JPH0199768A - Manufacture of metal composite material - Google Patents

Manufacture of metal composite material

Info

Publication number
JPH0199768A
JPH0199768A JP25771887A JP25771887A JPH0199768A JP H0199768 A JPH0199768 A JP H0199768A JP 25771887 A JP25771887 A JP 25771887A JP 25771887 A JP25771887 A JP 25771887A JP H0199768 A JPH0199768 A JP H0199768A
Authority
JP
Japan
Prior art keywords
molded body
reinforcing material
fiber
mold
formed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25771887A
Other languages
Japanese (ja)
Inventor
Atsuo Tanaka
淳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25771887A priority Critical patent/JPH0199768A/en
Publication of JPH0199768A publication Critical patent/JPH0199768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To prevent the generation of the crack and shrinkage of a reinforcing material formed body by fixing the reinforcing material forming body to a wall face by a fiber formed body so that it may be located between the wall face demarcating the mold cavity of a mold and the fiber formed body and solidifying it with pressurizing by leading in a molten metal. CONSTITUTION:A reinforcing material formed body 4 is integrally held by a fiber formed body 10 by fitting it into the groove 8 of the fiber formed body 10, which is fitted by the groove 8 part to the lower end of the movable die 14 of a high pressure casting machine 12 by preheating those. And the reinforcing material formed body 4 is fixed so as to locate between the fiber formed body 10 and the wall face 14b of a tip 14a. A molten metal 20 is then poured into the mold cavity 18 demarcated by the main die, etc., of the casting device 12, is pressurized by the movable die 14, is held until being solidified completely and a piston stock is formed. Consequently a good complex having no crack nor deformation can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属をマトリックスとする複合材料に係り、
更に詳細にはその製造方法に係る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a composite material having a metal matrix;
More specifically, it relates to its manufacturing method.

従来の技術 金属をマトリックスとする複合材料の製造方法の一つと
して、繊維若しくは粒子よりなる強化材成形体を形成し
、該強化材成形体を鋳型内に配置し、該鋳型内にマトリ
ックス金属の溶湯を注湯し、該溶湯を鋳型に嵌合するプ
ランジャや上型の如き可動型にて加圧しつつ凝固させる
所謂高圧鋳造法が従来より知られている。
Conventional technology One of the methods for manufacturing composite materials using metal as a matrix is to form a reinforcing material molded body made of fibers or particles, place the reinforcing material molded body in a mold, and place the matrix metal in the mold. A so-called high-pressure casting method is conventionally known in which molten metal is poured and solidified while being pressurized by a movable mold such as a plunger or an upper mold that fits into a mold.

この高圧鋳造法による複合材料の製造に於ては、可動型
に接する部分を適正に複合化することが困難であり、か
かる問題を解決すべく、例えば本願出願人と同一の出願
人の出願にかかる特開昭60−115360号公報に記
載されている如く、鋳型内の溶湯に強化材成形体を浮が
べた状態にて溶湯を加圧する方法や、強化材成形体の体
積率を低減する方法等が考案されている。
In manufacturing composite materials using this high-pressure casting method, it is difficult to properly composite the parts that come into contact with the movable mold. As described in JP-A No. 60-115360, there is a method of pressurizing the molten metal in a state in which the reinforcing material molded body is floating in the molten metal, and a method of reducing the volume fraction of the reinforcing material molded body. etc. have been devised.

発明が解決しようとする問題点 しかしこれらの方法に於ても、特に強化材が炭化ケイ素
ホイスカやセラミック粒子等の場合には、やはり適切な
複合化を行うことが困難であり、また強化材成形体が脆
い場合には強化材成形体の縮みや割れが発生し易く、こ
れらに起因して良好な複合材料を製造することが困難で
ある。
Problems to be Solved by the Invention However, even with these methods, it is still difficult to perform appropriate compositing, especially when the reinforcing material is silicon carbide whiskers, ceramic particles, etc., and it is difficult to form the reinforcing material. If the body is brittle, the reinforcing material molded product is likely to shrink or crack, making it difficult to produce a good composite material.

