JPH07101782B2 - Cooling power supply mechanism for integrated circuits - Google Patents

Cooling power supply mechanism for integrated circuits

Info

Publication number
JPH07101782B2
JPH07101782B2 JP4354485A JP35448592A JPH07101782B2 JP H07101782 B2 JPH07101782 B2 JP H07101782B2 JP 4354485 A JP4354485 A JP 4354485A JP 35448592 A JP35448592 A JP 35448592A JP H07101782 B2 JPH07101782 B2 JP H07101782B2
Authority
JP
Japan
Prior art keywords
cooling
integrated circuit
wiring board
integrated circuits
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4354485A
Other languages
Japanese (ja)
Other versions
JPH06188582A (en
Inventor
博之 筑木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4354485A priority Critical patent/JPH07101782B2/en
Publication of JPH06188582A publication Critical patent/JPH06188582A/en
Publication of JPH07101782B2 publication Critical patent/JPH07101782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路の冷却給電機構
に関し、特に情報処理装置などの電子機器を構成する集
積回路素子の近傍に水などの液体冷媒を循環させ、集積
回路素子で発生した熱を液体冷媒に伝播させて冷却する
冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling power supply mechanism for an integrated circuit, and in particular, a liquid refrigerant such as water is circulated in the vicinity of the integrated circuit element which constitutes an electronic device such as an information processing device and is generated in the integrated circuit element. The present invention relates to a cooling structure for propagating heat to a liquid refrigerant to cool it.

【0002】[0002]

【従来の技術】従来、この種の冷却構造においては、図
2に示すように、配線基板20上の集積回路21にバネ
24によりピストン23が押付けられている。集積回路
21で発生した熱をピストン23が奪うと、その熱がヘ
リウムガス29を充満した空間を通してハット25およ
び介在層26に伝達され、介在層26から冷却板27に
伝達されて冷媒28内に放熱されるようになっている。
2. Description of the Related Art Conventionally, in this type of cooling structure, as shown in FIG. 2, a piston 23 is pressed against an integrated circuit 21 on a wiring board 20 by a spring 24. When the piston 23 takes away the heat generated in the integrated circuit 21, the heat is transferred to the hat 25 and the intervening layer 26 through the space filled with the helium gas 29, and is transferred from the intervening layer 26 to the cooling plate 27 and into the refrigerant 28. It is designed to dissipate heat.

【0003】上記の冷却方法は「A Conducti
on−Cooled Modulefor High−
Performance LSI Devices」
(S.Oktay,H.C.Kammerer,IBM
Journal of Reseach and D
evelopment.Vol.26 No.1 Ja
n.1982)に詳述されている。
The cooling method described above is based on "A Conducti
on-Cooled Modulefor High-
Performance LSI Devices "
(S. Oktay, HC Kammerer, IBM
Journal of Research and D
development. Vol. 26 No. 26. 1 Ja
n. 1982).

【0004】この図2に示す冷却構造では、バネ24に
よって付勢されたピストン23を集積回路21に当接さ
せて冷却しているので、集積回路21に常時力が加わっ
た状態となり、集積回路21と配線基板20との接続部
分の信頼性に悪影響を及ぼす恐れがある。
In the cooling structure shown in FIG. 2, the piston 23 urged by the spring 24 is brought into contact with the integrated circuit 21 to cool it, so that the integrated circuit 21 is always subjected to a force, and 21 may adversely affect the reliability of the connection portion between the wiring board 21 and the wiring board 20.

【0005】また、集積回路21を配線基板20に取付
けたときに生じる高さや傾きのばらつきに追従させるた
めに、ピストン23の集積回路21との接触面を球面と
し、ハット25とピストン23との間に隙間を設けてい
るが、これにより有効伝熱面積が減少し、冷却能力の低
下をもたらしてしまう。
Further, in order to follow variations in height and inclination that occur when the integrated circuit 21 is attached to the wiring board 20, the contact surface of the piston 23 with the integrated circuit 21 is made spherical, and the hat 25 and the piston 23 are contacted with each other. Although a gap is provided between them, this reduces the effective heat transfer area, resulting in a decrease in cooling capacity.

【0006】さらに、冷却板27内の冷媒28の流路は
強制対流による熱伝達を目的として形成されており、得
られる熱伝達係数は0.1 〜0.5 W/cm2 ℃程度であっ
て、集積回路21の高集積化が進むにつれて消費電力が
増大すると、冷却能力が不足することがある。
Further, the flow path of the refrigerant 28 in the cooling plate 27 is formed for the purpose of heat transfer by forced convection, and the obtained heat transfer coefficient is about 0.1 to 0.5 W / cm 2 ° C. If the power consumption increases as the integration degree of 21 increases, the cooling capacity may become insufficient.

【0007】一方、図3に示すように、プリント基板3
0上のチップ31で発生した熱が、伝熱基板32と可変
形性伝熱体33と伝熱板34とに夫々伝達され、ベロー
ズ36内でこの伝熱板34にノズル35から液体冷媒を
噴出させて冷却を行う構造もある。この場合、このノズ
ル35から噴射された液体冷媒はベローズ36からクー
リングヘッダ37内の流路に排出される。上記の冷却方
法については特開昭60−160150号公報に掲載さ
れている。
On the other hand, as shown in FIG.
The heat generated in the chip 31 on the upper part of 0 is transmitted to the heat transfer substrate 32, the deformable heat transfer body 33, and the heat transfer plate 34, respectively, and the liquid refrigerant is discharged from the nozzle 35 to the heat transfer plate 34 in the bellows 36. There is also a structure for cooling by jetting. In this case, the liquid refrigerant ejected from the nozzle 35 is discharged from the bellows 36 to the flow path inside the cooling header 37. The cooling method described above is disclosed in JP-A-60-160150.

【0008】この図3に示す冷却構造では、ノズル35
から噴出された液体冷媒によりチップ31の冷却を行っ
ているので、ノズル35から噴出された液体冷媒とチッ
プ31との間に伝熱基板32と可変形性伝熱体33と伝
熱板34とが介在するために、高い熱伝達率が得られ
ず、冷却能力が不足することがある。
In the cooling structure shown in FIG. 3, the nozzle 35
Since the chip 31 is cooled by the liquid refrigerant ejected from the nozzles, the heat transfer substrate 32, the deformable heat transfer body 33, and the heat transfer plate 34 are provided between the chip 31 and the liquid refrigerant ejected from the nozzle 35. However, the high heat transfer rate may not be obtained and the cooling capacity may be insufficient.

【0009】また、薄肉のベローズ36を用いているた
め、腐食が発生してベローズ36に穴があき、ノズル3
5から噴出される液体冷媒がベローズ36から漏出する
ことが考えられる。
Further, since the thin bellows 36 is used, corrosion occurs and the bellows 36 has a hole, and the nozzle 3
It is conceivable that the liquid refrigerant ejected from No. 5 leaks from the bellows 36.

【0010】上述した冷却構造の問題点を解決するため
に、特開平1−164053号公報に開示された技術や
特開平2−237200号公報に開示された技術が提案
されている。
In order to solve the above-mentioned problems of the cooling structure, the technique disclosed in JP-A-1-164053 and the technique disclosed in JP-A-2-237200 have been proposed.

【0011】特開平1−164053号公報に開示され
た技術では配線基板のI/O(入出力)ピン側と配線基
板上の集積回路側との両方から夫々冷却を行うようにし
ている。また、特開平2−237200号公報に開示さ
れた技術では集積回路に直接、不活性液体を噴流衝突さ
せて冷却を行うようにしている。
In the technique disclosed in Japanese Patent Laid-Open No. 1-164053, cooling is performed from both the I / O (input / output) pin side of the wiring board and the integrated circuit side of the wiring board. Further, in the technique disclosed in Japanese Patent Application Laid-Open No. 2-237200, the inert liquid is directly jet-collised with the integrated circuit for cooling.

【0012】上記のような冷却構造を採用した場合、例
えば図2に示すような冷却構造を採用した場合、集積回
路21への給電は配線基板20の下面に設けられたI/
Oピン22を介して行われている。これは図2の冷却構
造を採用した場合に限らず、他の冷却構造を採用した場
合でも同様に集積回路への給電が行われている。
When the cooling structure as described above is adopted, for example, when the cooling structure as shown in FIG. 2 is adopted, power is supplied to the integrated circuit 21 from the I / I provided on the lower surface of the wiring board 20.
It is performed through the O pin 22. This is not limited to the case where the cooling structure of FIG. 2 is adopted, and the power is similarly supplied to the integrated circuit even when another cooling structure is adopted.

【0013】[0013]

【発明が解決しようとする課題】上述した従来の冷却構
造では、配線基板のI/Oピン側と配線基板上の集積回
路側との両方から夫々冷却を行うようにしたり、あるい
は集積回路に直接、不活性液体を噴流衝突させて冷却を
行うようにすることで、集積回路の高集積化によって消
費電力が増大したときの冷却能力の不足に対処してい
る。
In the above conventional cooling structure, cooling is performed from both the I / O pin side of the wiring board and the integrated circuit side of the wiring board, or the cooling is performed directly on the integrated circuit. In order to cope with the shortage of the cooling capacity when the power consumption is increased due to the high integration of the integrated circuit, the inert liquid is jet-collised to perform the cooling.

【0014】しかしながら、いずれの冷却構造を採った
場合でも、集積回路への給電が配線基板の下面に設けら
れたI/Oピンを介して行われているので、1本当りの
給電能力に限度のあるI/Oピンでは集積回路の高集積
化による消費電力の増大に対処することができず、給電
能力が不足するという問題がある。
However, whichever cooling structure is adopted, since power is supplied to the integrated circuit through the I / O pins provided on the lower surface of the wiring board, the power supply capacity per wire is limited. There is a problem that some I / O pins cannot cope with an increase in power consumption due to high integration of integrated circuits, resulting in insufficient power supply capability.

【0015】したがって、本発明の目的は上記のような
問題点を解消し、集積回路の高集積化によって消費電力
が増大したときの冷却能力及び給電能力をともに向上さ
せることができる集積回路の冷却給電機構の提供にあ
る。
Therefore, an object of the present invention is to solve the above problems and to cool an integrated circuit capable of improving both the cooling capacity and the power feeding capacity when the power consumption increases due to the high integration of the integrated circuit. The provision of a power supply mechanism.

【0016】[0016]

【課題を解決するための手段】本発明による集積回路の
冷却給電機構は、底面側に入出力端子を有する配線基板
と、前記配線基板を保持する基板枠部材と、前記配線基
板の上面側に搭載された複数の集積回路と、前記配線基
板の上面に密着固定され、前記複数の集積回路各々の間
を仕切る板状の導電部材と、前記集積回路の上面に底面
が固着され、前記集積回路を冷却するための液体冷媒を
前記配線基板と前記基板枠部材と前記導電部材とからな
る空間内に排出する排出孔を周囲壁面に有する複数の冷
却部材と、前記空間を密封状態に維持するヘッダ部材
と、前記基板枠部材及び前記導電部材と前記ヘッダ部材
とを絶縁して密着固着する絶縁部材と、前記冷却部材の
底面に前記液体冷媒を噴射する複数のノズルと、前記空
間内に蓄積された前記液体冷媒を排出する複数の排出口
とを備え、前記ノズルと前記排出口とによって前記複数
の冷却部材を順次接続し、前記導電部材から前記集積回
路各々に電源を供給するようにしている。
A cooling and feeding mechanism for an integrated circuit according to the present invention includes a wiring board having input / output terminals on the bottom surface, a board frame member for holding the wiring board, and an upper surface side of the wiring board. A plurality of integrated circuits mounted and a plate-shaped conductive member that is closely fixed to the upper surface of the wiring board and partitions each of the plurality of integrated circuits, and a bottom surface is fixed to the upper surface of the integrated circuit. A plurality of cooling members having discharge holes on a peripheral wall surface for discharging a liquid coolant for cooling the space into the space formed by the wiring board, the board frame member and the conductive member; and a header for maintaining the space in a sealed state. A member, an insulating member that insulates and tightly adheres the substrate frame member and the conductive member to the header member, a plurality of nozzles that inject the liquid refrigerant to the bottom surface of the cooling member, and accumulates in the space Before And a plurality of discharge ports for discharging the liquid coolant, sequentially connecting the plurality of cooling member by said nozzle and said discharge port, and to supply power to the integrated circuit from each said conductive member.

【0017】[0017]

【実施例】次に、本発明の一実施例について図面を参照
して説明する。
An embodiment of the present invention will be described with reference to the drawings.

【0018】図1は本発明の一実施例を示す縦断面図で
ある。図において、配線基板1は下面にI/Oピン2を
有し、基板枠3によって保持されている。また、配線基
板1上には複数の集積回路4-1〜4-4が搭載されてお
り、集積回路4-1〜4-4各々の間は板状の導電部材(例
えば銅板など)からなる給電バス7によって仕切られて
いる。
FIG. 1 is a vertical sectional view showing an embodiment of the present invention. In the figure, the wiring board 1 has I / O pins 2 on its lower surface and is held by a board frame 3. A plurality of integrated circuits 4-1 to 4-4 are mounted on the wiring board 1, and a plate-shaped conductive member (for example, a copper plate) is provided between the integrated circuits 4-1 to 4-4. It is partitioned by the power supply bus 7.

【0019】基板枠3及び給電バス7は絶縁板8を介し
て冷却容器のヘッダ部9に密着固定されている。したが
って、集積回路4-1〜4-4各々の周囲の空間は配線基板
1と基板枠3と給電バス7とヘッダ部9とによって密封
状態に維持されている。
The board frame 3 and the power supply bus 7 are closely fixed to the header portion 9 of the cooling container via the insulating plate 8. Therefore, the space around each of the integrated circuits 4-1 to 4-4 is maintained in a sealed state by the wiring board 1, the board frame 3, the power feeding bus 7, and the header portion 9.

【0020】集積回路4-1〜4-4各々には半田6-1〜6
-4によって円筒状の冷却部5-1〜5-4が固着されてい
る。冷却部5-1〜5-4の周囲壁面には夫々複数個の穴が
あけられており、冷却部5-1〜5-4の上面にはノズル1
0-1〜10-4が冷却部5-1〜5-4各々の底部に液体冷媒
を噴射するように設けられている。
Solder 6-1 to 6 is provided on each of the integrated circuits 4-1 to 4-4.
The cylindrical cooling parts 5-1 to 5-4 are fixed by -4. A plurality of holes are formed on the peripheral wall surfaces of the cooling units 5-1 to 5-4, respectively, and the nozzle 1 is provided on the upper surface of the cooling units 5-1 to 5-4.
0-1 to 10-4 are provided so as to inject the liquid refrigerant to the bottom of each of the cooling units 5-1 to 5-4.

【0021】これらノズル10-1〜10-4は冷却部5-1
〜5-4各々に対応してヘッダ部9に取付けられている。
また、ヘッダ部9には集積回路4-1〜4-4各々に対応し
て、ノズル10-1〜10-4から冷却部5-1〜5-4の底部
に噴射され、冷却部5-1〜5-4の周囲壁面の穴から流出
して集積回路4-1〜4-4各々の周囲の空間に蓄積される
液体冷媒を排出する冷媒排出口11-1〜11-4が設けら
れている。
These nozzles 10-1 to 10-4 are provided with a cooling unit 5-1.
5-4 are attached to the header portion 9 corresponding to each.
Further, in the header portion 9, the nozzles 10-1 to 10-4 are sprayed to the bottom portions of the cooling portions 5-1 to 5-4 corresponding to the integrated circuits 4-1 to 4-4, respectively, and the cooling portion 5- Refrigerant discharge ports 11-1 to 11-4 are provided for discharging the liquid refrigerant flowing out from the holes of the peripheral wall surfaces 1 to 5-4 and accumulated in the space around each of the integrated circuits 4-1 to 4-4. ing.

【0022】ノズル10-1は液体冷媒入口12から流入
した液体冷媒を分配するための入口側ヘッダ13に接続
され、ノズル10-2〜10-4及び冷媒排出口11-1〜1
1-3はヘッダ部9に設けられたざぐり溝14-1〜14-3
を介して順次接続されている。冷媒排出口11-4は集積
回路4-1〜4-4各々を冷却した液体冷媒を集めるための
出口側ヘッダ15に接続され、出口側ヘッダ15に集め
られた液体冷媒は液体冷媒出口16から外部に排出され
る。
The nozzle 10-1 is connected to an inlet side header 13 for distributing the liquid refrigerant flowing in from the liquid refrigerant inlet 12, the nozzles 10-2 to 10-4 and the refrigerant outlets 11-1 to 1-1.
1-3 are counterbore grooves 14-1 to 14-3 provided in the header section 9.
Are sequentially connected via. The refrigerant outlet 11-4 is connected to an outlet side header 15 for collecting the liquid refrigerant that has cooled each of the integrated circuits 4-1 to 4-4, and the liquid refrigerant collected in the outlet side header 15 is discharged from the liquid refrigerant outlet 16. It is discharged to the outside.

【0023】つまり、液体冷媒入口12から流入した液
体冷媒は入口側ヘッダ13からノズル10-1を通って冷
却部5-1の底部に噴射され、冷却部5-1の周囲壁面の穴
から流出して集積回路4-1の周囲の空間に蓄積される。
That is, the liquid refrigerant flowing from the liquid refrigerant inlet 12 is jetted from the inlet side header 13 through the nozzle 10-1 to the bottom of the cooling section 5-1 and flows out from the hole of the peripheral wall surface of the cooling section 5-1. And is stored in the space around the integrated circuit 4-1.

【0024】集積回路4-1の周囲の空間に蓄積された液
体冷媒は冷媒排出口11-1とざぐり溝14-1とを通って
ノズル10-2から冷却部5-2の底部に噴射され、冷却部
5-2の周囲壁面の穴から流出して集積回路4-2の周囲の
空間に蓄積される。
The liquid refrigerant accumulated in the space around the integrated circuit 4-1 is jetted from the nozzle 10-2 to the bottom of the cooling section 5-2 through the refrigerant discharge port 11-1 and the counterbore groove 14-1. , Flows out from the holes on the peripheral wall surface of the cooling unit 5-2 and is accumulated in the space around the integrated circuit 4-2.

【0025】集積回路4-2の周囲の空間に蓄積された液
体冷媒は冷媒排出口11-2とざぐり溝14-2とを通って
ノズル10-3から冷却部5-3の底部に噴射され、冷却部
5-3の周囲壁面の穴から流出して集積回路4-3の周囲の
空間に蓄積される。
The liquid refrigerant accumulated in the space around the integrated circuit 4-2 is jetted from the nozzle 10-3 to the bottom of the cooling section 5-3 through the refrigerant discharge port 11-2 and the counterbore 14-2. , Flows out from the holes on the peripheral wall surface of the cooling unit 5-3 and is accumulated in the space around the integrated circuit 4-3.

【0026】集積回路4-3の周囲の空間に蓄積された液
体冷媒は冷媒排出口11-3とざぐり溝14-3とを通って
ノズル10-4から冷却部5-4の底部に噴射され、冷却部
5-4の周囲壁面の穴から流出して集積回路4-4の周囲の
空間に蓄積される。集積回路4-4の周囲の空間に蓄積さ
れた液体冷媒は冷媒排出口11-4を通って出口側ヘッダ
15に集められ、液体冷媒出口16から外部に排出され
る。尚、液体冷媒の流れは図中矢印で示してある。
The liquid refrigerant accumulated in the space around the integrated circuit 4-3 is jetted from the nozzle 10-4 to the bottom of the cooling section 5-4 through the refrigerant discharge port 11-3 and the counterbore groove 14-3. , Flows out from the holes on the peripheral wall surface of the cooling unit 5-4 and is accumulated in the space around the integrated circuit 4-4. The liquid refrigerant accumulated in the space around the integrated circuit 4-4 passes through the refrigerant discharge port 11-4, is collected in the outlet-side header 15, and is discharged from the liquid refrigerant outlet 16 to the outside. The flow of the liquid refrigerant is shown by arrows in the figure.

【0027】一方、給電バス7は配線基板1上に密着固
定され、配線基板1上の配線パターン(図示せず)を介
して各集積回路4-1〜4-4に電源を供給している。ま
た、給電バス7には基板枠3に設けられたコネクタ(図
示せず)などを介して外部から電源が供給されるように
なっている。尚、配線基板1上に各集積回路4-1〜4-4
がマトリックス状に配置されている場合、給電バス7は
格子状に設置される。
On the other hand, the power supply bus 7 is tightly fixed on the wiring board 1 and supplies power to each of the integrated circuits 4-1 to 4-4 via a wiring pattern (not shown) on the wiring board 1. . Further, power is supplied to the power supply bus 7 from the outside through a connector (not shown) provided on the board frame 3. The integrated circuits 4-1 to 4-4 are arranged on the wiring board 1.
Are arranged in a matrix, the power supply buses 7 are arranged in a grid.

【0028】よって、各集積回路4-1〜4-4で発生した
熱はノズル10-1〜10-4から冷却部5-1〜5-4の底部
に噴射される液体冷媒と、冷却部5-1〜5-4の周囲壁面
の穴から流出して集積回路4-1〜4-4各々の周囲の空間
に蓄積される液体冷媒とによって冷却されることにな
る。
Therefore, the heat generated in each of the integrated circuits 4-1 to 4-4 and the liquid refrigerant injected from the nozzles 10-1 to 10-4 to the bottoms of the cooling units 5-1 to 5-4 and the cooling unit. It is cooled by the liquid refrigerant flowing out from the holes of the peripheral wall surfaces of 5-1 to 5-4 and accumulated in the space around each of the integrated circuits 4-1 to 4-4.

【0029】また、各集積回路4-1〜4-4への電源の供
給によって給電バス7で発生した熱も、冷却部5-1〜5
-4の周囲壁面の穴から流出して集積回路4-1〜4-4各々
の周囲の空間に蓄積される液体冷媒によって冷却される
ことになる。
Further, the heat generated in the power supply bus 7 due to the supply of power to each of the integrated circuits 4-1 to 4-4 also cools the cooling units 5-1 to 5-5.
-4 is cooled by the liquid refrigerant flowing out from the hole of the peripheral wall surface and accumulated in the space around each of the integrated circuits 4-1 to 4-4.

【0030】この場合、液体冷媒としては絶縁性冷媒
[例えばフッ素系(フッ化炭素など)の絶縁性冷媒]を
使用しなければならない。この絶縁性冷媒の使用によっ
て、液体冷媒が集積回路4-1〜4-4の外周面や給電バス
7の外周面に直接接触しても支障はないので、集積回路
4-1〜4-4や給電バス7で発生した熱を液体冷媒8によ
って直接冷却することができる。
In this case, an insulating refrigerant [for example, a fluorine-based (fluorocarbon etc.) insulating refrigerant] must be used as the liquid refrigerant. By using this insulating refrigerant, there is no problem even if the liquid refrigerant comes into direct contact with the outer peripheral surfaces of the integrated circuits 4-1 to 4-4 and the power supply bus 7, so that the integrated circuits 4-1 to 4-4 can be used. The heat generated in the power feeding bus 7 can be directly cooled by the liquid refrigerant 8.

【0031】集積回路4-1〜4-4とヘッダ部9とは直接
接触していないので、集積回路4-1〜4-4を配線基板1
に取付ける際に生じる高さや傾きのばらつきを吸収する
ことができ、集積回路4-1〜4-4と配線基板1との接続
部に悪影響を与えることはない。また、基板枠3と給電
バス7とを夫々配線基板1に密着固定し、基板枠3と給
電バス7とを夫々絶縁板8を介してヘッダ部9に密着固
定することで、液漏れのない高信頼性の冷却構造とする
ことができる。
Since the integrated circuits 4-1 to 4-4 and the header section 9 are not in direct contact with each other, the integrated circuits 4-1 to 4-4 are connected to the wiring board 1.
It is possible to absorb variations in height and inclination that occur when the circuit board is attached to the integrated circuit 4-1 to 4-4 and to prevent the connection between the integrated circuits 4-1 to 4-4 and the wiring board 1 from being adversely affected. Further, since the board frame 3 and the power feeding bus 7 are closely fixed to the wiring board 1 and the board frame 3 and the power feeding bus 7 are tightly fixed to the header portion 9 via the insulating plate 8, liquid leakage does not occur. It is possible to provide a highly reliable cooling structure.

【0032】さらに、給電バス7を配線基板1の集積回
路4-1〜4-4の搭載面と同一面上に固定することで、給
電バス7から各集積回路4-1〜4-4に容易に電源を供給
できるので、配線基板1の電源用のI/Oピン2を他の
信号に使用することができる。よって、配線基板1のI
/Oピン2の本数や実装密度を変更することなく、信号
用のI/Oピン2の本数を増やすことができる。
Further, by fixing the power supply bus 7 on the same surface as the mounting surface of the integrated circuits 4-1 to 4-4 of the wiring board 1, the power supply bus 7 is changed to each integrated circuit 4-1 to 4-4. Since the power can be easily supplied, the power I / O pin 2 of the wiring board 1 can be used for other signals. Therefore, I of the wiring board 1
The number of signal I / O pins 2 can be increased without changing the number of / O pins 2 or the mounting density.

【0033】さらにまた、給電バス7の断面積をI/O
ピン2の断面積よりも大とすることが容易なので、各集
積回路4-1〜4-4に大容量の電源を容易に供給すること
ができる。よって、集積回路4-1〜4-4の高集積化によ
る消費電力の増大に容易に対処することができ、消費電
力増大時の冷却能力や給電能力を向上させることができ
る。
Furthermore, the cross-sectional area of the power supply bus 7 is I / O.
Since it is easy to make it larger than the cross-sectional area of the pin 2, a large-capacity power source can be easily supplied to each integrated circuit 4-1 to 4-4. Therefore, it is possible to easily deal with the increase in power consumption due to the high integration of the integrated circuits 4-1 to 4-4, and it is possible to improve the cooling capacity and the power supply capacity when the power consumption increases.

【0034】このように、配線基板1と、配線基板1を
保持する基板枠3と、配線基板1の上面側に搭載された
複数の集積回路4-1〜4-4各々の間を仕切る給電バス7
とからなる空間をヘッダ部9で密封状態に維持し、集積
回路4-1〜4-4上に取付けられた冷却部5-1〜5-4各々
の底面に液体冷媒を噴射するノズル10-1〜10-4と該
空間内に蓄積された液体冷媒を排出する冷媒排出口11
-1〜11-4とざぐり溝14-1〜14-3とによって冷却部
5-1〜5-4各々を順次接続し、給電バス7から集積回路
4-1〜4-4各々に電源を供給することによって、集積回
路4-1〜4-4の高集積化によって消費電力が増大したと
きの冷却能力及び給電能力をともに向上させることがで
きる。
As described above, the wiring board 1, the board frame 3 for holding the wiring board 1, and the power supply for partitioning the plurality of integrated circuits 4-1 to 4-4 mounted on the upper surface side of the wiring board 1 respectively. Bus 7
Nozzle 10 which maintains the space consisting of and in a sealed state by the header part 9 and injects the liquid refrigerant to the bottom surface of each of the cooling parts 5-1 to 5-4 mounted on the integrated circuits 4-1 to 4-4. Refrigerant outlet 11 for discharging the liquid refrigerant accumulated in the space 1 to 10-4 and the space
-1 to 11-4 and the counterbore grooves 14-1 to 14-3 are connected to the cooling units 5-1 to 5-4 in order, and the power supply bus 7 supplies power to the integrated circuits 4-1 to 4-4. By supplying, it is possible to improve both the cooling capacity and the power supply capacity when the power consumption increases due to the high integration of the integrated circuits 4-1 to 4-4.

【0035】尚、本発明の一実施例においては冷却部5
-1〜5-4を円筒状としているが、中空の直方体状でもよ
い。また、冷却部5-1〜5-4上にノズル10-1〜10-4
と冷媒排出口11-1〜11-4とざぐり溝14-1〜14-3
とを有するヘッダ部9を取付け、冷却部5-1〜5-4を互
いに接続する冷媒流路を形成しているが、集積回路4-1
〜4-4の周囲空間及び冷却部5-1〜5-4各々に液体冷媒
を循環させるための冷媒流路を独立に形成してもよく、
これらに限定されない。この場合、集積回路4-1〜4-4
の周囲空間を導電部材で密封状態に維持すればよい。
Incidentally, in one embodiment of the present invention, the cooling unit 5
Although -1 to 5-4 have a cylindrical shape, they may have a hollow rectangular parallelepiped shape. Further, the nozzles 10-1 to 10-4 are provided on the cooling units 5-1 to 5-4.
And refrigerant discharge ports 11-1 to 11-4 and counterbore grooves 14-1 to 14-3
The header section 9 having the above is attached to form the refrigerant flow path connecting the cooling sections 5-1 to 5-4 to each other.
To 4-4 surrounding spaces and cooling sections 5-1 to 5-4 may be independently formed with coolant flow paths for circulating a liquid coolant,
It is not limited to these. In this case, the integrated circuits 4-1 to 4-4
The surrounding space may be maintained in a sealed state with a conductive member.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、配
線基板と、配線基板を保持する基板枠部材と、配線基板
の上面側に搭載された複数の集積回路各々の間を仕切る
板状の導電部材とからなる空間をヘッダ部材で密封状態
に維持し、該空間内に集積回路冷却用の液体冷媒を排出
する排出孔を周囲壁面に有する複数の冷却部材各々の底
面に液体冷媒を噴射する複数のノズルと該空間内に蓄積
された液体冷媒を排出する複数の排出口とによって複数
の冷却部材を順次接続し、導電部材から集積回路各々に
電源を供給するようにすることによって、集積回路の高
集積化によって消費電力が増大したときの冷却能力及び
給電能力をともに向上させることができるという効果が
ある。
As described above, according to the present invention, the wiring board, the board frame member for holding the wiring board, and the plurality of integrated circuits mounted on the upper surface side of the wiring board are partitioned from each other. A header member keeps a space consisting of the conductive member of FIG. 3 sealed and a liquid refrigerant is jetted to the bottom surface of each of a plurality of cooling members having a discharge hole for discharging the liquid refrigerant for cooling the integrated circuit in the space. The plurality of nozzles and the plurality of outlets for discharging the liquid refrigerant accumulated in the space are connected to the plurality of cooling members in sequence, and the power is supplied from the conductive member to each integrated circuit. There is an effect that both the cooling capacity and the power supply capacity can be improved when the power consumption increases due to the high integration of the circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す縦断面図である。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】従来例を示す縦断面図である。FIG. 2 is a vertical sectional view showing a conventional example.

【図3】従来例を示す縦断面図である。FIG. 3 is a vertical sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 配線基板 2 I/Oピン 3 基板枠 4-1〜4-4 集積回路 5-1〜5-4 冷却部 7 給電バス 8 絶縁板 9 冷却容器のヘッダ部 10-1〜10-4 ノズル 11-1〜11-4 冷媒排出口 14-1〜14-3 ざぐり溝 DESCRIPTION OF SYMBOLS 1 Wiring board 2 I / O pin 3 Board frame 4-1 to 4-4 Integrated circuit 5-1 to 5-4 Cooling part 7 Power supply bus 8 Insulating plate 9 Cooling container header part 10-1 to 10-4 Nozzle 11 -1 to 11-4 Refrigerant discharge port 14-1 to 14-3 Counterbore groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 底面側に入出力端子を有する配線基板
と、前記配線基板を保持する基板枠部材と、前記配線基
板の上面側に搭載された複数の集積回路と、前記配線基
板の上面に密着固定され、前記複数の集積回路各々の間
を仕切る板状の導電部材と、前記集積回路の上面に底面
が固着され、前記集積回路を冷却するための液体冷媒を
前記配線基板と前記基板枠部材と前記導電部材とからな
る空間内に排出する排出孔を周囲壁面に有する複数の冷
却部材と、前記空間を密封状態に維持するヘッダ部材
と、前記基板枠部材及び前記導電部材と前記ヘッダ部材
とを絶縁して密着固着する絶縁部材と、前記冷却部材の
底面に前記液体冷媒を噴射する複数のノズルと、前記空
間内に蓄積された前記液体冷媒を排出する複数の排出口
とを含み、前記ノズルと前記排出口とによって前記複数
の冷却部材を順次接続し、前記導電部材から前記集積回
路各々に電源を供給するようにしたことを特徴とする集
積回路の冷却給電機構。
1. A wiring board having input / output terminals on a bottom surface side, a board frame member for holding the wiring board, a plurality of integrated circuits mounted on an upper surface side of the wiring board, and an upper surface of the wiring board. A plate-shaped conductive member that is tightly fixed and partitions between each of the plurality of integrated circuits, and a bottom surface is fixed to an upper surface of the integrated circuit, and a liquid coolant for cooling the integrated circuit is provided to the wiring substrate and the substrate frame. A plurality of cooling members having discharge holes for discharging into a space formed of a member and the conductive member on a peripheral wall surface, a header member for maintaining the space in a sealed state, the substrate frame member, the conductive member, and the header member An insulating member that insulates and closely adheres to each other, a plurality of nozzles that inject the liquid refrigerant to the bottom surface of the cooling member, and a plurality of discharge ports that discharge the liquid refrigerant accumulated in the space, With the nozzle A cooling power feeding mechanism for an integrated circuit, wherein the plurality of cooling members are sequentially connected by the discharge port, and power is supplied from the conductive member to each of the integrated circuits.
【請求項2】 前記液体冷媒が絶縁性冷媒であることを
特徴とする請求項1記載の集積回路の冷却給電機構。
2. The cooling power feeding mechanism for an integrated circuit according to claim 1, wherein the liquid refrigerant is an insulating refrigerant.
JP4354485A 1992-12-16 1992-12-16 Cooling power supply mechanism for integrated circuits Expired - Lifetime JPH07101782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4354485A JPH07101782B2 (en) 1992-12-16 1992-12-16 Cooling power supply mechanism for integrated circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4354485A JPH07101782B2 (en) 1992-12-16 1992-12-16 Cooling power supply mechanism for integrated circuits

Publications (2)

Publication Number Publication Date
JPH06188582A JPH06188582A (en) 1994-07-08
JPH07101782B2 true JPH07101782B2 (en) 1995-11-01

Family

ID=18437888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4354485A Expired - Lifetime JPH07101782B2 (en) 1992-12-16 1992-12-16 Cooling power supply mechanism for integrated circuits

Country Status (1)

Country Link
JP (1) JPH07101782B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296417B2 (en) 2004-12-23 2007-11-20 Nanocoolers, Inc. Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator
US7293416B2 (en) 2004-12-23 2007-11-13 Nanocoolers, Inc. Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle
US7475551B2 (en) 2004-12-23 2009-01-13 Nanocoolers, Inc. System employing temporal integration of thermoelectric action

Also Published As

Publication number Publication date
JPH06188582A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
EP0341950B1 (en) Flat cooling structure of integrated circuit
CA2087742C (en) Cooling structure for integrated circuits
US6580609B2 (en) Method and apparatus for cooling electronic components
US5050039A (en) Multiple circuit chip mounting and cooling arrangement
CA2070062C (en) Cooling structure for integrated circuits
US5313097A (en) High density memory module
US6377453B1 (en) Field replaceable module with enhanced thermal interface
JPH0563119B2 (en)
US20110069454A1 (en) Liquid-cooled electronics apparatus and methods of fabrication
JPH05109954A (en) Cooling structure for integrated circuit package
US5436501A (en) Cooling structure for integrated circuit
US5343359A (en) Apparatus for cooling daughter boards
JPH07101782B2 (en) Cooling power supply mechanism for integrated circuits
JPH07101783B2 (en) Cooling power supply mechanism for integrated circuits
JP2901408B2 (en) Integrated circuit cooling mechanism
JP2658309B2 (en) Jet cooling semiconductor device
JPH05275586A (en) Integrated circuit cooling structure
JP2712872B2 (en) Integrated circuit cooling mechanism
US20240107706A1 (en) Variable flow liquid-cooled cooling module
JPH0557756B2 (en)
JPH0724349B2 (en) Integrated circuit cooling structure
EP1388277B1 (en) Method and apparatus for cooling electronic components
JP2793204B2 (en) Integrated circuit cooling structure
JPH07321267A (en) Cooling structure for semiconductor device
JP2845447B2 (en) Integrated circuit cooling structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term