JPH02100351A - Cooling structure of integrated circuit - Google Patents
Cooling structure of integrated circuitInfo
- Publication number
- JPH02100351A JPH02100351A JP63253540A JP25354088A JPH02100351A JP H02100351 A JPH02100351 A JP H02100351A JP 63253540 A JP63253540 A JP 63253540A JP 25354088 A JP25354088 A JP 25354088A JP H02100351 A JPH02100351 A JP H02100351A
- Authority
- JP
- Japan
- Prior art keywords
- integrated circuit
- cooling
- cooling plate
- ics
- counterbore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 59
- 239000003507 refrigerant Substances 0.000 claims abstract description 37
- 239000007788 liquid Substances 0.000 claims abstract description 28
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 abstract 1
- 231100000989 no adverse effect Toxicity 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000010365 information processing Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 101100450138 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) hat-2 gene Proteins 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15312—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は情報処理装置等の電子機器を構成する集積回路
素子の冷却構造に関し、特に水などの液体冷媒をS積回
路素子の近傍に循環させ、集積回路素子で発生した熱を
液体冷媒へ伝播させ冷却する構造に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling structure for integrated circuit elements constituting electronic equipment such as information processing equipment, and in particular, to a cooling structure for cooling integrated circuit elements constituting electronic equipment such as information processing equipment, and in particular, a cooling structure for circulating a liquid coolant such as water in the vicinity of an S-product circuit element. The present invention relates to a structure for cooling an integrated circuit element by propagating heat generated in the integrated circuit element to a liquid coolant.
従来、この種の冷却構造としては第2図に示す例(S、
0ktay、 tl、c、Kammerer ”^Co
nduc目@nCooled Module for
111gトPerl’ormance LSI Dev
ices”’ IBM J、 RES、 DEVELO
P、 Vol、26 No、I Jan。Conventionally, this type of cooling structure has an example (S,
0ktay, tl, c, Kammerer ”^Co
nduc@nCooled Module for
111g Perl'ormance LSI Dev
ices"' IBM J, RES, DEVELO
P, Vol, 26 No, I Jan.
1982による)のように、集積回路201にばね20
5によりピストン204を押し付けて熱を奪い、その熱
をヘリウムガス210を充填した空間を通してハツト2
06.介在層207を経て冷却板208へ伝え、冷媒2
09へ放熱する方法をはじめとして、いくつかのものが
考案され実用化されている。また特開昭60−1601
50には液体冷媒の衝突慣流を利用した冷却装置の例が
示されている。すなわち第3図に示すようにチップ30
1で発生した熱を伝熱基板303.可変形性伝熱体30
4.伝熱板305へと伝え、伝熱板305をノズル30
6から液体冷媒を噴出させて冷却するようになっている
。1982), a spring 20 is attached to an integrated circuit 201.
5 presses the piston 204 to remove heat, and the heat is passed through a space filled with helium gas 210 to the hat 2.
06. The coolant 2 is transmitted to the cooling plate 208 via the intervening layer 207.
Several methods have been devised and put into practical use, including a method for dissipating heat to 09. Also, JP-A-60-1601
Reference numeral 50 shows an example of a cooling device that utilizes collisional inertia of liquid refrigerant. That is, as shown in FIG.
The heat generated in 1 is transferred to the heat transfer substrate 303. Deformable heat transfer body 30
4. The heat is transferred to the heat transfer plate 305, and the heat transfer plate 305 is transferred to the nozzle 30.
Liquid refrigerant is jetted out from 6 for cooling.
上述した従来の冷却構造のうち、第2図の例ではピスト
ンをばねを用いて集積回路に接触させているため、集積
回路には常時力が加わった状態にあり、集積回路と配線
基板との接続部分の信頼性に悪影響を及ぼす恐れがある
。また集積回路を配線基板に取付けたときに生じる高さ
や傾きのばらつきに追従させるため、ピストンと集積回
路との接触面を球面とし、ハツトとピストンとの間にす
きまを設けているが、これは有効伝熱面積を減少させ冷
却能力の低下をもたらす。また冷却板内の冷媒流路は強
制対流による熱伝達を目的として形成されており、得ら
れる熱伝達係数は0.1〜0.5W/cm”℃程度であ
って集積回路の高集積化が進み消費電力が増大すると冷
却能力が不足する。Among the conventional cooling structures described above, in the example shown in Figure 2, the piston is brought into contact with the integrated circuit using a spring, so that force is constantly applied to the integrated circuit, and the connection between the integrated circuit and the wiring board is There is a possibility that the reliability of the connection part will be adversely affected. In addition, in order to follow the variations in height and tilt that occur when the integrated circuit is mounted on a wiring board, the contact surface between the piston and the integrated circuit is made spherical, and a gap is provided between the hat and the piston. This reduces the effective heat transfer area, resulting in a decrease in cooling capacity. Furthermore, the refrigerant flow path in the cooling plate is formed for the purpose of heat transfer by forced convection, and the obtained heat transfer coefficient is about 0.1 to 0.5 W/cm''°C, which is suitable for high integration of integrated circuits. As power consumption increases, cooling capacity becomes insufficient.
特開昭60−160150の例(第3図)では薄肉のベ
ローズを用いているため、腐蝕が発生してベローズに穴
があき液体冷媒が漏出することが考えられる。In the example of JP-A-60-160150 (FIG. 3), thin-walled bellows are used, so it is conceivable that corrosion may occur and holes may form in the bellows, allowing liquid refrigerant to leak out.
本発明の集積回路の冷却構造は、配線基板に複数個搭載
された集積回路と、前記配線基板を保持する基板枠と、
前記集積回路の上面と微小間隙を保ち対向し、かつ前記
集積回路に対向する反対側の面にざぐり穴を有する冷却
板と、この冷却板と前記集積回路の上面との微小間隙に
充填される熱伝導性コンパウンドと、前記冷却板に密着
し、液体冷媒の入口および出口を有し、かつ液体冷媒を
複数の系統へ分配するためのヘッダ部を前記入口および
出口に接して設け、このヘッダ部の底部に保持され前記
冷却板のざぐり穴へ直行させた複数個のノズルを設けた
冷却容器とを有することにより構成される。また請求項
(1)の前記冷却容器は前記配線基板上で液体冷媒の複
数個ある系統の各々において最も入口に近い位置に搭載
された集積回路に対応するざぐり穴へ液体冷媒を噴出さ
せる第1のノズルと、このざぐり穴からの冷媒排出口と
、次のざぐり穴へ直行する第2のノズルと、前記冷媒排
出口と第2のノズルとを直結するざぐり溝とを有するこ
とにより構成される。The integrated circuit cooling structure of the present invention includes: a plurality of integrated circuits mounted on a wiring board; a board frame that holds the wiring board;
A cooling plate that faces the top surface of the integrated circuit with a small gap therebetween and has counterbore holes on the opposite surface facing the integrated circuit, and is filled in the small gap between the cooling plate and the top surface of the integrated circuit. a thermally conductive compound, a header part that is in close contact with the cooling plate, has an inlet and an outlet for liquid refrigerant, and is in contact with the inlet and outlet for distributing the liquid refrigerant to a plurality of systems; and a cooling container provided with a plurality of nozzles held at the bottom of the cooling plate and extending directly to the counterbore holes of the cooling plate. Further, the cooling container according to claim (1) has a first cooling container that spouts liquid refrigerant into a counterbore corresponding to an integrated circuit mounted at a position closest to an inlet in each of the plurality of liquid refrigerant systems on the wiring board. A nozzle, a refrigerant discharge port from this counterbore hole, a second nozzle that goes directly to the next counterbore hole, and a counterbore groove that directly connects the refrigerant discharge port and the second nozzle. .
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施例を示す縦断面図である。1は
集積回路、2は集積回路1を複数個マトリクス状に配列
し搭載した配線基板で、その外縁部を囲むよう基板枠3
が固着されている。4は冷却板で集積回路1の上面と微
小間隙を保って対向し、かつ集積回路1に対向する反対
の面にざぐり穴5を具備している。集積口Fl@ 1と
冷却板4との微小間隙には、熱伝導性コンパウンド6が
充填されている。この熱伝導性コンパウンド6はシリコ
ーンオイル等の基材に、金属酸化物、窒化ホウ素などの
絶縁性熱伝導性材料をフィラーとして混入したものであ
る。冷却板4の上には液体冷媒入ロア、液体冷媒出口8
および液体冷媒を複数の系統へ分配するための入口側ヘ
ッダ9、出口側ヘッダ10を設けたヘッダ部11を有す
る。さらに、このヘッダ部11には、その底部に保持さ
れ、冷却板4の各系統別に設けられたざぐり穴5へ直向
させた第1のノズル12と冷媒排出口13と、次のざく
り穴5に直向し冷媒排出口13とざぐり溝14で直結さ
れている第2のノズル15とを有する冷却容器16が密
着されている。FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. 1 is an integrated circuit, 2 is a wiring board on which a plurality of integrated circuits 1 are arranged and mounted in a matrix, and a board frame 3 is placed around the outer edge of the wiring board.
is fixed. A cooling plate 4 faces the top surface of the integrated circuit 1 with a small gap therebetween, and has counterbore holes 5 on the opposite surface facing the integrated circuit 1. The minute gap between the accumulation port Fl@1 and the cooling plate 4 is filled with a thermally conductive compound 6. This thermally conductive compound 6 is a mixture of a base material such as silicone oil and an insulating thermally conductive material such as a metal oxide or boron nitride as a filler. Above the cooling plate 4 is a lower liquid refrigerant inlet and a liquid refrigerant outlet 8.
It also has a header section 11 provided with an inlet header 9 and an outlet header 10 for distributing liquid refrigerant to a plurality of systems. Furthermore, this header part 11 has a first nozzle 12 and a refrigerant outlet 13 held at the bottom thereof and facing directly to counterbore holes 5 provided for each system of the cooling plate 4, and a second counterbore hole 5. A cooling container 16 having a second nozzle 15 facing directly to the refrigerant outlet 13 and directly connected by a counterbore 14 is in close contact with the cooling container 16 .
いま液体冷媒17が冷却容器16の液体冷媒人ロアから
流入すると、入口側へラダ9を満たし、第1のノズル1
2から冷却板4のざぐり穴5へ衝突する。衝突した冷媒
は冷媒排出口13.ざぐり溝14を通り、第2のノズル
15へと順次流れ、最後に出口側へラダ10へ集まり、
液体冷媒出口8から外部へ排出される。Now, when the liquid refrigerant 17 flows from the liquid refrigerant lower of the cooling container 16, it fills the ladder 9 to the inlet side and flows through the first nozzle 1.
2 and collides with the counterbore hole 5 of the cooling plate 4. The collided refrigerant is removed from the refrigerant outlet 13. It passes through the counterbore groove 14, flows sequentially to the second nozzle 15, and finally gathers at the rudder 10 on the exit side.
The liquid refrigerant is discharged from the liquid refrigerant outlet 8 to the outside.
集積回路1で発生した熱は、熱伝導性コンパウンド6を
通過して冷却板4へと伝わる。冷却板4の集積回路1に
対向する反対の面のざぐり穴5には液体冷媒が衝突して
おり、ここで熱伝達が行われる。実験によればノズルか
らの噴出速度を0.5〜3.0m/sで変化させたとこ
ろ、1〜3 W / cm 2℃の熱伝達率が得られた
。したがって本発明の冷却構造において、冷却板と集積
回路の上面との間隙を十分小さく保つことにより、集積
回路のPNジャンクションから液体冷媒までの熱抵抗値
を1°C/Wあるいはそれ以下に抑えることが可能であ
る。さらに集積回路を配線基板に取り付けた際に生じる
高さや傾きのばらつきに対しても熱伝導性コンパウンド
が追従するなめ、集積回路に力を加えることがなく、集
積回路と配線基板との接続部に悪影響を与えない。また
冷却板に銅合金など熱伝導率の高い金属を材料として用
いれば、肉厚を大きくとっても熱抵抗値の増加は無視で
きることから、腐蝕により穴があき液体冷媒が外部へ漏
出することを防止できる。Heat generated in the integrated circuit 1 passes through the thermally conductive compound 6 and is transferred to the cooling plate 4 . Liquid refrigerant impinges on counterbore holes 5 on the opposite side of the cooling plate 4 facing the integrated circuit 1, where heat transfer takes place. According to experiments, when the ejection velocity from the nozzle was varied from 0.5 to 3.0 m/s, a heat transfer coefficient of 1 to 3 W/cm at 2°C was obtained. Therefore, in the cooling structure of the present invention, by keeping the gap between the cooling plate and the top surface of the integrated circuit sufficiently small, the thermal resistance value from the PN junction of the integrated circuit to the liquid refrigerant can be suppressed to 1°C/W or less. is possible. Furthermore, the thermally conductive compound follows variations in height and tilt that occur when the integrated circuit is mounted on the wiring board, so no force is applied to the integrated circuit, and the connection between the integrated circuit and the wiring board No adverse effects. In addition, if the cooling plate is made of a metal with high thermal conductivity such as a copper alloy, the increase in thermal resistance can be ignored even if the wall thickness is increased, which prevents holes from forming due to corrosion and leaking the liquid refrigerant to the outside. .
以上説明したように本発明は、集積回路を複数個搭載し
た配線基板に基板枠な固着し、集積回路の上面と微小間
隙を保って対向し、集積回路と反対方向にざぐり穴を有
する冷却板を基板枠に収り付け、微小間隙に熱伝導性コ
ンパウンドを充填し、冷却板の集積回路に対向する反対
側の面のざぐり穴に、ノズルにより液体冷媒を衝突させ
るよう流路を形成した冷却容器を冷却板に密着させ、冷
却板と液体冷媒との熱伝導率を高くする構造としたこと
により、熱抵抗が小さく腐蝕に対する信頼性の高い冷却
構造を提供することができる効果がある。As explained above, the present invention provides a cooling plate that is fixed to a wiring board on which a plurality of integrated circuits are mounted, such as a board frame, faces the top surface of the integrated circuits with a small gap, and has counterbore holes in the opposite direction to the integrated circuits. A cooling system in which the cooling plate is placed in a substrate frame, a thermally conductive compound is filled in the minute gap, and a flow path is formed so that a liquid coolant collides with a nozzle in the counterbore hole on the opposite side of the cooling plate facing the integrated circuit. By bringing the container into close contact with the cooling plate and increasing the thermal conductivity between the cooling plate and the liquid refrigerant, it is possible to provide a cooling structure with low thermal resistance and high reliability against corrosion.
第1図は本発明の一実施例を示す縦断面図、第2図およ
び第3図はそれぞれ従来の集積回路の冷却構造の例を示
す縦断面図である。
1.101・・・集積回路、2,202・・・配線基板
、3・・・基板枠、4,208・・・冷却板、5・・・
ざぐり穴、6・・・熱伝導性コンパウンド、7・・・液
体冷媒入口、8・・・液体冷媒出口、9・・・入口側ヘ
ッダ、10・・・出口側ヘッダ、11・・・ヘッダ部、
12・・・第1のノズル、13・・・冷媒排出口、14
・・・ざぐり講、15・・・第2のノズル、16・・・
冷却容器、17・・・液体冷媒、203・・・I10ビ
ン、204・・・ピストン、205・・・ばね、206
・・・ハツト、207・・・介在層、209・・・冷媒
、301・・・チップ、302・・・プリント基板、3
03・・・伝熱基板、304・・・可変形性伝熱体、3
05・・・伝熱板、306・・・ノズル、307・・・
ベローズ、308・・・クーリングヘッダ。FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIGS. 2 and 3 are longitudinal sectional views showing examples of conventional integrated circuit cooling structures, respectively. 1.101... Integrated circuit, 2,202... Wiring board, 3... Board frame, 4,208... Cooling plate, 5...
counterbore hole, 6...thermal conductive compound, 7...liquid refrigerant inlet, 8...liquid refrigerant outlet, 9...inlet side header, 10...outlet side header, 11...header section ,
12... First nozzle, 13... Refrigerant discharge port, 14
...Counterbore, 15...Second nozzle, 16...
Cooling container, 17... Liquid refrigerant, 203... I10 bottle, 204... Piston, 205... Spring, 206
... Hat, 207 ... Intervening layer, 209 ... Refrigerant, 301 ... Chip, 302 ... Printed circuit board, 3
03... Heat transfer board, 304... Deformable heat transfer body, 3
05... Heat exchanger plate, 306... Nozzle, 307...
Bellows, 308...Cooling header.
Claims (2)
配線基板を保持する基板枠と、前記集積回路の上面と微
小間隙を保ち対向し、かつ前記集積回路に対向する反対
側の面にざぐり穴を有する冷却板と、この冷却板と前記
集積回路の上面との微小間隙に充填される熱伝導性コン
パウンドと、前記冷却板に密着し、液体冷媒の入口およ
び出口を有し、かつ液体冷媒を複数の系統へ分配するた
めのヘッダ部を前記入口および出口に接して設け、この
ヘッダ部の底部に保持され前記冷却板のざぐり穴へ直行
させた複数個のノズルを設けた冷却容器とを有すること
を特徴とする集積回路の冷却構造。(1) A plurality of integrated circuits mounted on a wiring board, a board frame that holds the wiring board, and a board frame that faces the top surface of the integrated circuit with a small gap therebetween, and on the opposite surface that faces the integrated circuit. a cooling plate having counterbore holes; a thermally conductive compound filled in a minute gap between the cooling plate and the top surface of the integrated circuit; A cooling container having a header part for distributing refrigerant to a plurality of systems in contact with the inlet and outlet, and a plurality of nozzles held at the bottom of the header part and extending directly to the counterbore holes of the cooling plate. A cooling structure for an integrated circuit, characterized by having:
数個ある系統の各々において最も入口に近い位置に搭載
された集積回路に対応するざぐり穴へ液体冷媒を噴出さ
せる第1のノズルと、このざぐり穴からの冷媒排出口と
、次のざぐり穴へ直行する第2のノズルと、前記冷媒排
出口と第2のノズルとを直結するざぐり溝とを有するこ
とを特徴とする請求項(1)記載の集積回路の冷却構造
。(2) the cooling container has a first nozzle that spouts liquid refrigerant into a counterbore corresponding to an integrated circuit mounted at a position closest to an inlet in each of the plurality of liquid refrigerant systems on the wiring board; Claim (1) characterized by having a refrigerant discharge port from this counterbore hole, a second nozzle that goes directly to the next counterbore hole, and a counterbore groove that directly connects the refrigerant discharge port and the second nozzle. ) Cooling structure of the integrated circuit described.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63253540A JP2793204B2 (en) | 1988-10-06 | 1988-10-06 | Integrated circuit cooling structure |
CA000599031A CA1303238C (en) | 1988-05-09 | 1989-05-08 | Flat cooling structure of integrated circuit |
EP89304623A EP0341950B1 (en) | 1988-05-09 | 1989-05-08 | Flat cooling structure of integrated circuit |
US07/349,411 US5023695A (en) | 1988-05-09 | 1989-05-08 | Flat cooling structure of integrated circuit |
DE68918156T DE68918156T2 (en) | 1988-05-09 | 1989-05-08 | Flat cooling structure for integrated circuit. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63253540A JP2793204B2 (en) | 1988-10-06 | 1988-10-06 | Integrated circuit cooling structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02100351A true JPH02100351A (en) | 1990-04-12 |
JP2793204B2 JP2793204B2 (en) | 1998-09-03 |
Family
ID=17252790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63253540A Expired - Fee Related JP2793204B2 (en) | 1988-05-09 | 1988-10-06 | Integrated circuit cooling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2793204B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5705850A (en) * | 1993-09-20 | 1998-01-06 | Hitachi, Ltd. | Semiconductor module |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6287452U (en) * | 1985-11-19 | 1987-06-04 |
-
1988
- 1988-10-06 JP JP63253540A patent/JP2793204B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6287452U (en) * | 1985-11-19 | 1987-06-04 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5705850A (en) * | 1993-09-20 | 1998-01-06 | Hitachi, Ltd. | Semiconductor module |
Also Published As
Publication number | Publication date |
---|---|
JP2793204B2 (en) | 1998-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1228173A (en) | Cooling system for electronic circuit device | |
EP0552787B1 (en) | Cooling structure for integrated circuits | |
US5168348A (en) | Impingment cooled compliant heat sink | |
EP0341950B1 (en) | Flat cooling structure of integrated circuit | |
US5021924A (en) | Semiconductor cooling device | |
CA2081045C (en) | Integrated circuit package having a cooling mechanism | |
EP0590636B1 (en) | Cooling structure for electronic circuit package | |
US5097385A (en) | Super-position cooling | |
US7078803B2 (en) | Integrated circuit heat dissipation system | |
JPS5936827B2 (en) | Integrated circuit device cooling equipment | |
US20070200226A1 (en) | Cooling micro-channels | |
JPH04152659A (en) | Method and device for cooling multichip module | |
JPH02100351A (en) | Cooling structure of integrated circuit | |
JP2747156B2 (en) | Immersion jet cooling heat sink | |
JP2845447B2 (en) | Integrated circuit cooling structure | |
JP2611704B2 (en) | Integrated circuit cooling structure | |
JPH02237200A (en) | Cooling structure of integrated circuit | |
JP2712872B2 (en) | Integrated circuit cooling mechanism | |
JPS5875860A (en) | Liquid-cooled semiconductor device | |
JP2748762B2 (en) | Cooling device for integrated circuits | |
JPH05275586A (en) | Integrated circuit cooling structure | |
JP2969812B2 (en) | Integrated circuit cooling structure | |
JPH04152660A (en) | Integrated circuit cooling mechanism | |
JPH07101782B2 (en) | Cooling power supply mechanism for integrated circuits | |
JP2510161Y2 (en) | Electronic device cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |