。このレジスト膜に加速電圧20KV
、照射量1x1o−6c/iがで電子線露光を行なった
後、IP人で現像を行なった所、チャージアップによる
フィールドバッティングエラーのない、正確なポジ型レ
ジストパターンを得ることができた。
(Example 3) In Example 2, a resist film was formed by adding persila polyacetylene instead of ladder type dimethyl polysilane. Acceleration voltage of 20KV is applied to this resist film.
After performing electron beam exposure at a dose of 1×10-6 c/i, an accurate positive resist pattern without field batting errors due to charge-up was obtained when development was performed using an IP printer.

(実施例4) 本発明の第4の実施例を第1図に示す。半導体基板1上
に下層膜2として高分子有機膜を塗布し、220’C,
20分間ベーキングを行なう。この上に中間層3として
SOGをスピンコードし、200℃。
(Example 4) A fourth example of the present invention is shown in FIG. A polymeric organic film is coated as a lower layer film 2 on a semiconductor substrate 1, and heated at 220'C.
Bake for 20 minutes. On top of this, SOG was spin-coded as the intermediate layer 3 at 200°C.

2o分間ベーキングを行なう。この上に実施例1で得ら
れた混合物を電子線レジスト4として塗布し、150℃
、20分間のベーキングを行ない、06μm厚のレジス
ト膜を形成した。(第1図a)次に、加速電圧20KV
、照射量1×1o C/afで電子線5の露光を行ない
、IPムで現像を行なった所、正確な微細レジストパタ
ーン4Pが得られた。(第1図b)導電性が良いのでチ
ャージアップによるフィールドパッティングエラーは全
く見られなかった。このレジストパターン4P″Ir:
?スフとして中間層5OG3のエツチングを行なった。
Bake for 2o minutes. The mixture obtained in Example 1 was applied thereon as electron beam resist 4, and the temperature was increased to 150°C.
, Baking was performed for 20 minutes to form a resist film with a thickness of 0.6 μm. (Figure 1a) Next, the acceleration voltage is 20KV.
, an accurate fine resist pattern 4P was obtained when exposure was performed with an electron beam 5 at a dose of 1×1° C/af and development was performed using an IP film. (Fig. 1b) Since the conductivity was good, no field putting errors due to charge-up were observed. This resist pattern 4P″Ir:
? The intermediate layer 5OG3 was etched as a fabric.

(第1図C)そして中間層をマスクとして下層膜2のエ
ツチングを行ない、正確で垂直な微細レジストパターン
2Pを得ることができた。(第1図d)(実施例6) 本発明の第5の実施例を第2図に示す。半導体基板1上
に下層膜12として高分子有機膜を塗布し、220℃、
20分間ベベーキング行なう。この上に、実施例2で得
られた混合物を電子線レジスト13として塗布し、15
0’C,20分間のベーキングを行ない、0.6μm厚
のレジスト膜を形成した。(第2図a)次に、加速電圧
20KV、照射量1x 1o−’ c/crで電子線1
4で露光を行ない、IPムで現像すると、正確な微細レ
ジストパター713Pが得られた。(第2図b)導電性
が良いのでチャージアップによるフィールドパッティン
グエラーは全く見られなかった。このレジストパターン
13Pをマスクとして下層膜12のエツチングを行ない
、正確で垂直な微細レジストパターン12Pを得ること
ができた。(第2図C)なお、電子線レジスト13とし
て実施例3で得られた混合物を使用してもよい。
(FIG. 1C) Then, the lower layer film 2 was etched using the intermediate layer as a mask, and an accurate and vertical fine resist pattern 2P could be obtained. (FIG. 1d) (Embodiment 6) A fifth embodiment of the present invention is shown in FIG. A polymeric organic film is coated as a lower layer film 12 on a semiconductor substrate 1, and heated at 220°C.
Bake for 20 minutes. On this, the mixture obtained in Example 2 was applied as an electron beam resist 13, and 15
Baking was performed at 0'C for 20 minutes to form a resist film with a thickness of 0.6 μm. (Figure 2a) Next, an electron beam of 1
4 and development using IP, an accurate fine resist pattern 713P was obtained. (Fig. 2b) Since the conductivity was good, no field putting errors due to charge-up were observed. Using this resist pattern 13P as a mask, the lower film 12 was etched, and an accurate and vertical fine resist pattern 12P could be obtained. (FIG. 2C) Note that the mixture obtained in Example 3 may be used as the electron beam resist 13.

