JPH0199018A - Semiconductor laser module with optical isolator - Google Patents

Semiconductor laser module with optical isolator

Info

Publication number
JPH0199018A
JPH0199018A JP25686287A JP25686287A JPH0199018A JP H0199018 A JPH0199018 A JP H0199018A JP 25686287 A JP25686287 A JP 25686287A JP 25686287 A JP25686287 A JP 25686287A JP H0199018 A JPH0199018 A JP H0199018A
Authority
JP
Japan
Prior art keywords
semiconductor laser
axis
optical
light
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25686287A
Other languages
Japanese (ja)
Other versions
JP2526604B2 (en
Inventor
Shinichi Kaneko
進一 金子
Takeshi Nakamura
猛 中村
Junichiro Yamashita
純一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62256862A priority Critical patent/JP2526604B2/en
Publication of JPH0199018A publication Critical patent/JPH0199018A/en
Application granted granted Critical
Publication of JP2526604B2 publication Critical patent/JP2526604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the fluctuation of an optical output of a semiconductor laser by constituting the title module so that among emitted light beams which return in reverse to the semiconductor laser from an optical fiber, the light of a polarized light component being parallel to a place of polarization is condensed to other part than the active region of the semiconductor laser. CONSTITUTION:When a return light 9 from an optical fiber 7 is made incident on a double refraction crystal plate 4, it is divided into an ordinary ray 9a of a polarized light component being perpendicular to the surface containing an optical axis and the normal of the incident surface, and the abnormal ray 9b of a polarized light component being parallel to said surface. Subsequently, the ray 9a is propagated linearly as it is, but the ray 9b is propagated diagonally through a crystal plate 4, shifted to the (x) axis negative direction and the (y) axis positive direction from an origin n the (x)-(y) plane and emitted. Next, the ray 9a and 9b are rotated by 45 deg. by non- reciprocity of a Faraday rotor 6. Thereafter, by an action of a lens 3, the ray 9b is made incident on the inside of the end face of a semiconductor laser 1, and also, other part than the active region 2 of the laser 1. In such a way, the fluctuation of an optical output of the semiconductor laser is reduced, an optical output characteristic and an oscillation characteristic are stabilized, and also, the increase of a noise caused by the return light can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光通信等の光信号伝送に用いられる。光ア
イソレータ付半導体レーザモジュールの。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is used for optical signal transmission such as optical communication. Semiconductor laser module with optical isolator.

光出力安定化に関するものである。This is related to optical output stabilization.

〔従来の技術〕[Conventional technology]

光通信等の光信号伝送系では、光源からの出射光の一部
が伝送路あるいは伝送用光学部品の各接続部等で反射し
て光臨に戻ることがあった。光源として半導体レーザを
用いた場合、この戻シ光は。
2. Description of the Related Art In optical signal transmission systems such as optical communications, a portion of light emitted from a light source may be reflected by a transmission path or each connection of transmission optical components and returned to the light source. When a semiconductor laser is used as a light source, this returned light is

半導体レーザの発振特性の不安定化や、雑音増加を引き
起こす原因となっていた。この戻シ光による半導体レー
ザの緒特性の劣化を防ぐために、−般的に光アイソレー
タが使用される。なお、光ファイバからの戻シ光のうち
、半導体レーザの出射光の偏光方向と垂直な偏光成分は
、「杉江他、昭和59年度信学会部門別全国大会、 A
330J  に報告されているように、雑音特性をあま
シ劣化させ(す ない。
This caused the oscillation characteristics of the semiconductor laser to become unstable and noise to increase. In order to prevent deterioration of the characteristics of a semiconductor laser due to this reflected light, an optical isolator is generally used. Of the light returned from the optical fiber, the polarization component perpendicular to the polarization direction of the light emitted from the semiconductor laser is determined by Sugie et al.
As reported in 330J, noise characteristics are slightly degraded.

第6図は、「実開昭56−495)7号公報」 に示さ
れた。従来の光アイソレータ付半導体レーザモジュール
の構成図であり、(1)は半導体レーザ、C21は半導
体レーザ(1)の活性領域、  (3a)、 (3b)
はレンズ、  (4a)* (4b)は複屈折結晶板、
(5)は同等状の永久磁石、C6)は永久磁石(5)に
よシ磁場を印加されたファラデー回転子、(7)は光フ
ァイバ、(81は半導体レーザ(1)の光出力を検出す
るための受光素子、(9)は光ファイバからの戻シ光で
ある。
FIG. 6 was shown in "Utility Model Application Publication No. 7, 1987-495". It is a block diagram of a conventional semiconductor laser module with an optical isolator, (1) is a semiconductor laser, C21 is an active region of the semiconductor laser (1), (3a), (3b)
is a lens, (4a) * (4b) is a birefringent crystal plate,
(5) is an equivalent permanent magnet, C6) is a Faraday rotator to which a magnetic field is applied by permanent magnet (5), (7) is an optical fiber, and (81 detects the optical output of semiconductor laser (1)) The light receiving element (9) for this purpose is the return light from the optical fiber.

また第7図、第8図、第9図は、従来例の動作説明図で
ある。なおこの発明の、各図面における座標軸X+  
Y、zは2次のように定める。X軸は。
Further, FIGS. 7, 8, and 9 are explanatory diagrams of the operation of the conventional example. Note that the coordinate axis X+ in each drawing of this invention
Y and z are determined as quadratic. The X axis is.

半導体レーザのTEモードの偏光方向と平行、y軸は、
半導体レーザの接合面に垂直で、半導体レーザの基板か
ら活性領域の方向をy軸止方向、Z軸はレンズの光軸と
平行とする。第7図において。
Parallel to the polarization direction of the TE mode of the semiconductor laser, the y-axis is
The y-axis is perpendicular to the junction surface of the semiconductor laser, the direction from the substrate of the semiconductor laser to the active region is the fixed direction of the y-axis, and the Z-axis is parallel to the optical axis of the lens. In FIG.

(41は複屈折結晶板2例えば、ルチルや方解石等の一
軸結晶から、その光学軸が表面と傾くように切シ出し、
平行平板に研摩したものであシ、αaは複屈折結晶板(
41の光学軸、al)は常光線、 aZは異常光線であ
る。
(41 is a birefringent crystal plate 2, cut out from a uniaxial crystal such as rutile or calcite so that its optical axis is inclined to the surface,
It is a parallel plate polished, and αa is a birefringent crystal plate (
41, the optical axis al) is the ordinary ray, and aZ is the extraordinary ray.

第7図のように、1本の光線を複屈折結晶板(41に垂
直に入射させると、光学軸と入射面の法線とを含む平面
に、垂直な偏光面をもった常光線+I1)と。
As shown in Figure 7, when a single ray is made perpendicularly incident on a birefringent crystal plate (41), an ordinary ray +I1 whose polarization plane is perpendicular to the plane containing the optical axis and the normal to the plane of incidence. and.

上記平面と、平行な偏光面をもった異常光線aZとの2
本の光線に分かれる。常光線1)1)は、複屈折結晶板
(4)内を等方向な媒質として伝搬するため、その表面
で屈折することなく、伝搬するが、異常光線12は、ス
ネルの法則には従わず、入射光線に対して斜めに、複屈
折結晶板(41内を伝搬する。ただし、複屈折結晶板(
4)を透過後、常光線+Illと異常光線a’aは、平
行な2本の光線として伝搬する。なお。
2 of the above plane and the extraordinary ray aZ with a parallel polarization plane
Book splits into rays. Ordinary rays 1) 1) propagate within the birefringent crystal plate (4) as an isotropic medium, so they propagate without being refracted at its surface, but extraordinary rays 12 do not follow Snell's law. , propagates inside the birefringent crystal plate (41) obliquely to the incident light beam.However, the birefringent crystal plate (
4), the ordinary ray +Ill and the extraordinary ray a'a propagate as two parallel rays. In addition.

第7図の(alと(1)lのように、複屈折結晶板(4
10光学軸の方向が異なれば、この複屈折結晶板(4)
内を伝搬する異常光線a2の方向も異なる。複屈折結晶
板(4a)の光学軸は、第8図(alの白矢印(LOI
に示すように、光学軸と半導体レーザ光の入射面の法線
とがy −z面内に含まれ、かつ、順方向、即ち、半導
体レーザから光ファイバ方向に伝搬する光の異常光線0
2が、常光線01)のy軸角方向に出射するように向い
ている。また、複屈折結晶板(4b)の光学軸は、第8
図(blの白矢印αaに示すように、光学軸と半導体レ
ーザ光の入射面の法線とを含む平面が。
As shown in (al and (1)l) in Figure 7, the birefringent crystal plate (4
10 If the direction of the optical axis is different, this birefringent crystal plate (4)
The direction of the extraordinary ray a2 propagating inside is also different. The optical axis of the birefringent crystal plate (4a) is indicated by the white arrow (LOI) in FIG.
As shown in FIG.
2 is oriented so as to be emitted in the y-axis angular direction of the ordinary ray 01). Further, the optical axis of the birefringent crystal plate (4b) is the eighth
As shown by the white arrow αa in the figure (bl), there is a plane that includes the optical axis and the normal to the plane of incidence of the semiconductor laser light.

y −z平面から、ファラデー回転子によって、半導体
レーザ光が偏光面の回転を受けた方向と同じ方向に、4
5度回転した平面と平行であシ、かつ。
From the y-z plane, the polarization plane of the semiconductor laser beam is rotated by the Faraday rotator in the same direction.
parallel to the plane rotated by 5 degrees, and

順方向に伝搬する光の異常光線0zが、常光線+Ill
のy軸止方向に出射するように向いている。第9図(a
tは、第6図において、順方向に伝搬する半導体レーザ
光の、半導体レーザ(1)と複屈折結晶板(4a)間E
、複屈折結晶板(4a)とファラデー回転子(61間F
、ファラデー回転子(6)と複屈折結晶板(4b)間G
The extraordinary ray 0z of light propagating in the forward direction is the ordinary ray +Ill
It is oriented to emit light in the direction of the y-axis. Figure 9 (a
In FIG. 6, t is the distance E between the semiconductor laser (1) and the birefringent crystal plate (4a) of the semiconductor laser light propagating in the forward direction.
, birefringent crystal plate (4a) and Faraday rotator (61 F
, G between the Faraday rotator (6) and the birefringent crystal plate (4b)
.

複屈折結晶板(4b)と元ファイバ(71間Hの各点に
おける。その位置とその偏光方向を示す。
At each point H between the birefringent crystal plate (4b) and the original fiber (71), its position and polarization direction are shown.

また第9図(blは、第6図における。逆方向、即ち、
光ファイバから半導体レーザへ向う方向に伝搬する光フ
ァイバからの戻シ光の、  E、  F、 G。
In addition, FIG. 9 (bl is in FIG. 6. In the opposite direction, that is,
E, F, G of the return light from the optical fiber propagating in the direction from the optical fiber to the semiconductor laser.

H各点における1位置とその偏光方向を示す。半導体レ
ーザ光は、半導体レーザの偏光特性によつて、第9図(
al Eに示すように、はとんどX軸と平行な方向に偏
光している。このX軸方向に偏光した光は、複屈折結晶
板(4a)の光学軸a1が、第8図(alのように、y
−z平面内に含まわるために常光線となって、第9図(
al Fのように直線的に伝搬し。
H shows one position at each point and its polarization direction. Depending on the polarization characteristics of the semiconductor laser, the semiconductor laser light is as shown in Fig. 9 (
As shown in alE, the light is mostly polarized in a direction parallel to the X axis. This light polarized in the X-axis direction is such that the optical axis a1 of the birefringent crystal plate (4a) is
Since it is included in the -z plane, it becomes an ordinary ray, and as shown in Fig. 9 (
propagates linearly like al F.

ファラデー回転子(6)に入射する。このファラデー回
転子(61によって、偏光面は第9図(a)Gに示すよ
うに、45°回転する。
The light is incident on the Faraday rotator (6). This Faraday rotator (61) rotates the plane of polarization by 45° as shown in FIG. 9(a)G.

また複屈折結晶板(4b)も、第8図fblに示すよう
に、ファラデー回転子(6)による偏光面の回転方向と
同方向に45°回転しているため、第9図falHに示
すように常光線として複屈折結晶板(4b)を伝搬し、
光ファイバ(7)に結合する。ところで、光ファイバ(
71からの戻り光は、第9図fbl Hに示すように偏
光特性を持っていない。この光ファイバ(7)からの戻
シ元が、複屈折結晶板(4b)に入射すると、光学軸と
入射面の法線を含む平面に対して垂直な偏光成分をもつ
常光線(9a) (!: *上記平面に対して平行な偏
光成分をもつ異常光線(9b)とに分かれる。
The birefringent crystal plate (4b) is also rotated by 45° in the same direction as the direction of rotation of the plane of polarization by the Faraday rotator (6), as shown in FIG. 8fbl, so as shown in FIG. 9falH. propagates through the birefringent crystal plate (4b) as an ordinary ray,
Coupled to optical fiber (7). By the way, optical fiber (
The return light from 71 does not have polarization characteristics as shown in FIG. 9 fblH. When the return beam from this optical fiber (7) enters the birefringent crystal plate (4b), an ordinary ray (9a) with a polarization component perpendicular to the plane containing the optical axis and the normal to the plane of incidence ( !: *Divided into an extraordinary ray (9b) with a polarization component parallel to the above plane.

そこで常光線(9c)は、そのまま直線的に伝搬するが
、異常光線(9b)は、複屈折結晶板(4b)内を斜め
に伝搬し、第9図(b)Gに示すように、x−y平面内
で原点からX軸止方向、y軸角方向にずれた位置に出射
する。次に常光線(9a)と異常光線(9b)の偏光面
は、ファラデー回転子+61の非相反性によって、順方
向の半導体レーザ光の偏光面が回転した方向と同じ方向
に、45°回転する。なお、異常光線(9b)は、第9
図(bl Fに示すように、レンズ(3a)及びレンズ
(3b)の作用を受けて*X  Y平面の原点に対して
対称な位置、即ち、x−y平面の原点からX軸角方向、
y軸止方向にずれた位置になって、複屈折結晶板(4a
)に入射する。そこで複屈折結晶板(4b)での常光線
(9a)と異常光線(9b)は。
Therefore, the ordinary ray (9c) propagates straight as it is, but the extraordinary ray (9b) propagates obliquely within the birefringent crystal plate (4b), and as shown in FIG. 9(b)G, x - Emit light to a position shifted from the origin in the X-axis stopping direction and the y-axis angular direction within the y-plane. Next, the planes of polarization of the ordinary ray (9a) and the extraordinary ray (9b) are rotated by 45° in the same direction as the direction in which the plane of polarization of the forward semiconductor laser beam is rotated due to the non-reciprocity of the Faraday rotator +61. . Note that the extraordinary ray (9b) is the ninth
As shown in figure (bl F), under the action of lens (3a) and lens (3b) *
The birefringent crystal plate (4a
). Therefore, the ordinary ray (9a) and the extraordinary ray (9b) at the birefringent crystal plate (4b) are as follows.

ファラデー回転子(6)によって偏光面の回転を受け。The plane of polarization is rotated by the Faraday rotator (6).

複屈折結晶板(4a)では逆に、常光線(9a)が異常
光線に、また、異常光線(9b)が常光線となる。複屈
折結晶板(4b)での常光線(9a)は、複屈折結晶板
(4a)では、異常光線となるために、複屈折結晶板(
4a)内を斜めに伝搬し、第9図(bl Eに示すよう
に。
Conversely, in the birefringent crystal plate (4a), the ordinary ray (9a) becomes the extraordinary ray, and the extraordinary ray (9b) becomes the ordinary ray. The ordinary ray (9a) on the birefringent crystal plate (4b) becomes an extraordinary ray on the birefringent crystal plate (4a).
4a) propagates obliquely, as shown in Figure 9 (bl E).

x−y平面内で原点からy軸止方向にずれた位置に出射
する。また、複屈折結晶板(4b)での異常光線(9b
)は、複屈折結晶板(4a)では常光線となるために、
そのまま直線的に伝搬する。第9図ら)Eがられかるよ
うに2元ファイバからの戻シ光は、すべてy軸の正方向
にずれて戻ってくる。
The light is emitted at a position shifted from the origin in the y-axis stop direction within the x-y plane. In addition, the extraordinary ray (9b) at the birefringent crystal plate (4b)
) becomes an ordinary ray in the birefringent crystal plate (4a), so
It propagates in a straight line. As shown in Fig. 9), all of the return light from the binary fiber returns with a shift in the positive direction of the y-axis.

第6図に示す光アイソレータ付半導体レーザモジュール
において、第8図に示したような光学軸をもつように、
複屈折結晶板(4a)、 (4b)を配置した場合、光
ファイバからの戻り光(9)は、半導体レーザ(1)の
活性領域(21には戻らないが、第6図に点線で示した
ように1元ファイバからの戻シ光(9)の一部は、受光
素子(81に入射する。一般に、半導体レーザモジュー
ルでは、第10図に示すように。
In the semiconductor laser module with an optical isolator shown in FIG. 6, the optical axis is as shown in FIG.
When the birefringent crystal plates (4a) and (4b) are arranged, the return light (9) from the optical fiber does not return to the active region (21) of the semiconductor laser (1), as shown by the dotted line in FIG. As shown in FIG. 10, a part of the return light (9) from the single fiber enters the light receiving element (81).Generally, in a semiconductor laser module, as shown in FIG.

受光素子(81で受光した半導体レーザ(1)の光出力
を。
The light output of the semiconductor laser (1) is received by the light receiving element (81).

電父信号に変換し、これを半導体レーザの電源+13に
帰還させることによって、半導体レーザ(1)の光出力
を一定にしている。このため、光ファイバからの戻り光
(9)が受光素子+81に戻シ、シかも、伝送路、ある
いは伝送用光部品の接続部の状態などによって、その戻
シ光(9)の強さが変動した場合、半導体レーザ(1)
の光出力も変動することになる。
The optical output of the semiconductor laser (1) is kept constant by converting it into an electrostatic signal and feeding it back to the power supply +13 of the semiconductor laser. Therefore, the return light (9) from the optical fiber may be returned to the light receiving element +81, and the intensity of the return light (9) may vary depending on the state of the transmission path or the connection of the transmission optical components. If it fluctuates, the semiconductor laser (1)
The light output will also vary.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような光アイソレータ付半導体レーザモジュール
では、光ファイバからの戻シ光が、半導体レーザの光出
力を検出する受光素子に入射する。
In the semiconductor laser module with an optical isolator as described above, the returned light from the optical fiber is incident on the light receiving element that detects the optical output of the semiconductor laser.

このため、伝送路、あるいは伝送用光部品の接続部の状
態などによる元ファイバからの戻り光の変動で、受光素
子が検出する光出力は変化し、この変化を打ち消すよう
に半導体レーザの電源に帰還がかかるので、半導体レー
ザの光出力が変動するという問題点があった。
Therefore, due to fluctuations in the return light from the original fiber due to the state of the transmission line or the connection of the transmission optical components, the optical output detected by the light receiving element changes, and the power supply of the semiconductor laser is adjusted to cancel this change. Since feedback is required, there is a problem in that the optical output of the semiconductor laser fluctuates.

この発明は、上記のような問題点を解消するためになさ
ねたもので、i:ファイノくからの戻り光が。
This invention was made in order to solve the above-mentioned problems.

受光素子に入射することによる。半導体レーザの光出力
変動を防ぐことのできる。光アイソレータ付半導体レー
ザモジュールを得ることを目的とする。
By entering the light receiving element. Fluctuations in the optical output of the semiconductor laser can be prevented. The purpose is to obtain a semiconductor laser module with an optical isolator.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光アイソレータ付半導体レーザモジュー
ルは1元ファイバからの戻シ光が、半導体レーザであっ
て、かつ、その活性領域以外の場所に入射するように構
成したものである。
A semiconductor laser module with an optical isolator according to the present invention is configured such that the return light from a single fiber is incident on a location other than the active region of the semiconductor laser.

〔作用〕[Effect]

この発明における光アイソレータ付半導体レーザモジュ
ールは、複屈折結晶板を特定の配置とすることによって
、光ファイバからの戻シ光が、半導体レーザであって、
かつ、その活性領域以外の場所に入射し、これが半導体
レーザ内で反射・散乱されることによって受光素子に光
ファイノくからの戻り光がほとんど入射しないようにな
る。
In the semiconductor laser module with an optical isolator according to the present invention, by arranging the birefringent crystal plate in a specific manner, the return light from the optical fiber is transmitted to the semiconductor laser, and
In addition, the light enters a location other than the active region and is reflected and scattered within the semiconductor laser, so that almost no return light from the optical fiber enters the light receiving element.

〔発明の実施例〕[Embodiments of the invention]

第1図は、この発明の一実施例を示す構成図である。図
中(1)は一方の端面に高反射率の金属または誘電体の
薄膜を有する分布帰還型半導体レーザ。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, (1) is a distributed feedback semiconductor laser that has a highly reflective metal or dielectric thin film on one end face.

(2)は半導体レーザ(1)の活性領域、(31はレン
ズ、(41は正結晶よシなる複屈折結晶板、(5)は永
久磁石。
(2) is the active region of the semiconductor laser (1), (31 is a lens, (41 is a birefringent crystal plate such as a positive crystal, and (5) is a permanent magnet.

(6)は永久磁石(5)によって磁場を印加されたファ
ラデー回転子、(7)は元ファイバ、(81は半導体レ
ーザ(1)の光出力を検出する受光素子、(9)は光フ
ァイ、<(7)からの戻シ光である。なお、複屈折結晶
板(41の光学軸は、第2図の白矢印aIIIに示すよ
うに、光学軸と半導体レーザ光の入射面の法線とを含む
平面が、y−z平面からファラデー回転子(61によっ
て。
(6) is a Faraday rotator to which a magnetic field is applied by the permanent magnet (5), (7) is the original fiber, (81 is the light receiving element that detects the optical output of the semiconductor laser (1), (9) is the optical fiber, <(7).The optical axis of the birefringent crystal plate (41) is aligned with the normal line of the optical axis and the plane of incidence of the semiconductor laser beam, as shown by the white arrow aIII in FIG. from the y-z plane to the Faraday rotator (61).

半導体レーザ光が偏光面の回転を受けた方向と同じ方向
に、45度回転した平面と平行であシ、かつ、順方向に
伝搬する光の異常光線が、常光線のy軸角方向側に出射
するように向いている。
The extraordinary ray of light that is parallel to the plane rotated by 45 degrees in the same direction as the direction in which the semiconductor laser light undergoes rotation of the polarization plane and propagates in the forward direction is on the y-axis angular side of the ordinary ray. It is oriented to emit light.

第3図を用いて、上記のように構成された元アイソレー
タ付半導体レーザモジュールの動作について説明する。
The operation of the original isolator-equipped semiconductor laser module configured as described above will be described with reference to FIG.

第3図(atは、第1図において順方向に伝搬する半導
体レーザ光の、半導体レーザ(1)とレンズ(31間A
、レンズ+31とファラデー回転子(6)間B、ファラ
デー回転子(6)と複屈折結晶板141間C2複屈折結
晶板(41と光ファイバ(71間りの各点罠おける。そ
の位置と偏光方向を示し、また第3図(b)は。
FIG. 3 (at is A between the semiconductor laser (1) and the lens (31) of the semiconductor laser light propagating in the forward direction in FIG.
, B between lens +31 and Faraday rotator (6), C2 between Faraday rotator (6) and birefringent crystal plate 141, trap each point between birefringent crystal plate (41) and optical fiber (71).The position and polarization. The direction is also shown in FIG. 3(b).

第1図において逆方向に伝搬する元ファイバ(7)から
の戻り光(9)のA、  B、  C,D各点における
。その位置と偏光方向を示す。第3図(alA、Hに示
すように、半導体レーザ(1)1の偏光特性によって、
その偏光方向はほとんどX軸と平行な方向を向いている
。第3図fat Cに示すように、ファラデー回転子(
6)によって偏光方向が45度回転するが、第2図に示
すように、複屈折結晶板(4)の入射面の法線と光学軸
を含む平面は、この45度回転した偏光方向と垂直なた
めに、第3図(al Dに示すように。
In Fig. 1, the return light (9) from the source fiber (7) propagating in the opposite direction is at each point A, B, C, and D. Its position and polarization direction are shown. As shown in FIG. 3 (alA, H), depending on the polarization characteristics of the semiconductor laser (1) 1,
Its polarization direction is almost parallel to the X axis. As shown in Figure 3 fat C, the Faraday rotator (
6), the polarization direction is rotated by 45 degrees, but as shown in Figure 2, the plane containing the optical axis and the normal to the plane of incidence of the birefringent crystal plate (4) is perpendicular to the polarization direction rotated by 45 degrees. Therefore, as shown in Figure 3 (al D).

常光線として複屈折結晶板(4)内を伝搬し、光ファイ
バ(7)に結合する。一方、光ファイバ(7)からの戻
勺″/l+91は、第3図(bl Dに示すように偏光
特性を持っていない。この光ファイバ(7)からの戻シ
光(9)が複屈折結晶板(41に入射すると、光学軸と
入射面の法線とを含む平面に対して垂直な偏光成分〔常
光線(9a)と、上記平面に対して平行な偏光成分〔異
常光線(9b)とに分かれる。そこで常光線(9a)は
It propagates in the birefringent crystal plate (4) as an ordinary ray and is coupled to the optical fiber (7). On the other hand, the return light (9) from the optical fiber (7) does not have polarization characteristics as shown in Figure 3 (bl D). When incident on the crystal plate (41), a polarized light component perpendicular to the plane containing the optical axis and the normal to the plane of incidence [ordinary ray (9a)] and a polarized light component parallel to the plane [extraordinary ray (9b)] The ordinary ray (9a) is divided into .

そのまま直線的に伝搬するが、第3図(blcに示すよ
うに、異常光線(9b)は、複屈折結晶板(4)内を斜
めに伝搬し、x−y平面内で、原点からX軸角方向、y
軸止方向にずれて出射する。次に常光線(9c)と異常
光線(9b)は、ファラデー回転子(6)の非相反性に
よって、第3図1b)Bに示すように、順方向の半導体
レーザ光の偏光が回転したのと同じ方向に、45度回転
する。そして第3図1bl Aに示すように、レンズ(
31の作用によって、x−y平面の原点からずれた異常
光線(9b)は、原点に対して対称な位置、すなわち、
X軸止方向、y軸弁方向にずれて、半導体レーザ(1)
に入射する。なお、常光線(9a)は、半導体レーザ(
1)の活性領域(2)に入射するが、常光線(9a)の
偏光方向が、半導体レーザ光の偏光方向に垂直であるた
めに、半導体レーザ口)の雑音を増加させない。上記の
ように複屈折結晶板(41を配置することによって、光
ファイバからの戻り光(9)のうち、半導体レーザ(1
)の出射光の偏光面に平行な偏光成分の光を、半導体レ
ーザ(1)の端面内で、かつ、半導体レーザ(1)の活
性領域(21以外の部分に入射させることができる。半
導体レーザ(1)に入射した光ファイバ(7)からの戻
り光(9)は、半導体レーザ(1)の高反射率の薄膜を
有する端面において反射され、はとんど受光素子(81
には入射しない。このため、半導体レーザ(1)の光出
力が安定する。
However, as shown in Figure 3 (blc), the extraordinary ray (9b) propagates obliquely within the birefringent crystal plate (4) and travels from the origin to the X-axis within the x-y plane. angular direction, y
The light is emitted with a deviation in the direction of the shaft stop. Next, the ordinary ray (9c) and the extraordinary ray (9b) are generated by rotating the polarization of the semiconductor laser light in the forward direction, as shown in Figure 3 (1b) B, due to the non-reciprocity of the Faraday rotator (6). Rotate 45 degrees in the same direction. Then, as shown in Figure 3 1bl A, the lens (
31, the extraordinary ray (9b) shifted from the origin of the x-y plane is moved to a position symmetrical to the origin, that is,
Semiconductor laser (1) shifted in the X-axis stop direction and the Y-axis valve direction.
incident on . Note that the ordinary ray (9a) is a semiconductor laser (
However, since the polarization direction of the ordinary ray (9a) is perpendicular to the polarization direction of the semiconductor laser beam, it does not increase noise at the semiconductor laser aperture. By arranging the birefringent crystal plate (41) as described above, out of the return light (9) from the optical fiber, the semiconductor laser (1
) can be made to enter the active region (21) of the semiconductor laser (1) within the end face of the semiconductor laser (1) and into the active region (21) of the semiconductor laser (1). The return light (9) from the optical fiber (7) that has entered the optical fiber (1) is reflected at the end face of the semiconductor laser (1) having a thin film with high reflectance, and is almost always sent to the light receiving element (81).
is not incident on . Therefore, the optical output of the semiconductor laser (1) is stabilized.

なお、上記実施例では、複屈折結晶板(41の光学軸は
、第2図に示すように、半導体レーザ光が常光線として
伝搬するように向いているが、複屈折結晶板(41の光
学軸が、第4図に示すように、光学軸と半導体レーザ光
の入射面の法線とを含む平面が、y−z平面からファラ
デー回転子(6)によって。
In the above embodiment, the optical axis of the birefringent crystal plate (41) is oriented so that the semiconductor laser beam propagates as an ordinary ray, as shown in FIG. As shown in FIG. 4, the plane including the optical axis and the normal to the plane of incidence of the semiconductor laser light is from the yz plane by the Faraday rotator (6).

半導体レーザ光が偏光面の回転を受けた方向と逆の方向
に、45度回転した平面と平行であシ、かつ、順方向に
伝搬する光の異常光線が、常光線のy軸止方向に出射す
るように向いていて、半導体レーザ光が異常光として伝
搬してもよく、この場合においても、光ファイバ(7)
からの戻り光(9)のうち、半導体レーザ(1)の出射
光の偏光面に平行な偏光成分の元が、半導体レーザ(1
)の端面内で、かつ。
The extraordinary ray of light that is parallel to the plane rotated by 45 degrees and propagates in the forward direction in the opposite direction to the direction in which the semiconductor laser beam undergoes rotation of the polarization plane is in the y-axis fixed direction of the ordinary ray. The semiconductor laser light may propagate as extraordinary light, and in this case, the optical fiber (7)
Of the return light (9) from the semiconductor laser (1), the origin of the polarization component parallel to the polarization plane of the emitted light from the semiconductor laser (1) is
) within the end face of and.

半導体レーザfi+の活性領域(2)以外の部分に入射
する。
The light is incident on a portion other than the active region (2) of the semiconductor laser fi+.

また、第5図に示すように、ファラデー回転子(61と
光ファイバ(7)の間だけではなく、半導体レーザ(1
)とファラデー回転子(6)の間に、複屈折結晶板(4
a)を入れてもよく、半導体レーザ(1)とファラデー
回転子(6)の間の複屈折結晶板(4a)によって、光
ファイバ(7)からの戻り光(91のうち、半導体レー
ザ[1)の出射光の偏光方向に垂直な偏光成分も、半導
体レーザ(1)の端面内で、かつ、半導体レーザ(1)
の活性領域(21以外の部分に入射させることができる
、さらに、上記実施例では、複屈折結晶板(41として
、正結晶を用いた場合について説明したが、複屈折結晶
板(41として負結晶を用いてもよく、負結晶を用いた
場合の光学軸の方向を、正結晶を用いた場合の光学軸の
方向と、入射面の法線に対して対称とすれば、上記実施
例と全く同じ作用及び効果が得られる。
In addition, as shown in FIG. 5, not only the Faraday rotator (61) and the optical fiber (7) but also the
) and the Faraday rotator (6), a birefringent crystal plate (4
a), the birefringent crystal plate (4a) between the semiconductor laser (1) and the Faraday rotator (6) allows the semiconductor laser [1 ) is also within the end facet of the semiconductor laser (1), and the polarization component perpendicular to the polarization direction of the emitted light of the semiconductor laser (1)
In addition, in the above embodiments, a case where a positive crystal is used as the birefringent crystal plate (41) is used, but a negative crystal is used as the birefringent crystal plate (41). may also be used, and if the direction of the optical axis when using a negative crystal is symmetrical to the direction of the optical axis when using a positive crystal and the normal to the plane of incidence, it is completely different from the above example. The same action and effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、複屈折結晶板を、光
ファイバからの戻シ光が、半導体レーザであって、かつ
、その活性領域以外の場所に結合するように配置したの
で、この戻り光が、受光素子に結合することによる半導
体レーザの光出力変動をなくシ、半導体レーザの光出力
特性・発振特性を安定化し、戻シ光による雑音増加を抑
える効果がある。
As described above, according to the present invention, the birefringent crystal plate is arranged so that the return light from the optical fiber is coupled to a location other than the active region of the semiconductor laser. This has the effect of eliminating fluctuations in the optical output of the semiconductor laser due to the return light coupling to the light receiving element, stabilizing the optical output characteristics and oscillation characteristics of the semiconductor laser, and suppressing noise increase due to the return light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による光アイソレータ付
半導体レーザモジュールを示す構成図。 第2図及び第3図は、この発明の詳細な説明する説明図
、第4図及び第5図は、この発明の他の実施例を示す説
明図及び構成図、第6図は、従来の光アイソレータ付半
導体レーザモジュールを示す構成図、第7図・第8図及
び第9図は、従来例の動作を説明する説明図、第10図
は、受光素子による出力モニタ部をそなえた従来の半導
体レーザモジュールの構成図である。 図中、(1)は半導体レーザ、(3)はレンズ、(4)
は複屈折結晶板、(5)は永久磁石、(6)はファラデ
ー回転子、(7)は光ファイバ、(8)は受光素子であ
る。 なお9図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a configuration diagram showing a semiconductor laser module with an optical isolator according to an embodiment of the present invention. FIGS. 2 and 3 are explanatory diagrams explaining the present invention in detail, FIGS. 4 and 5 are explanatory diagrams and configuration diagrams showing other embodiments of the present invention, and FIG. 6 is a conventional A configuration diagram showing a semiconductor laser module with an optical isolator, FIGS. 7, 8, and 9 are explanatory diagrams explaining the operation of a conventional example, and FIG. FIG. 2 is a configuration diagram of a semiconductor laser module. In the figure, (1) is a semiconductor laser, (3) is a lens, and (4)
is a birefringent crystal plate, (5) is a permanent magnet, (6) is a Faraday rotator, (7) is an optical fiber, and (8) is a light receiving element. In addition, in FIG. 9, the same reference numerals indicate the same or equivalent parts.

Claims (5)

【特許請求の範囲】[Claims] (1)半導体レーザと、上記半導体レーザの光出力を検
出する受光素子と、レンズと、少なくとも1つの正結晶
又は負結晶よりなる複屈折結晶板と、入射光の偏光面を
45度回転させて出射するファラデー回転子と、前記フ
ァラデー回転子を磁化させる永久磁石と、光ファイバと
からなる半導体レーザモジュールにおいて、上記光ファ
イバから半導体レーザへ逆に戻る上記半導体レーザの出
射光のうち、上記半導体レーザの出射光の偏光面に平行
な偏光成分の光が、上記半導体レーザの端面内ではある
が、上記半導体レーザの活性領域以外の部分に集光する
ように構成したことを特徴とする光アイソレータ付半導
体レーザモジュール。
(1) A semiconductor laser, a light receiving element that detects the optical output of the semiconductor laser, a lens, a birefringent crystal plate made of at least one positive crystal or a negative crystal, and a device that rotates the polarization plane of incident light by 45 degrees. In a semiconductor laser module comprising a Faraday rotator that emits light, a permanent magnet that magnetizes the Faraday rotator, and an optical fiber, among the emitted light of the semiconductor laser that returns from the optical fiber to the semiconductor laser, the semiconductor laser with an optical isolator, characterized in that the light having a polarization component parallel to the polarization plane of the emitted light is condensed on a portion other than the active region of the semiconductor laser, although within the end face of the semiconductor laser. Semiconductor laser module.
(2)上記半導体レーザを、分布帰還型半導体レーザと
したことを特徴とする特許請求の範囲第1項記載の光ア
イソレータ付半導体レーザモジュール。
(2) The semiconductor laser module with an optical isolator according to claim 1, wherein the semiconductor laser is a distributed feedback semiconductor laser.
(3)上記半導体レーザの、光ファイバ側と反対側の端
面が、金属または誘電体の高反射率の薄膜を有すること
を特徴とする特許請求の範囲第1項及び第2項記載の光
アイソレータ付半導体レーザモジュール。
(3) The optical isolator according to claims 1 and 2, wherein the end face of the semiconductor laser on the side opposite to the optical fiber side has a thin film of metal or dielectric with high reflectance. Semiconductor laser module with.
(4)上記半導体レーザと上記光ファイバの間に、1つ
のレンズと、上記ファラデー回転子と、複屈折結晶を材
料とする1枚の平行平板をこの順序に配置し、上記複屈
折結晶板の光学軸と入射面の法線とを含む平面と、上記
ファラデー回転子を透過した上記半導体レーザの出射光
の偏光面とが、垂直であり、 かつ、上記半導体レーザの端面の活性領域の中心を原点
、上記レンズの光軸と平行方向をZ軸、上記半導体レー
ザの接合面に垂直で上記半導体レーザの基板から活性領
域への方向をy軸方向、y−z平面に垂直な軸をx軸と
したとき、 上記複屈折結晶板の光学軸の延長線と、x−y平面の交
点のy座標が、複屈折結晶板として正結晶を用いた場合
には正、負結晶を用いた場合には負となることを特徴と
する特許請求の範囲第1項、第2項及び第3項記載の光
アイソレータ付半導体レーザモジュール。
(4) A lens, a Faraday rotator, and a parallel plate made of birefringent crystal are arranged in this order between the semiconductor laser and the optical fiber, and the birefringent crystal plate is A plane including the optical axis and the normal to the incident surface is perpendicular to the polarization plane of the output light of the semiconductor laser that has passed through the Faraday rotator, and the center of the active region of the end face of the semiconductor laser is The origin, the direction parallel to the optical axis of the lens is the Z axis, the direction perpendicular to the junction surface of the semiconductor laser and from the substrate to the active region of the semiconductor laser is the y axis, and the axis perpendicular to the yz plane is the x axis. When, the y-coordinate of the intersection of the extension line of the optical axis of the birefringent crystal plate and the x-y plane is positive when a positive crystal is used as the birefringent crystal plate, and positive when a negative crystal is used as the birefringent crystal plate. A semiconductor laser module with an optical isolator according to claims 1, 2, and 3, wherein: is negative.
(5)上記半導体レーザと上記光ファイバの間に、1つ
のレンズと、上記ファラデー回転子と、複屈折結晶を材
料とする1枚の平行平板をこの順序に配置し、 上記複屈折結晶板の光学軸と入射面の法線とを含む平面
と、上記ファラデー回転子を透過した上記半導体レーザ
の出射光の偏光面とが平行であり、かつ、上記半導体レ
ーザの端面の活性領域の中心を原点、上記レンズの光軸
と平行方面をZ軸、上記半導体レーザの接合面に垂直で
上記半導体レーザの基板から活性領域への方向をy軸正
方向、y−z平面に垂直な軸をx軸としたとき、 上記複屈折結晶板の光学軸の延長線と、x−y平面の交
点のy座標が、複屈折結晶板として正結晶を用いた場合
には負、負結晶を用いた場合には正となることを特徴と
する特許請求の範囲第1項、第2項及び第3項記載の光
アイソレータ付半導体レーザモジュール。
(5) A lens, a Faraday rotator, and a parallel plate made of birefringent crystal are arranged in this order between the semiconductor laser and the optical fiber; A plane including the optical axis and the normal to the incident surface is parallel to the polarization plane of the output light of the semiconductor laser that has passed through the Faraday rotator, and the origin is the center of the active region of the end face of the semiconductor laser. , the direction parallel to the optical axis of the lens is the Z-axis, the direction perpendicular to the junction surface of the semiconductor laser and from the substrate to the active region of the semiconductor laser is the positive y-axis, and the axis perpendicular to the y-z plane is the x-axis. When, the y-coordinate of the intersection of the extension line of the optical axis of the birefringent crystal plate and the x-y plane is negative when a positive crystal is used as the birefringent crystal plate, and negative when a negative crystal is used as the birefringent crystal plate. A semiconductor laser module with an optical isolator according to claims 1, 2, and 3, wherein: is positive.
JP62256862A 1987-10-12 1987-10-12 Semiconductor laser module with optical isolator Expired - Fee Related JP2526604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62256862A JP2526604B2 (en) 1987-10-12 1987-10-12 Semiconductor laser module with optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62256862A JP2526604B2 (en) 1987-10-12 1987-10-12 Semiconductor laser module with optical isolator

Publications (2)

Publication Number Publication Date
JPH0199018A true JPH0199018A (en) 1989-04-17
JP2526604B2 JP2526604B2 (en) 1996-08-21

Family

ID=17298447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62256862A Expired - Fee Related JP2526604B2 (en) 1987-10-12 1987-10-12 Semiconductor laser module with optical isolator

Country Status (1)

Country Link
JP (1) JP2526604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978535A (en) * 1997-03-17 1999-11-02 Matsushita Electric Industrial Co., Ltd. Semiconductor laser module, optical fiber amplifier and optical transfer system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649517U (en) * 1979-09-25 1981-05-01
JPS6263915A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Semiconductor laser device with optical isolator
JPS62147423A (en) * 1985-12-20 1987-07-01 Copal Electron Co Ltd Optical isolator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649517U (en) * 1979-09-25 1981-05-01
JPS6263915A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Semiconductor laser device with optical isolator
JPS62147423A (en) * 1985-12-20 1987-07-01 Copal Electron Co Ltd Optical isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978535A (en) * 1997-03-17 1999-11-02 Matsushita Electric Industrial Co., Ltd. Semiconductor laser module, optical fiber amplifier and optical transfer system

Also Published As

Publication number Publication date
JP2526604B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JPS6049297B2 (en) optical isolator
US4770505A (en) Optical isolator
US5377040A (en) Polarization independent optical device
JPH02136819A (en) Method for adjusting rotating directional position of optical isolator in optical isolator incorporating type semiconductor laser module
JPH0638139B2 (en) Optical isolator
JPH0199018A (en) Semiconductor laser module with optical isolator
JPS597312A (en) Optical isolator
JPH0246419A (en) Optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JP2000180789A (en) Optical isolator
GB2143337A (en) Optical isolator
JPS61102621A (en) Optical isolator
JP2686453B2 (en) Optical isolator
JPH06273698A (en) Multicore optical isolator
JPH0634916A (en) Optical isolator
JPH0717057Y2 (en) Optical isolator
JP2794132B2 (en) Optical isolator
JPS61193118A (en) Laser module with optical isolator
JP2831158B2 (en) Optical isolator
JPS5844831A (en) Optical fiber transmission system
JPS62192718A (en) Light isolator
JPS61156220A (en) Optical isolator
JPH0293409A (en) Optical isolator
JPS63284518A (en) Optical isolator
JPS63293519A (en) Optical isolator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees