JPH0198976A - Evaluating method for insulation performance of insulating film - Google Patents

Evaluating method for insulation performance of insulating film

Info

Publication number
JPH0198976A
JPH0198976A JP25697887A JP25697887A JPH0198976A JP H0198976 A JPH0198976 A JP H0198976A JP 25697887 A JP25697887 A JP 25697887A JP 25697887 A JP25697887 A JP 25697887A JP H0198976 A JPH0198976 A JP H0198976A
Authority
JP
Japan
Prior art keywords
breakdown
current
time
insulating film
charge quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25697887A
Other languages
Japanese (ja)
Inventor
Hirotaka Muto
浩隆 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25697887A priority Critical patent/JPH0198976A/en
Publication of JPH0198976A publication Critical patent/JPH0198976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To obtain a breakdown charge quantity distribution of the insulation breakdown probability, extending over a wide range, and also, in a short time by increasing a current which is allowed to flow to an insulating film from a current source, as time elapses. CONSTITUTION:By using a current source 4 which can output power having a time characteristic which has been set in advance, a current is set so as to increase gradually to 1X10<-1> amperes in 100sec from 1X10<-8> amperes. Subsequently, the current is allowed to flow to each insulating film 1, and by using the charge quantity which has been allowed to flow before it is brought to dielectric breakdown, as an index, an insulating property of the insulating film 1 is decided. For instance, when the current at the time of starting the application is 1X10<-8> amperes, and the minimum time when the breakdown can be detected is 0.01sec, the minimum breakdown charge quantity which can be detected becomes about 1X10<-10> coulombs. On the other hand, the current at the time of ending the application is 1X10<-1> amperes, therefore, the maximum charge quantity which can be allowed to flow within the measurement time becomes about one coulomb. In such a way, the breakdown charge quantity which can be detected becomes a range of about 10 digits, and a wide breakdown charge quantity distribution extending from an accidental breakdown mode to an intrinsic breakdown mode is obtained surely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、メタルオキサイドセミコンダクタ(MOS
)のゲート酸化膜などの絶縁膜の電気絶縁性能を評価す
る絶縁膜の絶縁性能評価方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to metal oxide semiconductors (MOS).
) relates to a method for evaluating the electrical insulation performance of an insulation film such as a gate oxide film.

〔従来の技術〕[Conventional technology]

第2図は従来の絶縁膜の絶縁性能評価方法を実現する絶
縁性評価装置を示す回路図であシ、図において、1は評
価対象である複数の絶縁膜、2はこれらの絶縁膜1に順
次電流を加えるように切シ換えるスイッチスキャナー、
3は電圧計、4は上記電流を供給する電流源、5はスイ
ッチスキャナー2の制御装置である。
Figure 2 is a circuit diagram showing an insulation evaluation device that implements the conventional insulation performance evaluation method for insulation films. Switch scanner that switches to apply current sequentially,
3 is a voltmeter, 4 is a current source that supplies the above-mentioned current, and 5 is a control device for the switch scanner 2.

次に動作について説明する。Next, the operation will be explained.

上記絶縁性評価装置は、例えば電子通信学会技術研究報
告、58Ds6−11(1986年)に示された定電流
タイムデペンデント デイエレクトリック ブレークダ
ウy (Time DependentDielect
ric Breakdown )法によって二酸化シリ
コン膜の絶縁性を評価する。
The above-mentioned insulation evaluation device is based on, for example, the constant current time dependent dielectric breakdown method shown in IEICE technical research report, 58Ds6-11 (1986).
The insulation properties of the silicon dioxide film are evaluated by the ric breakdown method.

すなわち、この定電流タイムデペンデント デイエレク
トリック ブレークダウン法では、第3図に示すように
、電流源4から時間変化に対して一定の電流を絶縁膜1
に流し、まず、この絶縁膜1の両端に発生する電位差を
電圧計3によって検出する。かかる状態で絶縁膜1の劣
化が進行すると、ある時間経過した後姉、絶縁膜10両
端の電位が急減し、絶縁破壊に至る。かかる絶縁破壊に
至つた時間(以下、tBnと略す)から、破壊するまで
に流された破壊電荷量(以下、QBDと略す)を電流X
tBDから算出し、このQBDを絶縁性能の指標として
用いる。絶縁破壊現象は統計的性格をもっことから、複
数の試料、たとえば100個前後の試料についてそれぞ
れQBDを調べ、第4図に示すような絶縁破壊確率のQ
BD分布から、絶縁膜の良否を判定する。そしてこのよ
うな判定の動作は、電流源4.電圧計3.電流を流す試
料である絶縁膜1を逐次選択するスイッチスキャナー2
を制御装置5によって制御することによって、自動的に
行われる。
In other words, in this constant current time dependent electric breakdown method, as shown in FIG.
First, the potential difference generated across the insulating film 1 is detected by the voltmeter 3. When the deterioration of the insulating film 1 progresses under such conditions, the potential at both ends of the insulating film 10 decreases rapidly after a certain period of time, leading to dielectric breakdown. The electric current
Calculated from tBD, and this QBD is used as an index of insulation performance. Since the dielectric breakdown phenomenon has a statistical character, the QBD of multiple samples, for example around 100 samples, is investigated and the Q of the dielectric breakdown probability shown in Figure 4 is calculated.
The quality of the insulating film is determined from the BD distribution. The operation of such a determination is performed by the current source 4. Voltmeter 3. A switch scanner 2 that sequentially selects an insulating film 1, which is a sample to which a current is applied.
This is automatically performed by controlling the control device 5.

第4図において破壊確率が平坦な部分6は偶発破壊モー
ドであシ、急峻に立上がった部分7は真性破壊モードで
ある。これによれば、偶発破壊モードでの故障確率が小
さい程、また真性破壊モードでの破壊確率が大きい程、
良質の、つまシ信頼性の高い絶縁膜といえる。そしてか
かる偶発破壊。
In FIG. 4, a portion 6 where the probability of failure is flat is an accidental failure mode, and a portion 7 where the probability of failure is steep is a true failure mode. According to this, the smaller the probability of failure in accidental failure mode, and the greater the probability of failure in true failure mode,
It can be said to be a high-quality, highly reliable insulating film. and such accidental destruction.

真性破壊が現われる電荷量およびそのときの破壊確率を
知ることは、絶縁性を評価する上で非常に重要である。
Knowing the amount of charge at which intrinsic breakdown occurs and the probability of breakdown at that time is very important in evaluating insulation properties.

また、QBDは電流値と時間との積なので、検出可能な
QBDの最小値は破壊検出の時間分解能で決まシ、最大
値は実験者が許容できる最長の時間で決められる。破壊
検出時間の下限は、電圧計3の検出時間間隔や制御装置
5での破壊を判定するのに必要な時間等を考慮すると、
0.01秒前後が限界で、これ以上短、くシようとする
と破壊検出の装置構成が複雑になってしまう。実験者が
許容できる時間は、100個の試料のQBDを1ooo
o秒以内で測定することを考えると、1個当bt流を流
すことができる時間は100秒となる。この場合、破壊
検出時間の限界であるo、oi秒から100秒に対応す
る4桁がQonの測定可能領域となる。
Furthermore, since QBD is the product of current value and time, the minimum value of QBD that can be detected is determined by the time resolution of destruction detection, and the maximum value is determined by the longest time that the experimenter can tolerate. The lower limit of the destruction detection time is determined by taking into consideration the detection time interval of the voltmeter 3 and the time required for determining destruction by the control device 5.
The limit is around 0.01 seconds, and if you try to make it shorter than that, the structure of the destruction detection device will become complicated. The experimenter's acceptable time is 1ooo QBD of 100 samples.
Considering that the measurement is to be performed within o seconds, the time during which the bt flow can flow per piece is 100 seconds. In this case, the measurable region of Qon is four digits corresponding to 100 seconds from o and oi seconds, which are the limits of the destruction detection time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の絶縁膜の絶縁性能評価方法は以上のように構成さ
れているので、QBDの検出可能範囲は、測定に用いる
装置の性能あるいは実験者が許容できる時間によって変
ってくるが、簡便な装置構成では4桁より広くすること
は困難でアシ、通常、QBDは絶縁膜の製造条件に依存
して非常に広く分布していることから、4桁の範囲では
不十分の場合があった。このために、絶縁膜1が良質の
場合はQBDが検出可能領域よシ大きくなり、また、悪
質の場合にはQBDが検出可能領域よ)小さくなってし
1い、QBDの破壊確率分布の測定を十分にできないな
どの問題点があった。即ち、従来の、−定電流を流すこ
とによってQBDを得る方法は、QBDの検出可能領域
がせまいという欠点かあC1QnDの検出可能領域を広
げようとすると、測定に必要な時間が長くなった勺、装
置構成が複雑となるなどの問題点があった。
Since the conventional method for evaluating the insulation performance of an insulating film is configured as described above, the detectable range of QBD varies depending on the performance of the equipment used for measurement or the time allowed by the experimenter, but the simple equipment configuration However, since QBD is normally distributed very widely depending on the manufacturing conditions of the insulating film, a range of four digits is insufficient in some cases. For this reason, if the insulating film 1 is of good quality, the QBD will be larger than the detectable area, and if the insulating film 1 is of bad quality, the QBD will be smaller than the detectable area. There were problems such as not being able to do enough. In other words, the conventional method of obtaining QBD by flowing a constant current has the drawback that the detectable region of QBD is small, and when trying to widen the detectable region of C1QnD, the time required for measurement becomes longer. However, there were problems such as a complicated device configuration.

この発明は上記のような問題点を解消するためになされ
たもので、絶縁破壊確率のQBD分布を広範囲にわたシ
、かつ短時間に得ることができる絶縁膜の絶縁性能評価
方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a method for evaluating the insulation performance of an insulation film that can obtain the QBD distribution of insulation breakdown probability over a wide range and in a short time. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る絶縁膜の絶縁性能評価方法は電流源から
絶縁膜に流す電流を時間とともに増加させ、絶縁破壊に
到るまでに流すことができた電荷量を破壊電荷量として
求め、この破壊電荷量を指標として絶縁性を評価するよ
うにしたものである。
The method for evaluating the insulation performance of an insulating film according to the present invention increases the current flowing from a current source to the insulating film over time, calculates the amount of charge that can flow until dielectric breakdown occurs as the amount of breakdown charge, and The insulation properties are evaluated using the quantity as an index.

〔作 用〕[For production]

この発明における電流源は、時間とともに電流を増加さ
せるので、印加開始時の上記電流を低く設定することに
よって検出可能な最小破壊電荷量を小さくでき、また、
印加終了時の電流を大きく設定することによって検出可
能な最大破壊電荷量を大きくできる。このように、電流
を徐々に増加させることKよって、検出可能な破壊電荷
量の領域を広げ、また、電流増加の速度を適度に設定す
ることによシ短時間で測定を終えられるようにする。
Since the current source in this invention increases the current with time, the minimum detectable amount of destructive charge can be reduced by setting the current at a low value at the start of application, and
By setting a large current at the end of application, the maximum amount of destructive charge that can be detected can be increased. In this way, by gradually increasing the current, the range of detectable destructive charge amount is expanded, and by setting the rate of current increase appropriately, it is possible to complete the measurement in a short time. .

〔実施例〕 以下、この発明の一実施例を図について説明する。破壊
電荷量分布を調べるための絶縁性能評価装置の基本構成
は第2図に示したものと同じであシ、このうち電流源4
が以下に示す電流−時間出力特性を持つ。すなわち、こ
の発明の絶縁性能評価方法では、あらかじめ設定した時
間特性をもっ電流を出力できる電流源4を用い、第1図
で示すように、電流を1xlO−8アンペアから100
秒間で1xlOアンペアまで徐々に増加させるように設
定する。この電流を各絶縁膜1に流し、これが絶縁破壊
するまでに流すことができた電荷量を指標として、その
絶縁膜1の絶縁性を判定する。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. The basic configuration of the insulation performance evaluation device for examining the breakdown charge distribution is the same as that shown in Figure 2.
has the current-time output characteristics shown below. That is, in the insulation performance evaluation method of the present invention, a current source 4 capable of outputting a current with preset time characteristics is used, and as shown in FIG.
Set to gradually increase to 1xlO amps in seconds. This current is passed through each insulating film 1, and the insulating properties of the insulating film 1 are determined using the amount of charge that can be passed until dielectric breakdown occurs.

この実施例においては、印加開始時の電流が1xlOア
ンペアであシ、破壊検出可能な最小時間を0.01秒と
すれば、検出可能な最小破壊電荷量は約1xlOクーロ
ンとなる。一方、印加終了時の電流がlXl0”−”ア
ンペアなので、測定時間内に流すことができる最大電荷
量は、第1図の電流を時間で積分することによって約1
クーロンとなる。このように、この実施例では検出可能
な破壊電荷量QBDは約10桁の範囲にわたる。従って
、絶縁膜1の膜質の良否にかかわらず、偶発破壊モード
から真性破壊モードまでの広い破壊電荷量分布が確実に
得られる。
In this embodiment, if the current at the start of application is 1xlO ampere and the minimum time for detectable destruction is 0.01 seconds, the minimum detectable amount of destructive charge is about 1xlO coulombs. On the other hand, since the current at the end of application is lXl0"-" ampere, the maximum amount of charge that can be passed within the measurement time is approximately 1
It becomes a coulomb. Thus, in this embodiment, the detectable amount of destructive charge QBD spans a range of approximately 10 orders of magnitude. Therefore, regardless of the quality of the insulating film 1, a wide breakdown charge distribution from the accidental breakdown mode to the true breakdown mode can be reliably obtained.

また、上記のように印加電流を絶縁膜1に対して徐々に
増加しながら印加することができるようにしたため、そ
の印加電流の増加速度を任意に設定することによシ、短
時間にて絶縁性能の測定を完了できる。
In addition, since the applied current can be applied to the insulating film 1 while gradually increasing as described above, by setting the increase rate of the applied current arbitrarily, insulation can be achieved in a short time. Performance measurements can be completed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、電流源から評価対象
である絶縁膜に印加する電流を時間とともに増加させる
ことによシ破壊電荷量を測定するようにしたので、短時
間で、広範囲にわたる破壊電荷量分布が得られ、従って
、その破壊電荷量の破壊確率分布の測定評価を十分かつ
正確に実施できるものが得られる効果がある。
As described above, according to the present invention, the amount of breakdown charge is measured by increasing the current applied from the current source to the insulating film to be evaluated over time. There is an effect that the breakdown charge amount distribution can be obtained and therefore the breakdown probability distribution of the breakdown charge amount can be sufficiently and accurately measured and evaluated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例如よる絶縁膜の絶縁性評価
方法を説明する電流源の電流−時間特性図、第2図はこ
の発明および従来の絶縁膜評価方法を実施する絶縁性評
価装置を示す回路図、第3図は従来の絶縁膜評価方法に
おいて絶縁膜に流される電流の時間特性図、第4図は絶
縁破壊確率の破壊電荷量分布状況を示す特性図である。 1は絶縁膜、4は電流源。 訪瑠貢荷量  (Qeo) 蒔圓
FIG. 1 is a current-time characteristic diagram of a current source illustrating a method for evaluating insulation properties of an insulating film according to an embodiment of the present invention, and FIG. 2 is an insulation evaluation device for implementing the present invention and a conventional method for evaluating insulation films. FIG. 3 is a time characteristic diagram of the current flowing through the insulating film in the conventional insulating film evaluation method, and FIG. 4 is a characteristic diagram showing the breakdown charge amount distribution of dielectric breakdown probability. 1 is an insulating film, and 4 is a current source. Visiting tribute cargo volume (Qeo)

Claims (1)

【特許請求の範囲】[Claims] 電流源から絶縁膜に流した電流およびこの絶縁膜が絶縁
破壊するに至るまでの時間から破壊電荷量を求め、この
破壊電荷量の大きさから上記絶縁膜の絶縁性能を評価す
る絶縁膜の絶縁性能評価方法において、上記絶縁膜には
時間とともに増加する電流を上記電流源から流すように
したことを特徴とする絶縁膜の絶縁性能評価方法。
Determine the amount of breakdown charge from the current flowing into the insulating film from the current source and the time it takes for this insulating film to break down, and evaluate the insulation performance of the insulating film from the magnitude of this breakdown charge. A method for evaluating the insulation performance of an insulating film, characterized in that a current that increases with time is caused to flow through the insulating film from the current source.
JP25697887A 1987-10-12 1987-10-12 Evaluating method for insulation performance of insulating film Pending JPH0198976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25697887A JPH0198976A (en) 1987-10-12 1987-10-12 Evaluating method for insulation performance of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25697887A JPH0198976A (en) 1987-10-12 1987-10-12 Evaluating method for insulation performance of insulating film

Publications (1)

Publication Number Publication Date
JPH0198976A true JPH0198976A (en) 1989-04-17

Family

ID=17300019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25697887A Pending JPH0198976A (en) 1987-10-12 1987-10-12 Evaluating method for insulation performance of insulating film

Country Status (1)

Country Link
JP (1) JPH0198976A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279375A (en) * 1985-10-02 1987-04-11 Seiko Instr & Electronics Ltd Evaluation of insulation film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279375A (en) * 1985-10-02 1987-04-11 Seiko Instr & Electronics Ltd Evaluation of insulation film

Similar Documents

Publication Publication Date Title
US5420513A (en) Dielectric breakdown prediction and dielectric breakdown life-time prediction using iterative voltage step stressing
US6047243A (en) Method for quantifying ultra-thin dielectric reliability: time dependent dielectric wear-out
US3882391A (en) Testing the stability of MOSFET devices
US7863922B2 (en) Evaluation method of insulating film and measurement circuit thereof
JPH0198976A (en) Evaluating method for insulation performance of insulating film
US4904946A (en) Method for evaluating insulating films
EP1612570A2 (en) Apparatus and method for detecting breakdown of a dielectric layer of a semiconductor wafer
JP3147758B2 (en) Evaluation method of insulation layer
Nafria et al. Breakdown of thin gate silicon dioxide films—A review
JP4623807B2 (en) Semiconductor device voltage measuring apparatus and voltage measuring method
EP0219266B1 (en) Method for evaluating the breakdown time of an insulating film
JPH06201761A (en) Aging dielectric breakdown characteristic measuring method for insulating film
US20080290889A1 (en) Method of destructive testing the dielectric layer of a semiconductor wafer or sample
JP2584093B2 (en) Insulation film reliability evaluation method
US7106087B2 (en) Method and apparatus for evaluating semiconductor device
JP3019564B2 (en) Evaluation method of insulating film
JP3610817B2 (en) Semiconductor device evaluation method
JPH09330964A (en) Method for estimating service life of semiconductor device
KR100308768B1 (en) How to charge capacitor
JP3175654B2 (en) Capacitor measurement terminal contact detection method
Tanner et al. Slow trap profiling-a new technique for characterising slow traps in MOS dielectrics
KR20170106917A (en) Substrate inspection apparatus and substrate inspection method
JP2000058612A (en) Method for evaluating insulation film of semiconductor element
JP2008300468A (en) Evaluating and manufacturing method of silicon wafer
Wang et al. The effect of stress interruption and pulsed biased stress on ultra-thin gate dielectric reliability