発明の詳細 な説明したように、本発明によれば、荷電ビーム照射に
よって重合または分解する高分子物質と導電性高分子と
の混合物を電子線レジストとして使用すると、高感度で
高解像度のレジストパターンを形成することができる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, when a mixture of a polymer material and a conductive polymer that is polymerized or decomposed by charged beam irradiation is used as an electron beam resist, a resist pattern with high sensitivity and high resolution can be obtained. can be formed.

これらのレジストを使用することによって露光電子によ
るチャージアップの影響はなくなり、フィールドパッテ
ィング、合わせ精度を向上させることができる。また、
導電性高分子として、シリコン含有導電性高分子を使用
することによって、二層レジストの上層レジストとして
使用でき、容易にチャージアップを防止することができ
、正確で垂直な微細レジストパターンを形成することが
でき、超高密度集積回路の製造に大きく寄与することが
できる。
By using these resists, the influence of charge-up due to exposure electrons is eliminated, and field putting and alignment accuracy can be improved. Also,
By using a silicon-containing conductive polymer as a conductive polymer, it can be used as the upper layer resist of a two-layer resist, easily prevent charge-up, and form an accurate and vertical fine resist pattern. This can greatly contribute to the production of ultra-high density integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における一実施例の工程断面図、第2図
は同他の実施例の工程断面図、第3図は従来の多層レジ
スト法の工程断面図である。 1・・・・・・半導体基板、2・・・・・・下層膜、3
・・・・・・中間層、4・・・・・・電子線レジスト。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名菓 
lr!A 箔 図
FIG. 1 is a process sectional view of one embodiment of the present invention, FIG. 2 is a process sectional view of another embodiment, and FIG. 3 is a process sectional view of a conventional multilayer resist method. 1... Semiconductor substrate, 2... Lower layer film, 3
...Intermediate layer, 4...Electron beam resist. Name of agent: Patent attorney Shigetaka Awano and one other name
lr! A foil drawing

Claims (4)

【特許請求の範囲】[Claims] (1)荷電ビームが照射されることによって分解または
重合をおこす高分子物質と、導電性高分子との混合物よ
り成ることを特徴とする微細パターン形成材料。
(1) A fine pattern forming material comprising a mixture of a conductive polymer and a polymer substance that decomposes or polymerizes when irradiated with a charged beam.
(2)荷電ビームが照射されることによって分解または
重合をおこす高分子物質と、シリコン含有導電性高分子
との混合物より成ることを特徴とする微細パターン形成
材料。
(2) A fine pattern forming material comprising a mixture of a polymer substance that decomposes or polymerizes when irradiated with a charged beam and a silicon-containing conductive polymer.
(3)半導体基板上に、有機高分子膜を塗布し熱処理し
た後、上記有機高分子膜上に無機膜を塗布し熱処理する
工程と、上記無機膜上に、導電性高分子と感光性高分子
物質との混合物をレジスト膜として塗布し熱処理する工
程と、上記レジスト膜にパターンを描画し現像する工程
と、上記レジストパターンをマスクとして上記無機膜お
よび高分子有機膜をエッチングする工程とを備えて成る
ことを特徴とする微細パターン形成方法。
(3) After applying an organic polymer film on the semiconductor substrate and heat-treating it, applying an inorganic film on the organic polymer film and heat-treating it, and applying a conductive polymer and a photosensitive polymer on the inorganic film. The method comprises a step of applying a mixture with a molecular substance as a resist film and heat-treating it, a step of drawing a pattern on the resist film and developing it, and a step of etching the inorganic film and the polymeric organic film using the resist pattern as a mask. A fine pattern forming method characterized by comprising:
(4)半導体基板上に、有機高分子膜を塗布し熱処理す
る工程と、上記有機高分子膜上に、感光性高分子物質と
シリコン含有導電性高分子との混合物をレジスト膜とし
て塗布し熱処理する工程と、上記レジスト膜にパターン
を描画し現像する工程と、上記レジストパターンをマス
クとして高分子有機膜をエッチングする工程とを備えて
成ることを特徴とする微細パターン形成方法。
(4) A step of applying an organic polymer film on the semiconductor substrate and heat-treating it, and applying a mixture of a photosensitive polymer material and a silicon-containing conductive polymer as a resist film on the organic polymer film and heat-treating it. A method for forming a fine pattern, comprising: a step of drawing and developing a pattern on the resist film; and a step of etching a polymeric organic film using the resist pattern as a mask.
JP63255116A 1988-10-11 1988-10-11 Material and method for forming fine pattern Pending JPH02101461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255116A JPH02101461A (en) 1988-10-11 1988-10-11 Material and method for forming fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255116A JPH02101461A (en) 1988-10-11 1988-10-11 Material and method for forming fine pattern

Publications (1)

Publication Number Publication Date
JPH02101461A true JPH02101461A (en) 1990-04-13

Family

ID=17274319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255116A Pending JPH02101461A (en) 1988-10-11 1988-10-11 Material and method for forming fine pattern

Country Status (1)

Country Link
JP (1) JPH02101461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204848A (en) * 1990-11-30 1992-07-27 Matsushita Electric Ind Co Ltd Fine pattern forming method
US5527662A (en) * 1990-05-24 1996-06-18 Matsushita Electric Industrial Co., Ltd. Process for forming fine pattern
US5783363A (en) * 1992-05-28 1998-07-21 National Semiconductor Corporation Method of performing charged-particle lithography

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105227A (en) * 1981-12-18 1983-06-23 Fujitsu Ltd Resist for electron beam
JPS5993441A (en) * 1982-11-19 1984-05-29 Hitachi Ltd Resist
JPS59107347A (en) * 1982-12-13 1984-06-21 Fujitsu Ltd Pattern forming material
JPS60103342A (en) * 1983-11-11 1985-06-07 Toshiba Corp Resist composition for color filter
JPS62113136A (en) * 1985-11-13 1987-05-25 Fujitsu Ltd Resist composition
JPS6381424A (en) * 1986-09-26 1988-04-12 Sumitomo Chem Co Ltd Resist material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105227A (en) * 1981-12-18 1983-06-23 Fujitsu Ltd Resist for electron beam
JPS5993441A (en) * 1982-11-19 1984-05-29 Hitachi Ltd Resist
JPS59107347A (en) * 1982-12-13 1984-06-21 Fujitsu Ltd Pattern forming material
JPS60103342A (en) * 1983-11-11 1985-06-07 Toshiba Corp Resist composition for color filter
JPS62113136A (en) * 1985-11-13 1987-05-25 Fujitsu Ltd Resist composition
JPS6381424A (en) * 1986-09-26 1988-04-12 Sumitomo Chem Co Ltd Resist material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527662A (en) * 1990-05-24 1996-06-18 Matsushita Electric Industrial Co., Ltd. Process for forming fine pattern
JPH04204848A (en) * 1990-11-30 1992-07-27 Matsushita Electric Ind Co Ltd Fine pattern forming method
US5783363A (en) * 1992-05-28 1998-07-21 National Semiconductor Corporation Method of performing charged-particle lithography

Similar Documents

Publication Publication Date Title
JP3355239B2 (en) Pattern formation method
JPH0429148A (en) Pattern forming material and formation of pattern
JPH07261392A (en) Chemical amplification resist and resist pattern forming method using the same
US6589713B1 (en) Process for reducing the pitch of contact holes, vias, and trench structures in integrated circuits
JP2005519456A (en) Formation of self-aligned pattern using two wavelengths
JP2707785B2 (en) Resist composition and pattern forming method
US4543319A (en) Polystyrene-tetrathiafulvalene polymers as deep-ultraviolet mask material
JPH02251962A (en) Fine pattern forming material and pattern forming method
KR100396193B1 (en) Formation Method Of Pattern
JP2737225B2 (en) Fine pattern forming material and pattern forming method
JPH02101461A (en) Material and method for forming fine pattern
JP2506952B2 (en) Fine pattern formation method
JP2586584B2 (en) Fine pattern forming method
JPH04330709A (en) Fine-pattern formation material and pattern formation method
JP2548308B2 (en) Pattern formation method
JPH02101463A (en) Material and method for forming fine pattern
JPS59124133A (en) Method of forming negative type resist image
JPH0529205A (en) Microscopic pattern forming material and pattern forming method
JPH0429149A (en) Pattern forming material and formation of pattern
JPH03137649A (en) Fine pattern forming material and pattern forming method
JPH02251961A (en) Fine pattern forming material and pattern forming method
JPS6256947A (en) Composition for flattened layer for resist having two-layered structure
JPH0562894A (en) Forming method for fine pattern
WO2010001525A1 (en) Pattern forming method
JPH0950115A (en) Production of phase shift photomask having phase shift layer consisting of sog