JPH0199701A - Method for rough rolling h shape - Google Patents
Method for rough rolling h shapeInfo
- Publication number
- JPH0199701A JPH0199701A JP25571287A JP25571287A JPH0199701A JP H0199701 A JPH0199701 A JP H0199701A JP 25571287 A JP25571287 A JP 25571287A JP 25571287 A JP25571287 A JP 25571287A JP H0199701 A JPH0199701 A JP H0199701A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- slab
- width
- flange
- beam blank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 230000007423 decrease Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000007796 conventional method Methods 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 238000007493 shaping process Methods 0.000 description 8
- 238000007688 edging Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 108091028606 miR-1 stem-loop Proteins 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Abstract
Description
[産業上の利用分野]
この発明はH形鋼の粗圧延方法に係り、狭幅の粗形鋼片
より大寸法のH形鋼を高能率、低コストで製造可能な方
法に関する。[Industrial Application Field] The present invention relates to a method for rough rolling H-section steel, and more particularly, to a method capable of producing H-section steel having a larger dimension than a narrow rough-section steel piece with high efficiency and at low cost.
近年、H形鋼は省エネルギーおよび歩留の観点から連続
鋳造スラブから圧延する方法が一般的となっている。す
なわち、従来の一般的な製造工程としては、連続鋳造さ
れた粗形鋼片(スラブ、ビームブランク)を加熱工程−
粗圧延工程−中間圧延工程−エツジング工程−仕上圧延
工程を経てH形鋼が製造されている。しかし、このH形
鋼製造方法は粗圧延工程で粗形鋼片をドツグボーン形状
に圧延するため、広幅系H形鋼の場合非常に大きい圧下
量を必要とする。このため粗形鋼片先後端部に大きなフ
ィッシュテールが発生し、粗圧延後のクロップ切捨て量
が大きくなり圧延歩留りの低下を招いていた。また、幅
方向の圧下にかなりのパス回数を必要とするため圧延能
率も大幅に低下する等の問題があった。
そこで、上記の問題を解決する方法として、特公昭59
−18124号公報には、第3図に示すごとく粗形鋼片
(1)の両サイド端面にV字形の割り(2)を入れ、こ
の割りを順次深くした債、この割りを押し広げてビーム
ブランク(3)を形成する方法が開示されている。この
方法によれば、粗形鋼片の先後端部に大きなフィッシュ
テールが発生しないので歩留が向上し、フランジ幅出し
効率がよくなり圧延バス回数を減少できる結果圧延能率
を向上でき、厚みの薄い偏平鋼片から大寸法のH形鋼を
製造する場合も1回の加熱だけで製造が可能となる等の
効果を奏する。
[従来技術の問題点]
しかし、従来の前記割りを入れてビームブランクを形成
する方法では、以下に示す問題点があった。
大寸法のH形鋼の場合、粗圧延工程においてスラブを立
てて、強力な幅圧下により両端部を押し広げてビームブ
ランクを形成するので、必要とされるスラブ幅が非常に
大きなものとなる。例えば、@ 900mmX 300
mmを圧延する場合、スラブ幅は少なくとも1300m
m以上必要とする。このため、粗圧延のバス回数が多く
なるという問題があった。
すなわち、スラブの両端面中央に入れた割りを押し開い
た後に行なわれるウェブの圧下工程において、ウェブの
圧下に伴いフラン2幅が著しく減少する。これは、圧下