本願発明者はかかる問題を実験的に詳細に検討し、その
結果上述の如き問題は主として溶湯の表面に生成する酸
化被膜によるものであることが判明した。即ち一般的に
高圧鋳造に於ては、強化材成形体には先ず溶湯の酸化被
膜が接するため、酸化被膜によって強化材成形体中へ溶
湯が良好に浸透することが阻害され、その結果不均一な
温度及び圧力分布が生じ、これらに起因して強化材成形
体に割れや縮みが生じるものと推測される。
The inventors of the present invention conducted a detailed experimental study on this problem, and as a result, it was found that the above-mentioned problem is mainly caused by an oxide film formed on the surface of the molten metal. That is, in general, in high-pressure casting, the reinforcing material compact is first contacted with the oxide film of the molten metal, so the oxidation film prevents the molten metal from penetrating well into the reinforcing material compact, resulting in non-uniformity. Temperature and pressure distributions occur, and it is presumed that cracks and shrinkage occur in the reinforcing material molded body due to these.

本発明は、従来の高圧鋳造による金属複合材料の製造に
於ける上述の如き問題に鑑み、強化材成形体の割れや縮
みを生じることなく良好に複合化を行うことができる金
属複合材料の製造方法を提供することを目的としている
In view of the above-mentioned problems in the production of metal composite materials by conventional high-pressure casting, the present invention aims to produce metal composite materials that can be composited well without cracking or shrinking the reinforcing material molded body. The purpose is to provide a method.

問題点を解決するための手段 上述の如き目的は、本発明によれば、繊維若しくは粒子
よりなりその体積率が比較的高い強化材成形体と、前記
強化材成形体よりも体積率が低い繊維成形体とを用意し
、前記強化材成形体が鋳型のモールドキャビティを郭定
する壁面と前記繊維成形体との間に位置するよう前記強
化材成形体を前記繊維成形体によって前記壁面に固定し
、前記鋳型内にマトリックス金属の溶湯を導入し、該溶
湯を前記鋳型内にて加圧しつつ凝固させる金属複合材料
の製造方法によって達成される。
Means for Solving the Problems According to the present invention, a reinforcing material molded body made of fibers or particles and having a relatively high volume percentage, and fibers having a volume percentage lower than that of the reinforcing material molded material are provided. a molded body, and fixing the reinforcing material molded body to the wall surface by the fiber molded body so that the reinforcing material molded body is located between the wall surface defining a mold cavity of the mold and the fiber molded body. This is achieved by a method for producing a metal composite material, which includes introducing a molten metal of a matrix metal into the mold, and solidifying the molten metal while pressurizing the molten metal in the mold.

発明の作用及び効果 本発明によれば、強化材成形体が鋳型のモールドキャビ
ティを郭定する壁面と繊維成形体との間に位置するよう
強化材成形体が繊維成形体によって鋳型の壁面に固定さ
れ、その状態にて鋳型内にマトリックス金属の溶湯が導
入されるので、マトリックス金属の溶湯は直接的には強
化材成形体に接触せず、繊維成形体を通過した後強化材
成形体に浸透する。従って体積率の低い繊維成形体は鋳
造過程に於て強化材成形体を支持する機能及び溶湯の表
面に存在する酸化被膜に対するフィルタとしての機能を
果し、これにより繊維成形体を使用しない場合に比して
強化材成形体中への均一な浸透が良好に達成され、これ
により強化材成形体の割れや縮みを生じることなく良好
な複合化を行うことができ、また鋳造工程に於て強化材
成形体が鋳型内の所定の位置より変位することを回避す
ることができる。
Effects and Effects of the Invention According to the present invention, the reinforcing material molded body is fixed to the wall surface of the mold by the fiber molded body so that the reinforcing material molded body is located between the fiber molded body and the wall surface defining the mold cavity of the mold. In this state, the molten matrix metal is introduced into the mold, so the molten matrix metal does not come into direct contact with the reinforcing material compact, but penetrates into the reinforcing material compact after passing through the fiber compact. do. Therefore, the fiber molded body with a low volume fraction functions to support the reinforcing material molded body during the casting process and as a filter for the oxide film existing on the surface of the molten metal, so that when the fiber molded body is not used, In comparison, uniform penetration into the reinforcing material molded body is successfully achieved, which allows for good compounding without causing cracking or shrinkage of the reinforcing material molded body, and it is also possible to achieve good compounding without causing cracking or shrinkage of the reinforcing material molded body. It is possible to prevent the material molded body from being displaced from a predetermined position within the mold.

本発明の一つの詳細な特徴によれば、強化材成形体は繊
維成形体の凹部に嵌合された状態にて繊維成形体により
一体的に保持される。かかる方法によれば、脆いことが
多い強化材成形体が比較的柔軟性の高い繊維成形体によ
り保護されるため、強化材成形体の損傷を回避すること
ができる。また繊維成形体は断熱層及び空気の流通を抑
制する層として作用するので、鋳造工程に先だって成形
体が予熱される場合にも強化材成形体の温度低下が低減
され、良好な複合化が行なわれることが確保され、また
強化材が炭素粒子の如く酸化されυ。
According to one detailed feature of the invention, the reinforcing material molded body is held integrally by the fiber molded body while being fitted into the recessed portion of the fiber molded body. According to this method, the reinforcing material molded object, which is often brittle, is protected by the relatively flexible fiber molded object, so that damage to the reinforcing material molded object can be avoided. In addition, since the fiber molded body acts as a heat insulating layer and a layer that suppresses air circulation, even when the molded body is preheated prior to the casting process, the temperature drop in the reinforcing material molded body is reduced and good composite formation is achieved. It is ensured that the reinforcing material is oxidized like carbon particles.

い強化材である場合にも、それらの予熱時の劣化が低減
される。更に比較的体積率の高い強化材にて強化された
領域が直接マトリックス金属のみの部分連続するのでは
なく、それらの間に比較的体積率の低い繊維にて強化さ
れた領域が存在するので、特性の急変に起因する亀裂の
如き不具合の発生を回避することができる。
Even in the case of hard reinforcements, their deterioration during preheating is reduced. Furthermore, the region reinforced with a reinforcing material with a relatively high volume fraction is not directly continuous with only the matrix metal, but there is a region reinforced with fibers with a relatively low volume fraction between them. It is possible to avoid problems such as cracks caused by sudden changes in properties.

また上述の如く強化材成形体が繊維成形体の成形体の凹
部に嵌合される場合には、凹部が鋳型の凸部に圧入され
ることによりこれらの成形体が鋳型に固定されることが
好ましい。この場合繊維成形体の繊維の配向は任意の配
向であってよいが、繊維成形体は強化材成形体及び鋳型
の凸部より力を受けるので、繊維の配向が二次元ランダ
ムである場合には、繊維成形体が十分な弾性、従って十
分な保持機能を有するよう、繊維は繊維成形体が受ける
力に平行な面に沿う二次元ランダムにて配向されること
が好ましい。
In addition, as mentioned above, when the reinforcing material molded body is fitted into the recess of the fiber molded body, these molded bodies can be fixed to the mold by press-fitting the recess into the convex part of the mold. preferable. In this case, the orientation of the fibers in the fiber molded body may be arbitrary, but since the fiber molded body receives force from the reinforcing material molded body and the convex portion of the mold, if the fiber orientation is two-dimensional random, The fibers are preferably oriented in a two-dimensional random manner along a plane parallel to the force to which the fiber molding is applied, so that the fiber molding has sufficient elasticity and therefore a sufficient retention function.

本願発明者が行った実験的研究の結果によれば、繊維成
形体の体積率が2%未満の場合には繊維成形体が良好な
支持機能及びフィルタとしての機能を果し得なくなり、
逆に繊維成形体の体積率が15%を越えると、それ自身
中へのマトリックス金属の溶湯の浸透性が不良になり、
良好な複合化を行うことが困難になる。従って本発明の
他の一つの詳細な特徴によれば、繊維成形体の体積率は
2〜15%に設定される。
According to the results of experimental research conducted by the inventor of the present application, when the volume fraction of the fiber molded body is less than 2%, the fiber molded body cannot perform a good supporting function and function as a filter;
On the other hand, if the volume fraction of the fiber molded body exceeds 15%, the permeability of the molten matrix metal into the fiber molded body becomes poor,
It becomes difficult to perform good compositing. According to another detailed feature of the invention, therefore, the volume fraction of the fibrous molded body is set between 2 and 15%.

尚繊維成形体の体積率を上述の範囲に設定するためには
、繊維成形体を構成する繊維は1〜10μ程度の比較的
繊維径の大きい短繊維であることが好ましい。
In order to set the volume fraction of the fibrous molded body within the above-mentioned range, the fibers constituting the fibrous molded body are preferably short fibers having a relatively large fiber diameter of about 1 to 10 μm.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 先ず第1図に示されている如く、炭化ケイ素ホイスカ2
(東海カーボン株式会社製「トーカウィスカ」)を体積
率が20%になるよう圧縮成形することにより%20X
40X5111111の寸法を有する板状の強化材成形
体4を形成した。またアルミナ繊維6(IC1社製「サ
フィルRFJ)を吸引成形し加工することにより、30
x50X15iIiの寸法を有し体積率が7%である板
状体を形成し、該板状体に対しその長手方向に沿って2
0X40×12■の溝8を加工することにより、第1図
に示されている如き断面U形をなす繊維成形体1゜を形
成した。
Example 1 First, as shown in FIG.
(Tokai Carbon Co., Ltd. "Toka Whisker") by compression molding so that the volume ratio is 20%
A plate-shaped reinforcing material molded body 4 having dimensions of 40×5111111 was formed. In addition, by suction molding and processing alumina fiber 6 ("Safil RFJ" manufactured by IC1), 30
A plate-shaped body having dimensions of x50 x 15iIi and a volume ratio of 7% is formed, and 2
By machining grooves 8 of 0x40x12 squares, a 1° fiber molded body having a U-shaped cross section as shown in FIG. 1 was formed.

次いで強化材成形体4を繊維成形体1oの溝8内に嵌め
込んで強化材成形体を繊維成形体により一体的に保持し
、それらを400 ’Cの予熱し、しかる後第2図に示
されている如く高圧鋳造装置12の可動型14の下端に
繊維成形体1oをその溝8の部分にて圧入することによ
り、強化材成形体4が繊維成形体10と先端14aの壁
面14bとの間に位置するよう固定した。
Next, the reinforcing material compact 4 is fitted into the groove 8 of the fiber compact 1o, and the reinforcing material compact is held integrally by the fiber compact, and they are preheated to 400'C, and then heated as shown in FIG. By press-fitting the fiber molded body 1o into the lower end of the movable mold 14 of the high-pressure casting device 12 at its groove 8, as shown in FIG. fixed in between.

次いで鋳造装置12の主型16等により郭定されたモー
ルドキャビティ18内に740”Cのアルミニウム合金
(JIS規格AC8A)の溶湯2゜を注湯し、該溶湯を
可動型14にて1200 kg/C−に加圧し、その加
圧状態を溶湯が完全に凝固するまで保持し、これにより
ピストン粗材を形成した。
Next, 2° of molten metal of 740"C aluminum alloy (JIS standard AC8A) is poured into the mold cavity 18 defined by the main mold 16 etc. of the casting device 12, and the molten metal is poured into the mold cavity 18 by the movable mold 14 at a rate of 1200 kg/ C-, and the pressurized state was maintained until the molten metal completely solidified, thereby forming a piston rough material.

かくして形成されたピストン粗材を切断し、その炭化ケ
イ素ホイスカ及びアルミナ繊維にて複合強化された部分
を観察したところ、強化材成形体の亀裂や変形は全く生
じておらず、良好な複合化が行われていることが認めら
れた。
When the piston rough material thus formed was cut and the part reinforced with silicon carbide whiskers and alumina fibers was observed, there was no cracking or deformation of the reinforcing material molded body, indicating that the composite was well formed. It was recognized that this was being done.

また比較の目的で、強化材成形体4と同様の強化材成形
体を形成し、その強化材成形体を可動型14の下端に形
成された溝に嵌め込むことにより固定し、上述の実施例
の場合と同一の要領及び条件にて鋳造を行ない、得られ
たピストン粗材の複合強化部を観察したところ、強化材
成形体に亀裂が生じており、またその厚さが51より3
1に減少していることが認められた。尚この場合強化材
成形体を可動型の先端の溝に圧入する際にその角が欠損
した。
In addition, for the purpose of comparison, a reinforcing material molded body similar to the reinforcing material molded body 4 was formed, and the reinforcing material molded body was fixed by being fitted into a groove formed at the lower end of the movable mold 14, and the above-mentioned example Casting was carried out using the same procedure and conditions as in the case of 2. When the composite reinforced part of the obtained piston rough material was observed, cracks had occurred in the reinforced material molded body, and the thickness was 51 to 3.
It was observed that the number decreased to 1. In this case, when the reinforcing material molded body was press-fitted into the groove at the tip of the movable mold, its corner was damaged.

実施例2 第3図に示されている如く、炭化ボロン粒子22(平均
粒径2μ)を圧縮成形することにより、体積率が50%
であり外径401111%厚さ15fflIllの円板
状の強化材成形体24を形成した。またアルミナ繊維2
6(IC1社製「サフィル」)を使用して、その体積率
が12%になるよう内径40mm。
Example 2 As shown in FIG. 3, by compression molding boron carbide particles 22 (average particle size 2μ), the volume fraction was reduced to 50%.
A disk-shaped reinforcing material molded body 24 with an outer diameter of 401111% and a thickness of 15fflIll was formed. Also, alumina fiber 2
6 ("Safil" manufactured by IC1), and the inner diameter was 40 mm so that the volume ratio was 12%.

外径50mm、高さ20■、底壁厚さ5mmのカップ状
の繊維成形体28を形成した。
A cup-shaped fiber molded body 28 having an outer diameter of 50 mm, a height of 20 cm, and a bottom wall thickness of 5 mm was formed.

次いで第4図に示されている如く、強化材成形体24を
繊維成形体28内に嵌め込んで強化材成形体を繊維成形
体により一体的に保持し、しかる後強化材成形体24が
鋳造装置30の下型32に嵌合するプランジャ34の先
端の壁面34aと繊維成形体28の底壁との間に位置す
るよう、繊維成形体28をプランジャ34に嵌合させる
ことにより、これらをプランジャに固定した。次いで下
型32等により郭定されたモールドキャビティ36内に
700℃のマグネシウム合金(JIS規格MCI)の溶
湯38を注湯し、下型32に上型40を固定した後、プ
ランジャ34を上方へ駆動することにより溶湯を120
0 kg/cjの圧力にて加圧し、その加圧状態を溶湯
が完全に凝固するまで保持し、これによりカップ状粗材
を形成した。
Next, as shown in FIG. 4, the reinforcing material molded body 24 is fitted into the fiber molded body 28 to hold the reinforcing material molded body integrally with the fiber molded body, and then the reinforcing material molded body 24 is cast. By fitting the fiber molded body 28 into the plunger 34 so that it is located between the wall surface 34a of the tip end of the plunger 34 that fits into the lower mold 32 of the device 30 and the bottom wall of the fiber molded body 28, the fiber molded body 28 is inserted into the plunger 34. Fixed. Next, 700° C. molten magnesium alloy (JIS standard MCI) is poured into the mold cavity 36 defined by the lower mold 32 and the like, and after fixing the upper mold 40 to the lower mold 32, the plunger 34 is moved upward. By driving the molten metal
The molten metal was pressurized at a pressure of 0 kg/cj, and the pressurized state was maintained until the molten metal completely solidified, thereby forming a cup-shaped rough material.

かくして形成されたカップ状粗材を切断し、炭化ボロン
粒子及びアルミナ繊維にて複合強化された部分を観察し
たところ、強化材成形体に変形や亀裂は全く生じていな
いことが認められた。
When the thus formed cup-shaped raw material was cut and the part reinforced with boron carbide particles and alumina fibers was observed, it was found that no deformation or cracks had occurred in the reinforcing material molded body.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の範囲内にて他の種々の実施例が可能であ
ることは当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. This will be obvious to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1に於ける強化材成形体及び繊維成形体
を互いに組付けられた状態にて示す斜視図、第2図は第
1図に示された強化材成形体及び繊維成形体を用いて行
われる鋳造工程を示す解図的断面図、第3図は実施例2
に於ける強化材成形体及び繊維成形体を互いに組付けら
れた状態にて示す断面図、第4図は第3図に示された強
化材成形体及び繊維成形体を用いて行われる鋳造工程を
示す解図的断面図である。 2・・・炭化ケイ素ホイスカ、4・・・強化材成形体。 6・・・アルミナ繊維、8・・・溝、10・・・繊維成
形体。 12・・・鋳造装置、14・・・可動型、16・・・主
型、18・・・モールドキャビティ、20・・・アルミ
ニウム合金の溶湯、22・・・炭化ボロン粒子、24・
・・強化材成形体、26・・・アルミナ繊維、28・・
・繊維成形体。 30・・・鋳造装置、32・・・下型、34・・・プラ
ンジャ。 36・・・モールドキャビティ、38・・・マグネシウ
ム合金の溶湯、40・・・上型 特 許 出 願 人   トヨタ自動車株式会社代  
 理   人   弁理士  明石 昌毅へ 1で 饅 収 ! ト N、ソ 3ぢ 娃 惟 裾 す お籍
FIG. 1 is a perspective view showing the reinforcing material molded article and the fiber molded article in a state assembled with each other in Example 1, and FIG. 2 is the reinforcing material molded article and the fiber molded article shown in FIG. 1. An illustrative cross-sectional view showing the casting process carried out using
4 is a cross-sectional view showing the reinforcing material molded body and the fiber molded body assembled together, and FIG. 4 is a casting process performed using the reinforcing material molded body and the fiber molded body shown in FIG. 3. FIG. 2...Silicon carbide whisker, 4...Reinforcing material molded body. 6... Alumina fiber, 8... Groove, 10... Fiber molded body. DESCRIPTION OF SYMBOLS 12... Casting device, 14... Movable mold, 16... Main mold, 18... Mold cavity, 20... Molten aluminum alloy, 22... Boron carbide particles, 24...
... Reinforcement molded body, 26 ... Alumina fiber, 28 ...
・Fiber molded body. 30... Casting device, 32... Lower die, 34... Plunger. 36... Mold cavity, 38... Molten magnesium alloy, 40... Upper mold patent Applicant: Toyota Motor Corporation representative
1 reward for patent attorney Masaki Akashi! To N, So 3

Claims (3)

【特許請求の範囲】[Claims] (1)繊維若しくは粒子よりなりその体積率が比較的高
い強化材成形体と、前記強化材成形体よりも体積率が低
い繊維成形体とを用意し、前記強化材成形体が鋳型のモ
ールドキャビティを郭定する壁面と前記繊維成形体との
間に位置するよう前記強化材成形体を前記繊維成形体に
よって前記壁面に固定し、前記鋳型内にマトリックス金
属の溶湯を導入し、該溶湯を前記鋳型内にて加圧しつつ
凝固させる金属複合材料の製造方法。
(1) A reinforcing material molded body made of fibers or particles and having a relatively high volume percentage, and a fiber molded body having a lower volume percentage than the reinforcing material molded material are prepared, and the reinforcing material molded material is placed in a mold cavity of a casting mold. The reinforcing material molded body is fixed to the wall surface by the fiber molded body so as to be located between the wall surface defining the fiber molded body, and a molten metal of matrix metal is introduced into the mold, and the molten metal is A method for manufacturing a metal composite material that solidifies while being pressurized in a mold.
(2)特許請求の範囲第1項の金属複合材料の製造方法
に於て、前記強化材成形体は前記繊維成形体の凹部に嵌
合された状態にて前記繊維成形体により一体的に保持さ
れることを特徴とする金属複合材料の製造方法。
(2) In the method for manufacturing a metal composite material according to claim 1, the reinforcing material molded body is held integrally by the fiber molded body in a state where it is fitted into a recess of the fiber molded body. A method for producing a metal composite material, characterized in that:
(3)特許請求の範囲第1項又は第2項の金属複合材料
の製造方法に於て、前記繊維成形体の体積率は2〜15
%であることを特徴とする金属複合材料の製造方法。
(3) In the method for manufacturing a metal composite material according to claim 1 or 2, the volume fraction of the fiber molded body is 2 to 15
%.
JP25771887A 1987-10-13 1987-10-13 Manufacture of metal composite material Pending JPH0199768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25771887A JPH0199768A (en) 1987-10-13 1987-10-13 Manufacture of metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25771887A JPH0199768A (en) 1987-10-13 1987-10-13 Manufacture of metal composite material

Publications (1)

Publication Number Publication Date
JPH0199768A true JPH0199768A (en) 1989-04-18

Family

ID=17310139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25771887A Pending JPH0199768A (en) 1987-10-13 1987-10-13 Manufacture of metal composite material

Country Status (1)

Country Link
JP (1) JPH0199768A (en)

Similar Documents

Publication Publication Date Title
JPH0199768A (en) Manufacture of metal composite material
EP0101948A2 (en) Method of manufacturing a surface composite reinforced member
JPH0344432A (en) Manufacture of fiber reinforced metallic composite material
JP3048114B2 (en) Manufacturing method of fiber reinforced cylinder block
KR102297170B1 (en) Cast iron inserts for shrink-fitting process and manufacturing method of dissimilar metal members using the same
JPS6221456A (en) Production of hollow casting
JPH0685997B2 (en) Manufacturing method of short fiber reinforced metal composite
JPS62199739A (en) Production of fibrous formed body for fiber reinforced composite material
JPS62297521A (en) Screw section of structure member
JPS60115361A (en) Production of composite material
JPS60115360A (en) Production of composite material
JPS62185844A (en) Production of fiber reinforced metallic composite material
JP2679160B2 (en) Method for manufacturing metal-based composite material member
JPS59125262A (en) Production of composite material
JPH0422559A (en) Method for preforming reinforcing member of metal matrix composite
JPH02220762A (en) Manufacture of fiber reinforced composite member
JPH06170516A (en) Production of metal-base composite material by pressurized casting
JPS6268670A (en) Manufacture of metallic base composite material
JPS62244564A (en) Production of metallic member containing fiber reinforced section
JPH05209242A (en) Production of fiber reinforced metallic material
JPS61245959A (en) Production of fiber reinforced metallic composite material
JPS61202769A (en) Production of fiber reinforced composite material
JPH10281002A (en) Metallic base composite reinforcing piston for internal combustion engine and manufacture therefor
JPS6070138A (en) Manufacture of alloy
JPH03114650A (en) Production of metal base reinforced material