JPH02101166A - Corrosion-resistant metallic sheet - Google Patents

Corrosion-resistant metallic sheet

Info

Publication number
JPH02101166A
JPH02101166A JP25347988A JP25347988A JPH02101166A JP H02101166 A JPH02101166 A JP H02101166A JP 25347988 A JP25347988 A JP 25347988A JP 25347988 A JP25347988 A JP 25347988A JP H02101166 A JPH02101166 A JP H02101166A
Authority
JP
Japan
Prior art keywords
film
plasma polymerized
plasma
metal plate
polymerized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25347988A
Other languages
Japanese (ja)
Inventor
Toshihiro Yoshida
吉田 敏裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP25347988A priority Critical patent/JPH02101166A/en
Publication of JPH02101166A publication Critical patent/JPH02101166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a dense film free of pinholes and to improve the corrosion resistance of an Al member by roughing the surface of the Al member and then forming a plasma-polymerized film and an org. film on the surface. CONSTITUTION:The surface of an Al sheet is roughed by plasma etching polishing, alkali etching, etc. The plasma-polymerized film of org. monomers of methane, propane, ethylene, acetylene, propylene, etc., is formed in 0.1-2mum thickness on the roughed surface. The roughness of the Al member surface in this case is related to the thickness (t) in mum of the plasma-polymerized film by enequalities I based on JIS BO 601. A coating film of the acrylic, epoxy, or polyester thermosetting org. coating is further formed in 0.5-10mum thickness on the plasma-polymerized film as the org. film. As a result, an Al sheet coated with a dense film free of pinholes and having excellent corrosion resistance is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマ重合膜を表面に有する耐食性金属板
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a corrosion-resistant metal plate having a plasma polymerized film on its surface.

(従来の技術) 従来、金属材料の耐食性を改善するために、この表面に
無機あるいは41機の皮膜が形成されている。例えばア
ルミニウム板の場合にはアルマイト皮膜、ベーマイト皮
膜、クロメート皮膜、例えば鋼板の場合には、クロメー
ト皮膜、リン酸亜鉛皮膜等の無機皮膜が形成されており
、その他有機塗Hり等の有機系皮膜あるいは無機系と有
機系皮膜からなる複合皮膜を表面に形成することか行わ
れている。
(Prior Art) Conventionally, in order to improve the corrosion resistance of metal materials, an inorganic or organic film has been formed on the surface of the metal materials. For example, in the case of an aluminum plate, an alumite film, a boehmite film, or a chromate film is formed; for example, in the case of a steel plate, an inorganic film such as a chromate film or a zinc phosphate film is formed, and other organic films such as an organic coating are formed. Alternatively, a composite film consisting of an inorganic film and an organic film is formed on the surface.

(発明が解決しようとする課題) しかしなから、これらの皮膜中には、金属材料表面に介
在する金属間化合物や塗料の乾燥時の溶剤の蒸散等に起
因するピンホールが数多く含まれており、所望の耐食性
か得られにくい。
(Problem to be solved by the invention) However, these films contain many pinholes caused by intermetallic compounds present on the surface of the metal material and evaporation of the solvent during drying of the paint. , it is difficult to obtain the desired corrosion resistance.

本発明はかかる問題点を解決して、緻密で、耐食性を劣
化させるピンホールを含まない皮膜を有する耐食性金属
板を提供するものである。
The present invention solves these problems and provides a corrosion-resistant metal plate having a dense coating that does not contain pinholes that degrade corrosion resistance.

(課題を解決するだめの手段) 本発明者らは、上記の金属材料の耐食性に関する欠点を
克服するため鋭意研究を重ねた結果、有機モノマーガス
を真空容器中て電界又は不活性なキャリアガスのプラズ
マにさらすことにより得られる有機モノマーの活性種を
、固体表面て重合反応させることにより形成されるプラ
ズマ重合膜か高度に架橋したw!!、密な分子構造を有
しており、ピンホールをほとんど含まず、金属材料の防
食のためには、固体表面上に形成される皮膜に要求され
る基体との密着性と防食性の両特性を同時に満足させる
ことがてきるか、特に成膜条件を制御することにより、
両特性をさらに向上しうることを見出し、この知見に基
づき本発明をなすに至った。
(Another Means to Solve the Problem) As a result of intensive research to overcome the above-mentioned drawbacks regarding corrosion resistance of metal materials, the present inventors have discovered that organic monomer gas is heated in a vacuum container under an electric field or inert carrier gas. A highly crosslinked plasma-polymerized film is formed by polymerizing active species of organic monomers obtained by exposing them to plasma on a solid surface. ! , has a dense molecular structure and contains almost no pinholes, and has both adhesion to the substrate and anti-corrosion properties required for a film formed on a solid surface to prevent corrosion of metal materials. Is it possible to simultaneously satisfy the following, especially by controlling the film formation conditions?
It was discovered that both characteristics could be further improved, and the present invention was completed based on this knowledge.

すなわち本発明は、(1)表面に、成膜条件を一定にし
て、又は成膜条件を連続的もしくは[i統帥に変化させ
て形成したプラズマ重合膜を有することを特徴とする耐
食性金属板、(2)表面に、成膜条件を連続的あるいは
断続的に変化させて形成されるプラズマ重合膜を有する
アルミニウム板であることを特徴とする前記(1)記載
の耐食性金属板、(3)プラズマ重合膜上に有機皮膜を
形成してなる前記(1)又は(2)記載の耐食性金属板
、(4)プラズマ重合膜を形成する金属板か予め粗面化
されている前記(1)、(2)又は(3)記載の耐食性
金属板。及び(5)金属板の粗面化による粗さとプラズ
マ重合膜の厚さtルmとの関係がJISBO601に基
づき式0式% (式中、Raは中心線乎均粗さを、Rmaxは最大高さ
を、Sは断面曲線における山頂の平均間隔を、それぞれ
示す。) で表わされる前記(4)記載の耐食性金属板を提供する
ものである。
That is, the present invention provides (1) a corrosion-resistant metal plate having a plasma polymerized film formed on the surface thereof under constant film-forming conditions or under continuous or uniformly varied film-forming conditions; (2) The corrosion-resistant metal plate according to (1) above, which is an aluminum plate having a plasma polymerized film formed by continuously or intermittently changing the film forming conditions on the surface; (3) plasma (4) The corrosion-resistant metal plate according to (1) or (2) above, in which an organic film is formed on a polymer film; Corrosion-resistant metal plate according to 2) or (3). and (5) The relationship between the roughness due to surface roughening of the metal plate and the thickness trum of the plasma polymerized film is expressed by the formula 0 based on JISBO601. The present invention provides the corrosion-resistant metal plate according to (4) above, where S is the average distance between the peaks in the cross-sectional curve.

本発明においてはプラズマ重合膜は、成膜条件を一定に
して単一条件て形成されたものてもよいか成膜条件を連
続的あるいはPl’r続的に変化させてプラズマ重合膜
の膜質(M密性、密着性、化学的特性)を断面方向に変
化させるのか好ましい。例えば、このように成膜条件を
変化させて下層に基体との密着性かよく土層に緻密て防
食性か良好なプラズマ重合膜を形成することかてきる。
In the present invention, the plasma polymerized film may be formed under a single condition with constant film forming conditions, or the film quality of the plasma polymerized film may be changed by continuously or continuously changing the film forming conditions. It is preferable to change M density, adhesion, chemical properties) in the cross-sectional direction. For example, by changing the film forming conditions in this way, it is possible to form a plasma polymerized film as the lower layer that has good adhesion to the substrate, is dense on the soil layer, and has good anticorrosion properties.

本発明の金属板とは、鉄板、銅板、アルミニウム板、マ
クネシウム板、ステンレス板、これらの合金板なとてあ
り、これらは合金板を包含し、腐食性を有する金属なら
ば全てのものを包含する。
The metal plates of the present invention include iron plates, copper plates, aluminum plates, magnesium plates, stainless steel plates, and alloy plates thereof, and these include alloy plates and include all corrosive metals. do.

また金属板の厚さ、形態は特に制限されるものてはない
Further, the thickness and shape of the metal plate are not particularly limited.

また本発明におけるプラズマ重合膜は、有機上ツマ−を
プラズマ重合させて形成した皮膜てあり、ここで用いら
れる有機上ツマ−としては、例えば、常温、常圧で気体
であるメタン、エタン。
The plasma polymerized film in the present invention is a film formed by plasma polymerizing an organic layer, and examples of the organic layer used here include methane and ethane, which are gases at room temperature and pressure.