されるウェブのボリュームに対しフランジのボリューム
が小さいため、メタルがフランジからウェブに流れるた
めである。このため、ウェブ圧下に伴うフランジ幅を補
償する必要があり、スラブ幅を大きくせざるを得ず、V
字形の割りの深さも必然的に深くなる。したがって、粗
圧延のバス回数が増大することになるのである。
また、スラブ幅が大きくなると、加熱炉で収容本数が少
なくなり、加熱能率、も低下する。すなわち、在炉本数
が少ない場合、スラブ厚さが薄いため加熱能率が低下す
る。したがって、広幅のスラブからの大寸法のH形鋼の
圧延能率は、他の小、中寸法のH形鋼製品単重より大き
いにも拘らず非常に低い結果となっている。
この発明は従来の前記V字形割りを入れるH形鋼の製造
方法における粗圧延バス回数の増加、加熱能率の低下の
問題を解決するためになされたもので、大寸法のH形鋼
を狭幅、薄肉の連続鋳造スラブまたは粗形鋼片より高能
率、低コストで製造し得る粗圧延方法を提案せんとする
ものである。
(問題点を解決するための手段]
この発明はH形鋼の粗圧延工程において、素材のスラブ
または連続鋳造した粗ビームブランクを圧延しウェアを
薄くしたビームブランクを形成した後、該ビームブラン
クのフランジ端面中央に両サイドより下記式にて決定さ
れる深さ2のV字形割りを入れ、ついで前記V字形割り
を押し開き平らにすることにより、両サイドフランジ幅
が粗形鋼片より大きいビームブランクを形成することを
特徴とするものである。
愛≧0.6 (B/2−(T −3)) ・・・
(1)2:V字形割りの深さ(mJ
B:H形鋼製品の7ランジ幅(mm)
T:V字形割りを入れるビームブラン
クのフランジ幅(mm)
S:V字形割りを入れるビームブラン
クのウェブ厚(mm >
すなわち、この発明は粗形鋼片より大寸法のH形鋼を粗
圧延する工程において、粗形鋼片から直接ウェア圧延を
行ない、しかる接両7ランジ部にV字形割りを入れて粗
形鋼片より大きいフランジ幅を得る方法である。
【作 用]
粗形鋼片より大寸法のH形鋼を粗圧延する工程は、次の
2つに分けられる。
(A>エツジング圧延(スラブまたはビームブランクの
幅殺し)
(B)造形圧延(ウェブ厚殺し)
第3図に示す従来の工程は(A>■ブランク圧延−(B
)造形圧延であった。この方法の場合、造形圧延におけ
る7ランジの幅減少作用が大きいため、エツジング量が
大きくなり、エツジバスが多くかつ広幅の粗形鋼片が必
要となる。
そこで、この発明では(A>エツジング圧延と(B)造
形圧延の順序を逆転し、(B)造形圧延−(A>エツジ
ング圧延としたのでおる。
第1図はこの発明の粗圧延工程を示す概略図である。こ
こではスラブを例にとり説明する。
すなわち、この発明では粗圧延の第1工程として、スラ
ブ(10)を孔型によるウェブ圧下でウェブ厚の薄いビ
ームブランク(11)を造形する。スラブから直接ウェ
ブを圧下すると、スラブの幅殺しを行なっていないため
ウェブ(11−2)のボリュームとフランジ部(11−
1)のボリュームは大差がなく、ウェブ圧下に伴うフラ
ンジ幅の減少は極めて少ない。なお、ビームブランク(
11)のウェブ厚としては、後工程のフランジ部に入れ
たV字状側りを押し拡げる際に挫屈しない範囲で、でき
るだけ薄くするのが好ましい。また例えば素材の幅が製
品のH形鋼のウェブ高さより400〜500mm程度大
きいスラブの場合は、少なくとも150mm以下として
おく必要がある。すなわち、150mm以上のウェブ厚
をもつビームブランクをユニバーサルミル群で中間圧延
すると、ユニバーサルミル群でのバス回数が増大し、生
産性が低下するためである。
次に、造形圧延により得られたビームブランク(11)
に対し、フランジ部(11−1)の端面中央に前記(1
)式で決定される深さ2のV字形割り(12)を入れる
。このV字形割りはビームブランク(11)を90度タ
ーンさせ、孔型中央に約60度の頂角をもつ割り入れ用
孔型により久れる。
なお、V字形割りの深さを前記(1)式で決定される深
さlとしたのは、この発明者の多くの実験結果より導き
出したもので、この条件を満足する深さの割りを入れる
ことによりフランジ幅増大の効果が最も大きいことが判
明している。
続いて、上記と同様の頂角を有するが先端を円弧状に形
成した割り入れ用孔型にてV字形割り(12)を押し広
げてフランジ幅の大きい凹部(13)付きビームブラン
ク(14)を形成する。
次に、フラットな孔型を有するボックス孔型により前記
凹部付きビームブランク(14)の凹部(13)を消去
し平坦にしてビームブランク(15)を得る。この工程
におけるフランジ部の幅広げ効果は従来の同じ程度であ
る。しかし、この発明ではエツジング圧延後にウェブ圧
下する造形圧延工程が入らないため、フランジの幅広げ
量は従来の約172程度ですむ。つまり、エツジング量
が172程度ですむことになる。したがって、必要とさ
れるスラブ幅は従来法に比べ200mm以上小さくする
ことが可能となる。
例えば、H400+nmX 400+++mを厚さ25
0mmのスラブから従来法により製造する場合、前記(
1)式で丁=S −250mmとなる。つまり、直接ス
ラブエツジングの場合2≧120+++mとなる。これ
に対し、この発明方法の場合は厚さ250mmのスラブ
を造形孔型圧延にてウェブ厚を120rnTrlとする
。このときのフランジ幅は未だ230mmある。つまり
、丁(230mm>−3(120mm) = 110m
mとなり、2≧54mmで、従来の2に比べ50%以下
となる。したがって、スラブ幅を100〜200mm小
さくすることができ、粗圧延のパス回数を20%以上削
減できることになる。
なお、この発明の場合、ビームブランクのフランジ部の
上下、左右の対称性はエツジング後であるため均一性が
若干劣る可能性がある。このため、エツジング圧延棲は
ウェブをほとんど圧下せずにフランジ形状を均一化する
1パスの仕上圧延を行なうことが好ましい。
また、ユニバーサルミル群に能力がある場合は、粗圧延
はウェブ圧下を行なう造形圧延とV字形割り入れ圧延の
みを行ない、ユニバーサルミル群でV字形割りの押し広
げを行なうことも可能である。
[実 施 例]
1−1700X 300のH形鋼を第2図に示すレイア
ウトの製造工程により製造した。第2図において、(2
0)は加熱炉、(21)は可逆式二重粗圧延機、(22
)はユニバーサル粗圧延II、(23)は二重整形圧延
機、(24)はユニバーサル仕上圧延機、(25)はク
ロップ・ソーをそれぞれ示す。
素材寸法250mm厚X 1200mm幅の連続鋳造ス
ラブを加熱炉(20)にて1250℃まで加熱し、可逆
式二重粗圧延II(21>により従来の造形孔型とほぼ
同−でフランジ厚が約100w+m程度厚い形状の造形
孔型により、14バスでウェブ厚82 mm、フランジ
幅240 n++r+のドツグボーン形状のビームブラ
ンクを得た。
ついで、頂角60度の割り入れ用エツジング孔型で深さ
90mIr1のV字形割りを2パスで入れた。このとき
のフランジ幅は造形圧延後と同一の約240mmであっ
た。続いて、先端部が円弧状となしたエツジング孔型に
て2パス圧延し、フランジ幅を240mmから320m
mまで押し広げ、かつV字形割りの深さを60mmに浅
くかつ滑らかな形状とした。しかる後、ボックス孔型に
より2パス圧延し、フランジ幅を320mmから365
mmまで広げるとともにV字形割りの深さを20mmま
で減少させ、最後に仕上孔型にて1パス圧延しフランジ
端面を平坦にし、トータル21バスで粗圧延を完了した
。なお、仕上孔型による圧延でのウェブ圧下は数Mでめ
った。
これに対し、従来法では素材寸法2501TIm厚×1
400mm幅のスラブを必要とし、このスラブの両端面
に深さ12011m (本発明では深さ90mm)のV
字形割りを入れ、これをエツジングしてフランジ幅54
0 mmのビームブランクを形成した。この最終のビー
ムブランクを形成するのに従来法では初期エツジング1
1パス、造形および幅出しエツジングパス18パスの合
計29バスで粗圧延を完了した。
したがって、本発明法と比較すると、従来法ではエツジ
ングでフランジ幅を29On++n増大させるのに対し
、本発明法ではフランジ幅を240mmから365mm
と125mm増大させるだけですむ。これは、従来法で
は造形圧延におけるウェブ圧下に伴うフランジ幅の減少
が大きいため、スラブエツジングにおけるフランジ幅増
大効果が軽減されるのに対し、本発明法ではウェブ圧下
に伴うフランジ幅の減少が非常に少ないため、フランジ
幅増大の効果が大きいことによる。
[発明の効果]
以上説明したごとく、この発明方法によれば、造形圧延
におけるウェブ圧下に伴うフランジ幅の減少量が小さく
、エツジング圧延工程でのフランジ幅を増大できるので
、狭幅粗形鋼片より大寸法のH形鋼を少ないパス回数で
能率よく圧延製造することができる。また、スラブ幅を
小さくできること(より、加熱炉内での収容本数も多く
することができ、加熱効率アップにより生産性の向上並
びに低コスト化がはかられ、連続鋳造鋼片からの大寸法
のH型鋼の製造に大なる効果を秦する。In recent years, from the viewpoint of energy saving and yield, it has become common to roll H-beams from continuously cast slabs. In other words, in the conventional general manufacturing process, continuously cast rough-shaped steel pieces (slabs, beam blanks) are heated through a heating process.
H-section steel is manufactured through a rough rolling process, an intermediate rolling process, an etching process, and a finishing rolling process. However, in this H-beam manufacturing method, a rough-shape steel piece is rolled into a dogbone shape in the rough rolling process, so a very large rolling reduction is required in the case of a wide H-shape steel. For this reason, a large fishtail occurs at the leading and trailing ends of the rough-shaped steel piece, and the amount of crop cut-off after rough rolling becomes large, leading to a decrease in rolling yield. Further, since rolling in the width direction requires a considerable number of passes, there is a problem in that the rolling efficiency is also significantly reduced. Therefore, as a way to solve the above problem,
Publication No. 18124 describes a bond in which V-shaped splits (2) are made on both side end faces of a rough-shaped steel slab (1), and the splits are made deeper in order, as shown in Figure 3, and a bond is created in which the splits are expanded to form a beam. A method of forming a blank (3) is disclosed. According to this method, large fishtails do not occur at the front and rear ends of the rough-shaped steel billet, so the yield is improved, the flange width width is improved, the number of rolling buses can be reduced, and the rolling efficiency is improved. Even when manufacturing a large-sized H-beam from a thin flat steel piece, it is possible to manufacture it by heating only once. [Problems with Prior Art] However, the conventional method of forming a beam blank by inserting the above-mentioned cracks has the following problems. In the case of large-sized H-section steel, the slab is erected in the rough rolling process and both ends are pushed apart by strong width reduction to form a beam blank, so the required slab width is very large. For example, @900mmX300
When rolling mm, the slab width is at least 1300m
m or more is required. For this reason, there was a problem that the number of rough rolling passes increased. That is, in the web rolling process performed after the splits placed in the centers of both end faces of the slab are pushed open, the width of the flange 2 is significantly reduced as the web is rolled down. This is because the volume of the flange is small compared to the volume of the web being rolled down, so metal flows from the flange to the web. For this reason, it is necessary to compensate for the flange width due to web reduction, and the slab width has to be increased.
The depth of the glyph divisions also inevitably becomes deeper. Therefore, the number of rough rolling passes increases. Furthermore, as the width of the slab increases, the number of slabs accommodated in the heating furnace decreases, and the heating efficiency also decreases. That is, when the number of furnaces is small, the heating efficiency decreases because the slab thickness is thin. Therefore, the rolling efficiency of large-sized H-beams from wide slabs is extremely low even though the unit weight of other small- and medium-sized H-beam products is greater. This invention was made in order to solve the problems of an increase in the number of rough rolling baths and a decrease in heating efficiency in the conventional manufacturing method of H-beam steel with V-shaped splits. The purpose of the present invention is to propose a rough rolling method that can produce thin continuous cast slabs or rough shaped steel slabs with higher efficiency and lower cost. (Means for Solving the Problems) The present invention involves rolling a slab of material or a continuously cast rough beam blank to form a beam blank with a thinner wear in the rough rolling process of H-section steel. By inserting a V-shaped split with a depth of 2 determined by the formula below from both sides in the center of the flange end face, and then pushing the V-shaped split open and flattening it, a beam with a width of both side flanges larger than that of the rough shaped steel piece is created. It is characterized by forming a blank. A≧0.6 (B/2-(T-3))...
(1) 2: Depth of V-shaped split (mJ) B: 7-lunge width of H-shaped steel product (mm) T: Flange width of beam blank into which V-shaped split is placed (mm) S: Beam blank into which V-shaped split is placed web thickness (mm > In other words, in the process of rough rolling an H-section steel with a larger size than a rough-shaped steel slab, the present invention performs wear rolling directly from the rough-shaped steel slab, and then creates a V-shaped split in the 7 flange portions of both the contacting sides. This is a method to obtain a flange width larger than that of the rough-shaped steel slab by inserting the H-shaped steel slab into the rough-shaped steel slab. Etching rolling (width reduction of slab or beam blank) (B) Shape rolling (web thickness reduction) The conventional process shown in Fig. 3 is (A>■Blank rolling - (B)
) It was shape rolling. In the case of this method, since the width reduction effect of the 7-lunge in shaping rolling is large, the amount of edging becomes large, and a rough-shaped steel billet with a large number of edge buses and a wide width is required. Therefore, in this invention, the order of (A>Edging rolling and (B) Shaping rolling is reversed, so that (B) Shaping rolling-(A>Edging rolling). Figure 1 shows the rough rolling process of this invention. It is a schematic diagram.Here, explanation will be given taking a slab as an example.That is, in this invention, as the first step of rough rolling, a beam blank (11) with a thin web thickness is formed by subjecting the slab (10) to web rolling using a groove die. When the web is rolled down directly from the slab, the volume of the web (11-2) and the flange portion (11-2) are reduced because the width of the slab is not reduced.
There is no big difference in the volume of 1), and the decrease in flange width due to web rolling is extremely small. In addition, the beam blank (
The web thickness in 11) is preferably made as thin as possible within a range that does not buckle when the V-shaped sides inserted into the flange portion in the subsequent process are expanded. For example, in the case of a slab whose material width is approximately 400 to 500 mm larger than the web height of the H-beam product, the width must be at least 150 mm or less. That is, if a beam blank having a web thickness of 150 mm or more is intermediate rolled in the universal mill group, the number of passes in the universal mill group increases and productivity decreases. Next, the beam blank (11) obtained by shape rolling
On the other hand, the above-mentioned (1
) Insert a V-shaped divider (12) with a depth of 2 determined by the formula. This V-shaped split is achieved by turning the beam blank (11) through 90 degrees and using a split hole with an apex angle of about 60 degrees in the center of the hole. The depth of the V-shaped split is defined as the depth l determined by equation (1) above, which was derived from the results of many experiments by this inventor, and the depth l that satisfies this condition is It has been found that the effect of increasing the flange width is greatest by adding this. Next, a beam blank (14) with a concave portion (13) having a large flange width is created by expanding the V-shaped split (12) with a split hole mold having the same apex angle as above but with an arcuate tip. form. Next, the recesses (13) of the recessed beam blank (14) are erased and flattened using a box hole mold having a flat hole shape to obtain a beam blank (15). The effect of widening the flange portion in this process is the same as that of the conventional method. However, since the present invention does not include a shaping rolling process in which the web is rolled down after the edging rolling, the width of the flange can be increased by about 172mm compared to the conventional method. In other words, the amount of etching is only about 172. Therefore, the required slab width can be reduced by 200 mm or more compared to the conventional method. For example, H400+nmX 400+++m with thickness 25
When manufacturing from a 0 mm slab by the conventional method, the above (
In formula 1), ding = S - 250mm. In other words, in the case of direct slab etching, 2≧120+++m. On the other hand, in the case of the method of the present invention, a slab having a thickness of 250 mm is rolled to a web thickness of 120 rnTrl by shape-hole rolling. The flange width at this time is still 230 mm. In other words, (230mm>-3(120mm) = 110m
m, and 2≧54 mm, which is 50% or less compared to the conventional 2. Therefore, the slab width can be reduced by 100 to 200 mm, and the number of rough rolling passes can be reduced by 20% or more. In the case of this invention, since the vertical and horizontal symmetry of the flange portion of the beam blank is obtained after etching, the uniformity may be slightly inferior. For this reason, it is preferable to carry out finishing rolling in one pass in which the flange shape is made uniform without substantially rolling down the web. Furthermore, if the universal mill group has the capacity, it is also possible to carry out only shape rolling for web rolling and V-shaped splitting rolling in the rough rolling, and to widen the V-shaped splitting with the universal mill group. [Example] A 1-1700×300 H-section steel was manufactured by the manufacturing process having the layout shown in FIG. In Figure 2, (2
0) is a heating furnace, (21) is a reversible double rough rolling mill, (22
) shows the universal rough rolling mill II, (23) shows the double shaping rolling mill, (24) shows the universal finishing rolling mill, and (25) shows the crop saw, respectively. A continuous cast slab with material dimensions of 250 mm thick x 1200 mm wide is heated to 1250°C in a heating furnace (20), and then reversible double rough rolling II (21) is performed to create a flange thickness that is approximately the same as the conventional forming hole type and approximately A dogbone-shaped beam blank with a web thickness of 82 mm and a flange width of 240 n++r+ was obtained using a forming hole mold with a thickness of approximately 100 w+m in 14 baths.Then, a beam blank with a depth of 90 mIr1 was obtained using an edging hole mold for cutting with an apex angle of 60 degrees. A V-shaped split was made in two passes.The flange width at this time was about 240 mm, the same as after shape rolling.Next, two passes were rolled using an edging hole mold with an arcuate tip, and the flange was rolled in two passes. Width from 240mm to 320m
The depth of the V-shaped split was 60 mm, making it shallow and smooth. After that, the flange width was changed from 320mm to 365mm by 2-pass rolling using a box hole die.
mm, and the depth of the V-shaped split was reduced to 20 mm.Finally, one pass of rolling was performed in a finishing hole die to flatten the flange end face, and rough rolling was completed in a total of 21 passes. In addition, the web reduction in rolling with the finishing hole die was only a few M. On the other hand, in the conventional method, the material size is 2501 TIm thickness x 1
A slab with a width of 400 mm is required, and a V with a depth of 12,011 m (depth of 90 mm in the present invention) is formed on both end faces of this slab.
Insert the glyph split and edge this to make the flange width 54
A beam blank of 0 mm was formed. In order to form this final beam blank, the conventional method uses initial etching 1.
Rough rolling was completed in a total of 29 passes: 1 pass and 18 passes for shaping and tentering. Therefore, compared to the method of the present invention, the conventional method increases the flange width by 29 On++n by etching, whereas the method of the present invention increases the flange width from 240 mm to 365 mm.
All you need to do is increase it by 125mm. This is because in the conventional method, the flange width decreases significantly due to web reduction during shaping rolling, which reduces the effect of increasing flange width during slab etching, whereas in the method of the present invention, the flange width decreases due to web reduction. This is because the effect of increasing the flange width is large because the amount is very small. [Effects of the Invention] As explained above, according to the method of the present invention, the amount of decrease in the flange width due to web rolling in shaping rolling is small, and the flange width in the edging rolling process can be increased, so that narrow-width rough-shaped steel pieces can be Larger sized H-section steel can be efficiently rolled and produced with fewer passes. In addition, the width of the slab can be reduced (and the number of slabs that can be accommodated in the heating furnace can be increased), which improves productivity and lowers costs by increasing heating efficiency. It has a great effect on the production of H-type steel.
第1図はこの発明の粗圧延工程を示す概略図である。
第2図はこの発明の実施例における設備レイアウトを示
す概略図である。
第3図は従来の粗圧延工程を示す概略図である。
10・・・スラブ
11・・・造形圧延により得られたビームブランク11
−1・・・フランジ部 11−2・・・ウェブ1
2・・・V字形割り
出願人 住友金属工業株式会社
第2図
I 2 2 3FIG. 1 is a schematic diagram showing the rough rolling process of the present invention. FIG. 2 is a schematic diagram showing the equipment layout in an embodiment of the present invention. FIG. 3 is a schematic diagram showing a conventional rough rolling process. 10... Slab 11... Beam blank 11 obtained by shape rolling
-1...Flange part 11-2...Web 1
2...V-shaped split applicant Sumitomo Metal Industries, Ltd. Figure 2 I 2 2 3
Claims (1)
鋳造した粗ビームブランクを圧延しウェブを薄くしたビ
ームブランクを成形した後、該ビームブランクのフラン
ジ端面中央に両サイドより下記式にて決定される深さl
のV字形割りを入れ、ついで前記V字形割りを押開き平
らにすることにより、両サイドフランジ幅が粗形鋼片よ
り大きいビームブランクを形成することを特徴とするH
形鋼の粗圧延方法。 l≧0.6×{B/2−(T−5)} l:V字形割りの深さ(mm) B:H形鋼製品のフランジ幅(mm) T:V字形割りを入れるビームブランクのフランジ幅(
mm) S:V字形割りを入れるビームブランクのウェブ厚(m
m)[Claims] In the rough rolling process of H-beam steel, after rolling a slab of material or a continuously cast rough beam blank to form a beam blank with a thinner web, the center of the flange end face of the beam blank is rolled from both sides. Depth l determined by the following formula
A beam blank having a width of both side flanges larger than that of the rough-shaped steel piece is formed by inserting a V-shaped split, and then pushing the V-shaped split open and flattening it.
Rough rolling method for section steel. l ≧0.6 Flange width (
mm) S: Web thickness of the beam blank into which the V-shaped split is inserted (mm)
m)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25571287A JPH0199701A (en) | 1987-10-09 | 1987-10-09 | Method for rough rolling h shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25571287A JPH0199701A (en) | 1987-10-09 | 1987-10-09 | Method for rough rolling h shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0199701A true JPH0199701A (en) | 1989-04-18 |
Family
ID=17282593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25571287A Pending JPH0199701A (en) | 1987-10-09 | 1987-10-09 | Method for rough rolling h shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0199701A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3483294A4 (en) * | 2016-08-29 | 2019-11-27 | Nippon Steel Corporation | Rolled h-beam steel and production method therefor |
CN111050934A (en) * | 2017-11-02 | 2020-04-21 | 日本制铁株式会社 | Method for manufacturing H-shaped steel |
-
1987
- 1987-10-09 JP JP25571287A patent/JPH0199701A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3483294A4 (en) * | 2016-08-29 | 2019-11-27 | Nippon Steel Corporation | Rolled h-beam steel and production method therefor |
CN111050934A (en) * | 2017-11-02 | 2020-04-21 | 日本制铁株式会社 | Method for manufacturing H-shaped steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1151913A (en) | Method of forming beam blank | |
JPH0199701A (en) | Method for rough rolling h shape | |
JPS59133902A (en) | Hot rolling method of h-beam | |
JP2004358541A (en) | Method for manufacturing shaped bloom and caliber roll | |
CN109707987A (en) | New type section joist deformed steel and its production method and process units | |
JP3065877B2 (en) | Rough rolling method for H-shaped steel slab | |
JPH07284801A (en) | Method for rolling wide flange shape | |
JPH01186201A (en) | Method for rough rolling h-shape steel | |
JPH07124602A (en) | Rolling method of rough billet for z-shaped steel short pile | |
JP3339466B2 (en) | H-section steel and its rolling method | |
JP4016733B2 (en) | Rolling method for narrow flange width H-section steel | |
JP2004098102A (en) | Method and equipment for manufacturing flat bar | |
JP2004322105A (en) | Method for manufacturing wide flange shape and grooved roll | |
JPH0155041B2 (en) | ||
JPS606202A (en) | Production of asymmetrical shape steel | |
JPS5918124B2 (en) | Manufacturing method of rough shaped steel billet | |
JPS5893501A (en) | Rolling method for approximately h-shaped steel ingot | |
JPS6157081B2 (en) | ||
JPH02169103A (en) | Method for flange width changeable rolling rough rolled stock for h-shaped steel | |
JPH0675725B2 (en) | Method for manufacturing wide H-section steel | |
JPH02200302A (en) | Method for rolling straight type steel sheet pile and rolling mill train thereof | |
JPS5919764B2 (en) | Manufacturing method of square steel | |
JPS597402A (en) | Production of unequal steel angle | |
JPH0335802A (en) | Production of rough shape billet for shape steel | |
JPS5942563B2 (en) | Method of forming rough shaped steel pieces |