フロパン、エチレン、アセチレン、プロピレン、CF4
.C,FB 、C2F4、C,F4.液体である、ベン
ゼン、ヘキサン、トルエン、スチレン、キシレン、アク
リル酸メチル、あるいは固体である、ナフタレン、アン
トラセン、ジベンゾル、等が挙げられる。なお、液体又
は固体の有機モノマーを使用する場合には、これらを気
化させて重合させることはもちろんである。
Flopane, ethylene, acetylene, propylene, CF4
.. C, FB, C2F4, C, F4. Examples include liquids such as benzene, hexane, toluene, styrene, xylene, and methyl acrylate, and solids such as naphthalene, anthracene, and dibensol. Note that when liquid or solid organic monomers are used, they can of course be vaporized and polymerized.

プラズマ重合膜は、成膜条件を一定にして又は連続的も
しくは断続的に変化させて形成したものであるがアルミ
ニウム板の場合、成膜条件を変化させて形成する。この
場合アルミニウム板表面にまずアルミニウム板との密着
性が良好となる条件てプラズマ重合膜を形成し、さらに
その上に防食性か良好となるプラズマ重合膜を形成する
という複合方法か、アルミニウム表面への防食皮膜形成
方法として有効である。
A plasma polymerized film is formed by keeping the film forming conditions constant or changing them continuously or intermittently, but in the case of an aluminum plate, it is formed by changing the film forming conditions. In this case, there is a combined method in which a plasma polymerized film is first formed on the aluminum plate surface under conditions that provide good adhesion to the aluminum plate, and then a plasma polymerized film that has good anticorrosion properties is formed on top of that. It is effective as a method for forming an anticorrosive film.

本発明のプラズマ重合膜の形成はキャリアーガスとして
、例えばアルゴン、ヘリウム等の不活性ガスを用いて行
うことかてきる。成膜条件は真空容器内の圧力を、好ま
しくはガス導入前で0.001〜O15Torr、有機
上ツマーガス又はキャリアーガスと有機上ツマーガス導
入時て0.005〜I Torrの範囲にするのがよい
。また、対向平板型電極に高周波を印加してプラズマを
発生させる場合、高周波は電源出力で好ましくは10〜
500Wの範囲とするのかよい。なお、プラズマ重合膜
の膜質を断面方向に変化させるには、成膜条件を連続的
あるいは断続的に変化させればよい。例えば前記条件範
囲においてまず密着性良好な条件て成膜した後、電源出
力のみを大きくして緻密なプラズマ重合膜を形成する方
法か有効である。
The plasma polymerized film of the present invention can be formed using an inert gas such as argon or helium as a carrier gas. The film forming conditions are such that the pressure in the vacuum container is preferably in the range of 0.001 to 15 Torr before introducing the gas, and 0.005 to I Torr when introducing the organic upper gas or the carrier gas and the organic upper gas. In addition, when generating plasma by applying high frequency to the facing flat electrode, the high frequency is preferably 10 to 10% in power output.
It may be within the range of 500W. Note that in order to change the film quality of the plasma polymerized film in the cross-sectional direction, the film forming conditions may be changed continuously or intermittently. For example, it is effective to first form a film under conditions with good adhesion in the above condition range, and then increase only the power output to form a dense plasma polymerized film.

上記の密着性の良好な成膜条件とは、電源出力か10〜
300Wの範囲てあり、有機モノマーガス又はキャリア
ーガスと有機モノマーガス導入時てo、oos〜I T
orrの範囲であり、この成膜条件で成膜を初期段階て
行い、その給電源出力のみを連続的あるいは断続的に大
きくして成膜を行う。この連続的あるいは断続的に変化
させる成膜条件は主に電源出力、ガス圧力である。
The above conditions for film formation with good adhesion are as follows:
It is in the range of 300W, and when organic monomer gas or carrier gas and organic monomer gas are introduced, it is o, oos to IT.
orr, and film formation is performed in the initial stage under these film formation conditions, and film formation is performed by increasing only the power supply output continuously or intermittently. The film forming conditions that are continuously or intermittently changed are mainly power supply output and gas pressure.

このようにして形成されるプラズマ重合膜の厚さは0.
1〜2JLm、特に0.2〜Igmの範囲とするのか好
ましい。プラズマ重合膜の厚さが小さすぎると十分な防
食効果が得られず、また大きすぎると経済的てなく、ま
た密着性も悪化する。
The thickness of the plasma polymerized film thus formed is 0.
A range of 1 to 2 JLm, particularly 0.2 to Igm is preferred. If the thickness of the plasma polymerized film is too small, a sufficient anticorrosion effect cannot be obtained, and if it is too large, it is not economical and the adhesion is also deteriorated.

ところで、プラズマ重合膜はその成膜速度が極めて遅<
 (<0.1用m/m1n)、それたけて、外傷に耐え
得る厚さとするのは経済的とはいえない。そこで金属板
表面にプラズマ重合膜を薄く形成し、さらにその上に有
機皮膜を形成するのか好ましい。このようにすることに
より外傷に耐え、かつ防食性の優れた金属板防食皮膜を
得ることが可能となる。
By the way, the deposition rate of plasma polymerized films is extremely slow.
(<0.1 m/m1n), so it is not economical to make it thick enough to withstand external damage. Therefore, it is preferable to form a thin plasma polymerized film on the surface of the metal plate and further form an organic film thereon. By doing so, it becomes possible to obtain an anti-corrosion coating on a metal plate that is resistant to external damage and has excellent anti-corrosion properties.

プラズマ重合膜の上に形成される有機皮膜としては、例
えばアクリル系、エポキシ系、ポリエステル系、ウレタ
ン系、塩化ビニル系等の熱硬化型有機塗料の1種もしく
は2種以上により、得られる塗膜か好ましく、その厚さ
は0.5〜10 gmの範囲か好適である。
The organic film formed on the plasma polymerized film may be a coating film obtained using one or more types of thermosetting organic paints such as acrylic, epoxy, polyester, urethane, and vinyl chloride paints. The thickness is preferably in the range of 0.5 to 10 gm.

ところで金属板表面へのプラズマ重合膜の形成に当たり
、予め金属板表面を適宜に粗ずことは、金属板とプラズ
マ重合膜の密着性をさらによくすることに有効である。
By the way, when forming a plasma polymerized film on the surface of a metal plate, appropriately roughening the metal plate surface in advance is effective in further improving the adhesion between the metal plate and the plasma polymerized film.

この金属板表面の粗面化は、例えばプラズマエツチング
研磨、アルカリエツチング等の方法で行われ、これらの
方法により金属板表面の粗さをJISBO601に基づ
き、金属板表面」二に形成されるプラズマ重合膜の厚さ
をtpmとした場合、0.03ルm≦Ra≦tpLm、
Rmax≦5tgm、S≦10 JLmとするのが好ま
しい(たたし、Ra:中心線平均粗さ、Rmax ;最
大高さ、S:断面曲線における山頂の平均間隔)。金属
板の表面積か小さすぎると金属板とプラズマ重合膜との
密着性は悪く、また、プラズマ重合膜が厚すぎたり、最
大高さか高すぎるとプラズマ重合膜に欠陥が生しやすく
、その防食効果が低下するためである。
This roughening of the metal plate surface is performed, for example, by methods such as plasma etching polishing and alkali etching, and these methods are used to roughen the metal plate surface based on JISBO601. When the thickness of the film is tpm, 0.03 m≦Ra≦tpLm,
It is preferable to set Rmax≦5tgm, S≦10JLm (Tap, Ra: center line average roughness, Rmax: maximum height, S: average interval of peaks in the cross-sectional curve). If the surface area of the metal plate is too small, the adhesion between the metal plate and the plasma polymerized film will be poor, and if the plasma polymerized film is too thick or the maximum height is too high, defects will easily occur in the plasma polymerized film, and its anticorrosion effect will be affected. This is because the

なお、プラズマ重合膜を形成する前処理として、アルミ
ニウム板表面をアルカリエツチングする場合、板表面に
A文−Fe系化合物等のスマットが残り、プラズマ重合
■りのアルミニウム板との密着性か低下するため、その
スマットを除去する必要かある。なお、アルカリエツチ
ング剤としては、水酸化ナトリウム水溶液、す1〜リン
(日本ペイント製弱アルカリエッチンク剤)などか挙げ
られる。スマットの除去は通常酸洗いによって行れるか
特にスマット除去の効果か強く、同時にアルミニウム板
表面に有機皮膜との密着性が良好な酸化クロム層を形成
する、リン酸、クロム酸混液への浸漬処理が有効である
In addition, when alkali etching is performed on the surface of an aluminum plate as a pretreatment for forming a plasma polymerized film, smut such as A-Fe-based compounds remains on the surface of the plate, reducing the adhesion of the plasma polymerized film to the aluminum plate. Therefore, it is necessary to remove the smut. In addition, examples of the alkaline etching agent include a sodium hydroxide aqueous solution, and phosphorus (a weak alkaline etching agent manufactured by Nippon Paint). Smut removal is usually carried out by pickling.Immersion treatment in a mixed solution of phosphoric acid and chromic acid, which has a particularly strong smut removal effect and at the same time forms a chromium oxide layer on the aluminum plate surface that has good adhesion to the organic film. is valid.

(実施例) 次に、実施例に基づき本発明をさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on Examples.

実施例1 アセトン中て超音波洗浄を施した厚さ2 m m、幅1
30mm、長さ130mmの鋼板(SS41)を、直径
約250 m mの真空容器内の対向平板型電極−Lに
固定し、真空ポンプにより0.0ITorrとした。こ
の容器内に、アルゴンガス及びトルエンガスな導入して
0.2Torrとした。その後電極に周波数13.56
MHzの高周波を電源出力て30W印加し、プラズマを
発生させ鋼板表面(Ra = 0 、02 pLm)に
トルエンプラズマ重合膜を形成した後、さらにこの上に
高周波電源出力のみを200Wに変化させてトルエンプ
ラズマ重合)模を連続的に形成させ、最終的には圧さ0
.77zmのトルエンプラズマ重合膜を表面に有する鋼
板を作製した。
Example 1 Thickness: 2 mm, width: 1 after ultrasonic cleaning in acetone
A steel plate (SS41) with a diameter of 30 mm and a length of 130 mm was fixed to a facing flat electrode-L in a vacuum container with a diameter of about 250 mm, and the pressure was set to 0.0 ITorr by a vacuum pump. Argon gas and toluene gas were introduced into this container to adjust the pressure to 0.2 Torr. Then the electrode has a frequency of 13.56
After applying 30W of MHz high frequency power to generate plasma and forming a toluene plasma polymerized film on the surface of the steel plate (Ra = 0, 02 pLm), toluene was applied on top of this by changing only the high frequency power output to 200W. (plasma polymerization) pattern is continuously formed, and finally the pressure is 0.
.. A steel plate having a 77 zm toluene plasma polymerized film on its surface was produced.

実施例2 実施例1と同し条件で、鋼板表面にトルエンプラズマ重
合膜を0.7pm形成した後、その上にロール式テスト
コーターを用いてポリエステル系塗料を塗布、焼付けし
、2川mの塗膜を形成した。
Example 2 After forming a toluene plasma polymerized film of 0.7 pm on the surface of a steel plate under the same conditions as Example 1, a polyester paint was applied thereon using a roll-type test coater and baked, and a coating of 2 pm was applied. A coating film was formed.

実施例3 鋼板表面をアルゴンガスプラズマ(直流クロー放電)中
でエツチングし、Ra=0.08井m、R+nax =
0.5pLm、S=6gmとし、その後実施例1と同じ
成膜条件下てプラズマ重合膜を形成した。
Example 3 The surface of a steel plate was etched in argon gas plasma (DC claw discharge), Ra = 0.08 well, R + nax =
0.5 pLm and S=6 gm, and then a plasma polymerized film was formed under the same film forming conditions as in Example 1.

以上の実施例1〜3において作製した試料について耐食
性及びプラズマ重合膜の密着性を試験した。この結果を
第1表に示した。なお比較例1として実施例2で用いた
と同様の鋼板表面にポリエステル系塗膜のみを厚さIg
mて形成した試料を作製し、その試験結果も第1表に併
せて示した。
The samples prepared in Examples 1 to 3 above were tested for corrosion resistance and adhesion of plasma polymerized films. The results are shown in Table 1. As Comparative Example 1, only a polyester coating film was applied to the surface of the same steel plate as used in Example 2 to a thickness of Ig.
The test results are also shown in Table 1.

第1表の結果から明らかなように、実施例1〜3は耐食
性、密着性いずれも優れており、実施例3は密着性か特
に良好である。これに対して比較例は耐食性に劣る。
As is clear from the results in Table 1, Examples 1 to 3 are excellent in both corrosion resistance and adhesion, and Example 3 is particularly good in adhesion. On the other hand, the comparative example has poor corrosion resistance.

実施例4 アセトン中で超音波洗浄を施した厚さ1mm、直径13
0mmの1050A!;L合金板を、直径約250mm
の真空容器内の対向平板型電極−Eに固定し、真空ポン
プにより0.0ITorrとした。そしてこの容器内に
、アルゴンガス及びスチレンモノマーガスを導入して0
.2Torrとした。その後、電極に周波数13.5’
6MHzの高周波を電極出力て30W印加しプラズマを
発生させ、An合金円板表面(Ra=0.027hm)
にスチレンプラズマ重合膜を形成した後、さらにこの上
に高周波電源出力のみを200Wに変化させ、スチレン
プラズマ重合膜を連続的に形成させ、最終的には厚さ0
.7pmのスチレンプラズマ重合膜を表面に有するA1
合金円板を作製した。
Example 4 Thickness 1 mm, diameter 13 subjected to ultrasonic cleaning in acetone
1050A at 0mm! ;L alloy plate with a diameter of about 250mm
The electrode was fixed to a facing flat plate electrode -E in a vacuum chamber, and the pressure was set to 0.0 ITorr using a vacuum pump. Then, argon gas and styrene monomer gas were introduced into this container and
.. It was set to 2 Torr. Then the electrode has a frequency of 13.5'
A high frequency of 6 MHz was applied to the electrode and 30 W was applied to generate plasma, and the surface of the An alloy disk (Ra = 0.027 hm) was
After forming a styrene plasma polymerized film on the styrene plasma polymerized film, the high frequency power supply output alone was changed to 200W to form a styrene plasma polymerized film continuously, and finally a styrene plasma polymerized film with a thickness of 0 was formed.
.. A1 with a 7pm styrene plasma polymerized film on the surface
An alloy disk was produced.

実施例5 実施例4と同様の条件でA交合金板表面にスチレンプラ
ズマ重合膜を厚さ0.7pm形威した後、その上にロー
ル式テストコーターを用いてアクリル系塗料を塗布、焼
付けし2p−mの塗膜を形成し、スチレンプラズマ重合
膜とアクリル系塗膜の複合皮膜を表面に有するAn合金
円板を作製した。
Example 5 A styrene plasma polymerized film was formed to a thickness of 0.7 pm on the surface of the A alloy sheet under the same conditions as in Example 4, and then an acrylic paint was applied thereon using a roll test coater and baked. An An alloy disc having a composite film of a styrene plasma polymerized film and an acrylic coating on its surface was prepared by forming a 2pm coating film.

実施例6 弱アルカリエツチング剤にて、表面をエツチング・脱脂
してRa=0. i p−m、Rmax =0.5gm
、S=88Lmとした1050A1合金円板(厚さ1m
m、直径130mm>表面に、実施例4と回し条件でス
チレンプラズマ重合膜を形成させ、厚さ0.7μmのス
チレンプラズマ重合膜を表面に有するA4Q−合金円板
を作製した。
Example 6 The surface was etched and degreased using a weak alkaline etching agent until Ra=0. i p-m, Rmax =0.5gm
, 1050A1 alloy disk with S=88Lm (thickness 1m
m, diameter 130 mm> A styrene plasma polymerized film was formed on the surface under the same conditions as in Example 4 to produce an A4Q-alloy disk having a 0.7 μm thick styrene plasma polymerized film on the surface.

実施例7 実施例6と同じ処理条件にてエツチング・脱脂した後、
リン酸・クロム酸混液(85%リン酸=50mlZ文、
無水クロム酸:30g/す、95°C)てスマットを除
去した1050A!;L合金円板表面に実施例1と同じ
条件でスチレンプラズマ重合膜を形成させ、0.7gm
のスチレンプラズマ重合膜を表面に有するAn合金円板
を作製した。
Example 7 After etching and degreasing under the same processing conditions as Example 6,
Phosphoric acid/chromic acid mixture (85% phosphoric acid = 50ml)
Chromic anhydride: 30g/su, 95°C) to remove smut from 1050A! ; A styrene plasma polymerized film was formed on the surface of the L alloy disc under the same conditions as in Example 1, and the film was 0.7 gm.
An An alloy disk having a styrene plasma polymerized film on its surface was prepared.

以北、実施例4〜7において作製された試料(プラズマ
重合膜を表面に有する/’llj合金円&)について、
耐食性及びプラズマ重合膜の密着性を評価し、第2表の
結果を得た。なお、比較例として、実施例4における超
音波洗浄を施したへ交合金円板表面に、ロール式テスト
コーターを用いてアクリル系塗料を塗付・焼付けし厚さ
Igmの塗膜のみを形成した試料(比較例1)、実施例
4において、スチレンプラズマ重合膜形成時の高周波電
源出力を変化させないて30Wのみ(参考例1)とした
場合の試料を用いた。
Regarding the samples prepared in Examples 4 to 7 (having a plasma polymerized film on the surface /'llj alloy circle &),
The corrosion resistance and adhesion of the plasma polymerized film were evaluated, and the results shown in Table 2 were obtained. As a comparative example, an acrylic paint was applied and baked using a roll-type test coater on the surface of the helical alloy disk that had been subjected to ultrasonic cleaning in Example 4, to form only a coating film with a thickness of Igm. A sample (Comparative Example 1) and a sample in Example 4 were used in which the high-frequency power output during formation of the styrene plasma polymerized film was not changed and was set to only 30 W (Reference Example 1).

なお密着性及び耐食性の試験に関しては実施例1〜3に
対して行ったのと同様の方法を用いた。
Regarding the adhesion and corrosion resistance tests, the same methods as those used in Examples 1 to 3 were used.

第2表の結果か示すように、実施例4〜7は耐食性、密
着性いずれも優れており、実施例6.7は皮膜の密着性
が特に良好である。
As shown in the results in Table 2, Examples 4 to 7 are excellent in both corrosion resistance and adhesion, and Examples 6 and 7 have particularly good film adhesion.

(発明の効果) 本発明の金属板は、プラズマ重合膜を金属板上に形成さ
せるものて、従来にない密着性と防食性の両特性を具備
し、耐食性に優れる。
(Effects of the Invention) The metal plate of the present invention, which has a plasma polymerized film formed on the metal plate, has unprecedented properties of both adhesion and corrosion resistance, and is excellent in corrosion resistance.

Claims (1)

【特許請求の範囲】 (1)表面に、成膜条件を一定にして、又は成膜条件を
連続的もしくは断続的に変化させて形成したプラズマ重
合膜を有することを特徴とする耐食性金属板。 (2)表面に、成膜条件を連続的あるいは断続的に変化
させて形成されるプラズマ重合膜を有するアルミニウム
板であることを特徴とする請求項1記載の耐食性金属板
。 (3)プラズマ重合膜上に有機皮膜を形成してなる請求
項1又は2記載の耐食性金属板。 (4)プラズマ重合膜を形成する金属板が予め粗面化さ
れている請求項1、2又は3記載の耐食性金属板。 (5)金属板の粗面化による粗さとプラズマ重合膜の厚
さtμmとの関係がJISB0601に基づき式 0.03μm≦Ra≦tμm, Rmax≦5tμm, S≦10μm (式中、Raは中心線平均粗さを、Rmaxは最大高さ
を、Sは断面曲線における山頂の平均間隔を、それぞれ
示す。) で表わされる請求項4記載の耐食性金属板。
[Scope of Claims] (1) A corrosion-resistant metal plate characterized in that it has a plasma polymerized film formed on its surface under constant film-forming conditions or by continuously or intermittently changing film-forming conditions. (2) The corrosion-resistant metal plate according to claim 1, which is an aluminum plate having a plasma polymerized film formed on the surface thereof by continuously or intermittently changing film-forming conditions. (3) The corrosion-resistant metal plate according to claim 1 or 2, wherein an organic film is formed on the plasma polymerized film. (4) The corrosion-resistant metal plate according to claim 1, 2 or 3, wherein the metal plate forming the plasma polymerized film is roughened in advance. (5) The relationship between the roughness due to surface roughening of the metal plate and the thickness tμm of the plasma polymerized film is based on the formula 0.03μm≦Ra≦tμm, Rmax≦5tμm, S≦10μm (in the formula, Ra is the center line) based on JISB0601. 5. The corrosion-resistant metal plate according to claim 4, wherein the average roughness is represented by: Rmax represents the maximum height; and S represents the average spacing of peaks in the cross-sectional curve.
JP25347988A 1988-10-07 1988-10-07 Corrosion-resistant metallic sheet Pending JPH02101166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25347988A JPH02101166A (en) 1988-10-07 1988-10-07 Corrosion-resistant metallic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25347988A JPH02101166A (en) 1988-10-07 1988-10-07 Corrosion-resistant metallic sheet

Publications (1)

Publication Number Publication Date
JPH02101166A true JPH02101166A (en) 1990-04-12

Family

ID=17251959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25347988A Pending JPH02101166A (en) 1988-10-07 1988-10-07 Corrosion-resistant metallic sheet

Country Status (1)

Country Link
JP (1) JPH02101166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314535A (en) * 1991-01-21 1992-11-05 Toyo Kohan Co Ltd Steel sheet coated with polyester resin for deep drawable can with thin wall and original sheet
WO1995018249A1 (en) * 1993-12-24 1995-07-06 Seiko Epson Corporation Method and apparatus for processing surface with plasma under atmospheric pressure, method of producing semiconductor device and method of producing ink-jet printing head
DE19748240A1 (en) * 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Process for the corrosion-resistant coating of metal substrates by means of plasma polymerization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314535A (en) * 1991-01-21 1992-11-05 Toyo Kohan Co Ltd Steel sheet coated with polyester resin for deep drawable can with thin wall and original sheet
WO1995018249A1 (en) * 1993-12-24 1995-07-06 Seiko Epson Corporation Method and apparatus for processing surface with plasma under atmospheric pressure, method of producing semiconductor device and method of producing ink-jet printing head
DE19748240A1 (en) * 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Process for the corrosion-resistant coating of metal substrates by means of plasma polymerization
DE19748240C2 (en) * 1997-10-31 2001-05-23 Fraunhofer Ges Forschung Process for the corrosion-resistant coating of metal substrates by means of plasma polymerization and its application

Similar Documents

Publication Publication Date Title
JP3330143B2 (en) Metal coating method using low temperature plasma and electrodeposition
KR100377025B1 (en) Method for corrosion-resistant coating of metal substrates by means of plasma polymerization
TWI629167B (en) Corrosion resistant aluminum coating on plasma chamber components
KR100347428B1 (en) Aluminum alloy excellent in anti-corrosiveness to gas and plasma
US5039388A (en) Plasma forming electrode and method of using the same
Lin et al. Effect of plasma polymer deposition methods on copper corrosion protection
JP4668063B2 (en) Resin-coated aluminum plate and method for producing the same
JPS59184527A (en) Device for gas-phase method
JPH09129563A (en) Shower plate
JPH02101166A (en) Corrosion-resistant metallic sheet
Ma et al. Fabricating polyethylene (PE) films on magnesium alloy by RF-PECVD for the corrosion protection of electronic products
JPH07113182A (en) Method and apparatus for coating metallic substrate with coating layer of metal or metal alloy
JPS63182076A (en) Surface-treated metal plate
US5672383A (en) Barrier films having carbon-coated high energy surfaces
JPH0479992B2 (en)
JPH02102038A (en) Corrosion resistant metal plate
JP3159517B2 (en) Antifouling sheet
JP2004010741A (en) Method of forming water repellent film and water repellent film formed by the method
JP3194148B2 (en) Metal surface treatment method
JPH0145280B2 (en)
KR960009192B1 (en) Mn/al two-layers coated steel sheets with an excellent corrosion resistance and adhesion
JP2626823B2 (en) Thin film forming equipment
JPH03291380A (en) Highly corrosion resistant surface treated steel material
JP2000045062A (en) Electromagnetic preventing molding
JP2005256047A (en) SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER