JPH0198764A - Combination of cylinder and piston ring - Google Patents

Combination of cylinder and piston ring

Info

Publication number
JPH0198764A
JPH0198764A JP25238387A JP25238387A JPH0198764A JP H0198764 A JPH0198764 A JP H0198764A JP 25238387 A JP25238387 A JP 25238387A JP 25238387 A JP25238387 A JP 25238387A JP H0198764 A JPH0198764 A JP H0198764A
Authority
JP
Japan
Prior art keywords
cylinder
piston ring
powder
sliding surface
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25238387A
Other languages
Japanese (ja)
Other versions
JPH0765683B2 (en
Inventor
Akira Harayama
原山 章
Michio Okamoto
岡本 道生
Takeshi Enomoto
武 榎本
Masateru Yagi
八木 正輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Mahle Engine Components Japan Corp
Original Assignee
Izumi Automotive Industry Co Ltd
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Izumi Automotive Industry Co Ltd, Teikoku Piston Ring Co Ltd filed Critical Izumi Automotive Industry Co Ltd
Priority to JP25238387A priority Critical patent/JPH0765683B2/en
Publication of JPH0198764A publication Critical patent/JPH0198764A/en
Publication of JPH0765683B2 publication Critical patent/JPH0765683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

PURPOSE:To improve mutual compatibility by combining a cylinder where hard particles are dispersed and buried in an oil sump groove portion of a sliding surface with a piston ring where mixed powder of high-carbon low-silicon ferroalloy powder and No powder is plasma-sprayed. CONSTITUTION:A cylinder liner 1 is composed of 0.35-0.55wt.% C, 0.40wt.% or less Si, 0.40-1.00wt.% Mn, and residue Fe. Hard particles (SiC, Al2, O3 etc.) having an average particle size of 3-20mum are uniformly distributed and buried in the interior portion of an oil sump groove portion 3 of a specified pattern formed on a sliding surface 2 and a plateau portion 4 at area rate of 5-15%, and the top surface thereof is polished to be smooth. On the other hand, a piston ring 8 is composed of 8.5-9.5% C, 65-70% Cr, 1% or less Si and residue Fe. Mixed powder of 75-85% high-carbon low-silicon ferroalloy having a particle size of 74mum or less and 15-30% Mo powder having a particle size of 74mum or less is plasma-sprayed to the outer peripheral sliding surface groove 9 to provide a flame coating layer 10. Thus, there is good compatibility between two members to reduce abrasion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関等に用いられるシリンダ(シリンダス
リーブ、シリンダライナ及びシリンダブロック等を含む
、以下同じ)とピストンリングの組合わせに関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a combination of a cylinder (including a cylinder sleeve, a cylinder liner, a cylinder block, etc.; the same shall apply hereinafter) and a piston ring used in internal combustion engines, etc. .

さらに、詳しく述べるならば、本発明は、出願人ノ先願
テアル特1tJ!59−274551号(時開61−1
57875号)の「シリンダとシールリングとの組合わ
せ」の改良に関するものである。
More specifically, the present invention is based on the applicant's earlier application Teal Patent J! No. 59-274551 (Jikai 61-1
57875) regarding the improvement of the "combination of cylinder and seal ring".

〔従来の技術〕 内燃機関は近年とみに高性能化されるとともに一方では
公害対策や省エネルギ一対策のために、ピストンリング
やシリンダなど機能部品に対する負荷は益々増大し要求
品質もより高度なものとなっている。即ちこれらの機能
部品に対しては、高温高負荷の条件下における潤滑油消
費量(LOG)の低減に耐え得る耐摩耗性、保油性、耐
スカッフィング性と同時に軽量化や摩擦損失の低減等が
強く希求され、この要請に対応する摺動面間の性状、換
言すればシリンダとピストンリングのより望ましい組合
わせ或いは相性のよいシリンダとピストンリングの組合
わせが追究されている。
[Conventional technology] Internal combustion engines have become more efficient in recent years, and at the same time, the load on functional parts such as piston rings and cylinders has increased and the required quality has become more advanced in order to prevent pollution and save energy. It has become. In other words, these functional parts must have wear resistance, oil retention, and scuffing resistance that can withstand a reduction in lubricant consumption (LOG) under conditions of high temperature and high load, as well as weight reduction and reduction of friction loss. There is a strong desire for this, and in other words, a more desirable combination of a cylinder and a piston ring, or a combination of a cylinder and a piston ring that is compatible with each other is being pursued.

前記要請に対応する一方のシリンダライナ摺動面の耐摩
耗処理方法が特開昭52−138797号公報に開示さ
れている。この方法によると、SiCを含むスラリー又
はペーストを用いてラッピング工具によりシリンダの摺
動面に螺旋溝を形成するとともにSiC粒子を埋め込む
工程、前工程よりも細かい粒度のSiC粒子によって各
溝の間のピークを削り取り、微粒子の鋭い角部を除去す
るとともに突出している微粒子を押し込む工程、更に必
要があれば前工程よりも微粒子を含ませたスラリー又は
ペーストを用いてラッピングを施す工程よりなる耐摩耗
処理が行われる。この処理方法は、鋳鉄又は鋼製のシリ
ンダライナーに一部実用化され、シリンダ自身の耐摩耗
性において優れた性能を発揮し、又コスト面においても
特殊耐摩耗鋳鉄或いはクロムめっきシリンダに較べ大幅
な低減を可能とするとともに鋼製薄肉シリンダに適用し
た場合には軽量化及び既製エンジンブロック使用範囲で
ボアアンプを可能にすることから夫れなりの評価を受け
ているものである。
JP-A-52-138797 discloses a wear-resistant treatment method for one cylinder liner sliding surface that meets the above requirements. According to this method, spiral grooves are formed on the sliding surface of the cylinder using a lapping tool using a slurry or paste containing SiC, and SiC particles are embedded. A wear-resistant treatment consisting of a process of scraping off peaks, removing sharp corners of particles, and pushing in protruding particles, and if necessary, lapping with a slurry or paste containing more particles than in the previous process. will be held. This treatment method has been put to practical use in some cylinder liners made of cast iron or steel, and it exhibits excellent performance in terms of the wear resistance of the cylinder itself, and is also significantly lower in cost than special wear-resistant cast iron or chrome-plated cylinders. When applied to a thin-walled steel cylinder, it enables weight reduction and bore amplification within the range of use of ready-made engine blocks, and is therefore receiving high praise.

然しなから、この処理を施したシリンダの場合にはシリ
ンダ自身の耐摩耗性において抜群の性能を示すものの一
方では相手ピストンリングを甚だしく摩耗させてしまう
と云う欠陥があり、近時の高性能機関の苛酷な運転条件
の下では自ら適用範囲に制約を受けざるを得ない。
However, although cylinders that have undergone this treatment exhibit outstanding performance in terms of their own wear resistance, they also have the drawback of causing significant wear to the mating piston ring, making them difficult to use in modern high-performance engines. Under the harsh operating conditions of

そこで、先願発明は、前述の要求に対応し、かつ在来の
問題点を解消して前記SiC粒子を埋設したシリンダ摺
動面の利点を十二分に活用する摺動面対構造、就中、微
細なSiC粒子を特定パターンの油溜り溝部の内部及び
該溝部によって囲まれたプラトー部の表面に特定の面積
率で分散埋設した鉄鋼又は鋳鉄からなる改良されたシリ
ンダと特定組成のFe−C−Cr合金粉末とMo粉末と
を特定割合で混合した混合粉末をプラズマ溶射したシー
ルリングとの組合わせを提供しようとしたものである。
Therefore, the prior invention has provided a sliding surface pair structure that satisfies the above-mentioned requirements, eliminates the conventional problems, and fully utilizes the advantages of the cylinder sliding surface in which the SiC particles are embedded. An improved cylinder made of steel or cast iron in which medium and fine SiC particles are dispersed and buried in a specific pattern of oil reservoir grooves and on the surface of a plateau surrounded by the grooves at a specific area ratio, and Fe- This is an attempt to provide a combination with a seal ring that is plasma sprayed with a mixed powder of C-Cr alloy powder and Mo powder mixed in a specific ratio.

具体的には、鉄鋼又は鋳鉄からなるシリンダの摺動面に
特定パターンの油溜り溝が配設されるとともに面積率で
3〜12%該溝の内部及びプラトー部に平均粒径5〜2
0μmの硬質粒子が均一に分散埋設されておりかつ上面
が平滑化されている摺動面を有するシリンダと、重量比
で03.0〜9.0%、Cr55〜70%を含有し残部
が実質的にFeとした粒度が74μmより粗粒でないF
e−C−Cr合金粉末65〜85重量%と粒度が74μ
mより粗粒でないMo粉末15〜35重量%とを混合し
た混合粉末をプラズマ溶射してなる溶射層を摺動面に形
成したシールリングとからなるシリンダとシールリング
の組合わせを先願で提案した。
Specifically, a specific pattern of oil reservoir grooves is provided on the sliding surface of a cylinder made of steel or cast iron, and an area ratio of 3 to 12% is provided inside the grooves and in the plateau portion with an average particle size of 5 to 2.
A cylinder with a sliding surface in which hard particles of 0 μm are uniformly dispersed and embedded and whose upper surface is smoothed, and a cylinder containing 03.0 to 9.0% Cr and 55 to 70% Cr by weight, with the remainder being substantially F whose grain size is not coarser than 74μm
e-C-Cr alloy powder 65-85% by weight and particle size 74μ
In a previous application, we proposed a combination of a cylinder and a seal ring with a seal ring formed on the sliding surface with a sprayed layer formed by plasma spraying a mixed powder of 15 to 35% by weight of Mo powder that is not coarser than m. did.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

先願発明は、シリンダ自身の耐摩耗性を損することなく
充分その特性を発揮させるようにシリンダを構成したた
め、シリンダライナの摩耗は少ないもののピストンリン
グの摩耗は、従来実用化されているクロマードライナ(
硬質クロムめっき表面を研摩処理ライナ)の水準に比較
すると、依然として満足すべき水準に至らず、尚、−層
の改善が望まれる。
In the prior invention, the cylinder was constructed in such a way that it could fully demonstrate its characteristics without impairing the wear resistance of the cylinder itself, so the wear of the cylinder liner was small, but the wear of the piston ring was less than that of the chromad liner that had been put into practical use. (
Comparing the hard chrome plated surface with the level of the polished liner, the level is still unsatisfactory, and further improvement is desired.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、重量比でC0,35〜0.55%、Si0.
40%以下、Mn 0.40〜1.00%、残部実質的
にFeからなる組成を有するシリンダの摺動面に特定パ
ターンの油溜り溝部が配設されるとともに該溝の内部及
びプラトー部に平均粒径3〜20μmの硬質粒子が面積
率で5〜15%均一に分散埋設されておりかつ上面が平
滑化されている摺動面を有するシリンダと、重量比でC
8,5〜9.5%、Cr65〜70%、Si1.0%以
下を含有し、残部が実質的にFeからなる粒度が74μ
mより粗粒でない高炭素低珪素Fe −C−Si −C
r合金粉末70〜85重量%及び粒度が74μmより粗
粒でないMo粉末15〜30重量%の混合粉末をプラズ
マ溶射してなる溶射層を摺動面に形成したピストンリン
グとからなるシリンダとピストンリングの組合わせを提
供する。
The present invention has a weight ratio of C0.35 to 0.55%, Si0.
40% or less, Mn 0.40 to 1.00%, and the remainder substantially Fe.A specific pattern of oil reservoir grooves is provided on the sliding surface of the cylinder, and inside the grooves and plateau portions. A cylinder having a sliding surface in which hard particles with an average particle size of 3 to 20 μm are uniformly dispersed and embedded in an area ratio of 5 to 15% and a smooth upper surface, and
8.5 to 9.5%, Cr65 to 70%, Si 1.0% or less, and the balance is substantially Fe.The particle size is 74μ.
High carbon low silicon Fe-C-Si-C not coarser than m
A cylinder and a piston ring having a sprayed layer formed on the sliding surface by plasma spraying a mixed powder of 70-85% by weight of r-alloy powder and 15-30% by weight of Mo powder with a grain size not coarser than 74 μm. provide a combination of

本発明の構成の最大の特徴は、シリンダの組成を、C0
,35〜0.55%、SLo、40%以下、Mn O,
40〜1.00%を含有する鋼としたこと、およびMo
粉末と共にピストンリング母材に溶射されるクロム合金
粉末の組成を、C8,5〜9.5%、Cr 65〜70
%、S’i  1%以下、残部FeO高炭素低珪素Fe
 −C−Si−Crとしたこと、にあり、これらによっ
て先願発明に係るシリンダとピストンリングの組合わせ
のシリンダ摩耗およびリング摩耗を大幅に凌駕する性能
を得ることができた。
The most important feature of the configuration of the present invention is that the composition of the cylinder is changed to C0
, 35-0.55%, SLo, 40% or less, MnO,
The steel contained 40 to 1.00% of Mo.
The composition of the chromium alloy powder that is sprayed onto the piston ring base material together with the powder is C8.5-9.5%, Cr 65-70.
%, S'i 1% or less, balance FeO high carbon low silicon Fe
-C-Si-Cr, and as a result, it was possible to obtain performance that greatly exceeds the cylinder wear and ring wear of the cylinder and piston ring combination according to the prior invention.

以下、本発明の具体的構成について述べる。第1図はシ
リンダライナの縦断面図であって、(1)はシリンダラ
イナ、(2)はシリンダライナの内周面である摺動面、
第2図は本発明を適用したシリンダライナ(1)の摺動
面を示す第1図のA部の拡大断面図であって、(3)は
その内周面の略々全周に亘って施された連続及び不連続
の螺旋状交叉溝からなる油溜り溝部、(4)は核油溜り
溝部(3)によって囲まれた平滑な摺動面部(以下プラ
トー部と云う)、(5)は核油溜り溝部の内部及び前記
プラトー部に埋設された硬質粒子、第3図(a)は硬質
粒子(5)が核油溜り溝部の内部及びプラトー部に埋設
された直後のシリンダライナ摺動面(A)の表面状況を
模型的に示す一部拡大断面図、第3図(b)は仕上加工
後の第3図(a)に対応する一部拡大断面図、第4図は
、触針をシリンダライナ内周面の軸方向に移動させて得
られる断面曲線又はカットオフ値2.5n+/m以上の
粗らさ曲線(6”) (JIS−80601−1970
)の一部を説明する図面であり、ここで断面曲線(6)
の平均線に平行な任意の直線即ち基線(7)がある−定
の基準となる長さしく例えば2.5M/TI)の間で該
曲線(6)の実体部を切断する長さを1.、lz。
The specific configuration of the present invention will be described below. FIG. 1 is a longitudinal cross-sectional view of the cylinder liner, in which (1) is the cylinder liner, (2) is the sliding surface that is the inner peripheral surface of the cylinder liner,
FIG. 2 is an enlarged sectional view of section A in FIG. 1 showing the sliding surface of the cylinder liner (1) to which the present invention is applied, and (3) is an enlarged cross-sectional view of the sliding surface of the cylinder liner (1) to which the present invention is applied, and (3) is an enlarged sectional view of the sliding surface of the cylinder liner (1) to which the present invention is applied, and (3) is an enlarged sectional view of part A of FIG. (4) is a smooth sliding surface surrounded by the core oil reservoir groove (3) (hereinafter referred to as the plateau portion); (5) is Hard particles buried inside the core oil reservoir groove and in the plateau. FIG. 3(a) shows the cylinder liner sliding surface immediately after the hard particles (5) are buried inside the core oil reservoir groove and in the plateau. (A) is a partially enlarged sectional view schematically showing the surface condition, FIG. 3(b) is a partially enlarged sectional view corresponding to FIG. 3(a) after finishing processing, and FIG. 4 is a stylus. A cross-sectional curve obtained by moving the cylinder liner in the axial direction of the inner circumferential surface or a roughness curve (6”) with a cutoff value of 2.5n+/m or more (JIS-80601-1970
) is a drawing explaining a part of the cross-sectional curve (6).
There is an arbitrary straight line, that is, a base line (7), which is parallel to the average line of the curve (6). .. , lz.

ls、1a−1,とTると、該曲vA(6) <7)基
線(7)におけるプラトー率(プラトー部の占有比率)
は次式によって求められる。
ls, 1a-1, and T, the corresponding song vA (6) <7) Plateau rate at baseline (7) (occupancy ratio of plateau part)
is determined by the following formula.

X 100 (%) 而して本発明に係るシリンダライナを得るためには、S
iC等の硬質粒子を含むスラリー又はペースト状物を混
入した研摩液を用いラフピング工具或いはホーニングシ
ューにより8亥シリンダライナ(1)の内周面を回転及
び往復運動させることによって得られる。即ち、この加
工により硬質粒子(5)は工具の運動により特定される
パターン、例えば交叉する螺旋軌道に沿って菱形模様を
形成するように油溜り溝部(3)を刻み込むと同時に核
油溜り溝部(3)の内部及びプラトー部(4)に埋設さ
れ、又同時に核油溜り溝部によって囲まれた略菱形のプ
ラ・ト一部(4)が形成される(第2図〜第3図(a)
(b)参照)。この場合、初期工程で比較的低い工具圧
力によって油溜り溝部(3)のみを形成し、次工程で圧
力を増し、油溜り溝部(3)の深さ及び幅を増大させる
と同時に硬質粒子を核油溜り溝部(3)の内部及びプラ
トー部(4)に埋込むようにする公知の手法を用いるこ
とも出来る。上記のように2工程の操作を用いるとき、
第2工程では各溝の間のシリンダライナ内周面の凸起部
が削り取られ硬質粒子の鋭いエッヂが除去されると共に
突出している硬質粒子が更に溝の内部及びプラトー部に
押し込まれる。前記何れの手法の場合においてもプラト
ー部(4)及び硬質微粒子(5)により構成される摺動
面(2)の上面が平滑化されたシリンダライナ(第3図
(b))を得るために、前記工程の後シリンダライナ内
周面は更に細かい粒度の硬質粒子を含むスラリー等を混
入した研摩液を用いてラフピング又はホーニング仕上げ
するか、或いは細かい粒度の砥石をもったホーニングシ
ューによって研摩仕上げされてそれ以前の工程の凹凸が
取除かれる。
X 100 (%) Therefore, in order to obtain the cylinder liner according to the present invention, S
It is obtained by rotating and reciprocating the inner peripheral surface of the cylinder liner (1) using a roughing tool or honing shoe using a polishing liquid mixed with a slurry or paste containing hard particles such as iC. That is, by this machining, the hard particles (5) carve the oil sump grooves (3) so as to form a pattern specified by the movement of the tool, for example, a diamond-shaped pattern along intersecting spiral trajectories, and at the same time carve the core oil sump grooves ( 3) and the plateau part (4), and at the same time, a roughly rhombic plateau part (4) surrounded by the kernel oil reservoir groove part (4) is formed (Figures 2 to 3 (a)
(see (b)). In this case, only the oil sump groove (3) is formed using a relatively low tool pressure in the initial process, and the pressure is increased in the next process to increase the depth and width of the oil sump groove (3) and at the same time nucleate the hard particles. It is also possible to use a known method of embedding it inside the oil sump groove (3) and the plateau (4). When using a two-step operation as described above,
In the second step, the protrusions on the inner circumferential surface of the cylinder liner between the grooves are scraped off, sharp edges of the hard particles are removed, and the protruding hard particles are further pushed into the grooves and into the plateau portions. In any of the above methods, in order to obtain a cylinder liner (FIG. 3(b)) in which the upper surface of the sliding surface (2) composed of the plateau portion (4) and the hard fine particles (5) is smoothed. After the above step, the inner circumferential surface of the cylinder liner is rough-finished or honed using a polishing liquid mixed with a slurry containing fine-grained hard particles, or polished with a honing shoe equipped with a fine-grained grindstone. The unevenness of the previous process is removed.

その後洗滌及び脱脂される。ここで核油溜り溝部(3)
の深さ、幅、硬質粒子(5)の埋込み面積率、プラトー
部(4)の占有面積率等は母材の材質、硬質粒子のサイ
ズ、工具圧力、回転数、加工速度及び時間等の因子によ
って支配される。これらの因子の選定については後述す
る。
It is then washed and degreased. Here, the core oil sump groove (3)
The depth, width, embedded area ratio of the hard particles (5), occupied area ratio of the plateau part (4), etc. are determined by factors such as the base material material, the size of the hard particles, tool pressure, rotation speed, machining speed and time. ruled by. The selection of these factors will be described later.

本発明に係る組合わせの一方であるシリンダにおいて硬
質粒子としてはSiC,A1gOt+CrzOi+5i
J4よりなる群から選ばれた単一粒子を用いることが出
来るが、母材に対して強固に保持されるように硬質粒子
が埋込まれる性質、すなわち埋込み性、加工中に硬質粒
子が破砕されない性質すなわち耐破砕性等からSiC粒
子を用いることが望ましい。
In the cylinder which is one of the combinations according to the present invention, the hard particles are SiC, A1gOt+CrzOi+5i
A single particle selected from the group consisting of J4 can be used, but the property of embedding the hard particle so that it is firmly held in the base material, that is, the embeddability, the hard particle is not crushed during processing. It is desirable to use SiC particles from the viewpoint of properties such as crush resistance.

SiC等の硬質粒子はなるべく鋭い角部をもったものが
埋込効率(すなわち加工圧力に対する埋込深さ比率)の
面で好ましく、その粒子サイズは埋込むべき母材の材質
、工具圧力等にも関係するがシリンダの耐摩耗性、耐ス
カッフィング性を損うことな(、しかも相手ピストンリ
ングの摩耗を低減するためには埋め込まれた後の平均粒
径を3〜20μmに限定することが必要である。即ち、
平均粒径が3μm未満ではシリンダ自身の耐摩耗性に不
足を来たし20μmを越える硬質粒子を埋込むと分散性
(密度)に欠け、相対的に軟質である母材が漸次摩耗す
ると、硬質粒子の局部的面圧が高(なってスカッフィン
グを誘発し相手ピストンリングの摩耗を促進するおそれ
がある。より好ましい範囲は7〜15μmである。従っ
て硬質粒子はその埋込み面積率(5〜15%)を維持し
つつ適正粒度で微細かつ均一にシリンダ摺動面に対して
埋込まれていることが重要である。
It is preferable for hard particles such as SiC to have sharp corners as much as possible in terms of embedding efficiency (i.e., the ratio of embedding depth to processing pressure), and the particle size depends on the material of the base material to be embedded, tool pressure, etc. Although this is related, it is necessary to limit the average particle size after being embedded to 3 to 20 μm so as not to impair the wear resistance and scuffing resistance of the cylinder (in addition, in order to reduce the wear of the mating piston ring) That is,
If the average particle size is less than 3 μm, the cylinder itself will lack wear resistance, and if hard particles larger than 20 μm are embedded, it will lack dispersibility (density), and as the relatively soft base material gradually wears out, the hard particles will deteriorate. The local surface pressure is high (there is a risk of inducing scuffing and accelerating wear of the mating piston ring. The more preferable range is 7 to 15 μm. Therefore, the hard particles have a high embedded area ratio (5 to 15%). It is important that the particles be embedded finely and uniformly into the cylinder sliding surface with an appropriate particle size.

硬it′R1粒子のシリンダ摺動面に対する埋込み面積
率の限定理由は5%未満ではシリンダ自身の耐摩耗性、
耐スカッフィング性が不充分であり、15%を越えると
相手ピストンリングの摩耗を増大させ摺動面対構造とし
てバランスされた摩耗が実現されないので5〜15%の
範囲とする。より好ましい範囲は5〜10%である。螺
旋状交叉溝に囲まれたプラトー部の占有面積率(プラト
ー率)については、プラトー率1.0%の基線(8)か
ら2μm (h)の深さにおいて75〜95%とするこ
とが好ましい、その限定理由は、プラトー率75%未満
では必然的に油溜り溝部が増加してり、O,C上昇を来
たすので好ましくなく、一方、95%を越えると逆に油
溜り溝部が減少してスカッフィングの傾向が増大するか
らである。より好ましい範囲は80〜90%である。又
、プラトー率をプラトー率1゜0%の基線(8)から2
μmとしたのはエンジンの馴らし運転初期のシリンダ摺
動面の保油量が適正化されり、O,C,を必要最小限に
抑制し得るとともにプラトー率75〜95%(受圧面積
75〜95%)に至るに要する摩耗量は約2μm以下と
なるから初期馴染み運転に要する時間も短縮し得るから
である(第5図参照)。シリンダのプラトー部の最大表
面粗らさHはエンジンの馴らし運転初期における表面性
状として重要であり、それが3μm未満では表面の保油
性に欠は初期スカッフィング発生のおそれがあり、7μ
mを越えると局部面圧が上昇してこれ又初期スカッフィ
ング発生の原因となるので3〜7μmの範囲に限定する
。好ましい範囲は3〜5μmT:ある。
The reason for limiting the embedded area ratio of hard it'R1 particles on the cylinder sliding surface is that if it is less than 5%, the wear resistance of the cylinder itself
The scuffing resistance is insufficient, and if it exceeds 15%, the wear of the mating piston ring increases and balanced wear cannot be achieved as a sliding surface pair structure, so the range is set to 5 to 15%. A more preferable range is 5 to 10%. The occupied area ratio of the plateau portion surrounded by the spiral cross grooves (plateau ratio) is preferably 75 to 95% at a depth of 2 μm (h) from the base line (8) with a plateau ratio of 1.0%. The reason for this limitation is that if the plateau rate is less than 75%, the number of oil sump grooves will inevitably increase, causing an increase in O and C, which is undesirable.On the other hand, if the plateau rate exceeds 95%, the number of oil sump grooves will decrease. This is because the tendency for scuffing increases. A more preferable range is 80 to 90%. In addition, the plateau rate is changed from the baseline (8) with a plateau rate of 1°0% to 2
The reason for choosing μm is that the amount of oil retained on the cylinder sliding surface at the initial stage of engine break-in is optimized, O, C, and so on can be suppressed to the necessary minimum, and the plateau rate is 75 to 95% (pressure receiving area 75 to 95%). %) is approximately 2 μm or less, and the time required for initial break-in operation can also be shortened (see FIG. 5). The maximum surface roughness H of the plateau portion of the cylinder is important as a surface quality at the initial stage of engine running-in.If it is less than 3μm, the surface may lack oil retention and initial scuffing may occur;
If it exceeds m, the local surface pressure will increase and this will also cause initial scuffing, so it is limited to a range of 3 to 7 μm. The preferred range is 3 to 5 μmT.

そして前記要件を満足するシリンダを得るには、通常、
第1工程(溝入れ及びSiC微粒子の埋込み)において
、120〜280メツシユの平均粒径のSiC微粒子を
含むスラリーを用いシリンダ摺動面をホーニングシュー
圧力0.5〜2.0kg/cd、回転数Xストロークx
時間:50〜250rpIll/lll1n×20〜6
0回/n+in X 1〜3分の条件で、又第2工程(
仕上)において280〜800メツシユの平均粒径のS
iC微粒子を含むスラリーを用いホーニングシュー圧力
0、5〜2.0 kg/aJ、回転数Xストローク×時
間=50〜25Orpm/a+in X20〜60回/
akin X 1〜3分の条件でシリンダ摺動面を仕上
ホーニングすればよい。
In order to obtain a cylinder that satisfies the above requirements, usually
In the first step (grooving and embedding of SiC fine particles), the cylinder sliding surface is honed using a slurry containing SiC fine particles with an average particle size of 120 to 280 mesh at a shoe pressure of 0.5 to 2.0 kg/cd and a rotation speed. X stroke x
Time: 50-250rpIll/lll1n x 20-6
Under the conditions of 0 times/n+in x 1 to 3 minutes, the second step (
S with an average particle size of 280 to 800 mesh in finishing)
Using slurry containing iC fine particles, honing shoe pressure 0, 5-2.0 kg/aJ, rotation speed x stroke x time = 50-25 Orpm/a+in x 20-60 times/
The cylinder sliding surface may be finish honed for 1 to 3 minutes.

斯くして、第1工程の後では第3図(a)、第2工程の
後では第3図(b)に示したような表面状態が得られる
が第1工程の加工条件及びシリンダ母材の材質殊にその
均質性の如何によっては、第3図(C)に示すように5
iC1i粒子がシリンダ母材中に埋没した表面状態を呈
する場合がある。
In this way, the surface state as shown in FIG. 3(a) after the first step and as shown in FIG. 3(b) after the second step is obtained, but the processing conditions of the first step and the cylinder base material Depending on the material, especially its homogeneity, 5.
In some cases, the iC1i particles exhibit a surface state in which they are buried in the cylinder matrix.

このような表面状態の場合、シリンダの第1次摺動面は
比較的軟質かつ低融点の母材によってその殆んどが占め
られてしまうので境界潤滑等の苛酷な条件下ではスカッ
フィングを誘発するおそれがあるが、第3図(b)図示
の表面状態でかつSiC微粒子の全埋込み面積率5〜1
5%に対し、30%以下であれば第3図(C)の表面状
態が混在しても実害はない。
In the case of such a surface condition, most of the primary sliding surface of the cylinder is occupied by the relatively soft, low-melting point base material, which may induce scuffing under severe conditions such as boundary lubrication. However, in the surface state shown in FIG. 3(b), the total embedded area ratio of SiC fine particles is 5 to 1.
Compared to 5%, if it is 30% or less, there is no actual harm even if the surface condition shown in FIG. 3(C) is present.

次いで、本発明に係る組合わせの他方ピストンリングに
ついて述べる。
Next, the other piston ring of the combination according to the present invention will be described.

ピストンリングの特徴は、高炭素低珪素のFe−C−S
i−Cr合金とMoの混合粉末のプラズマ溶射リングを
用いたことにあり、その意義は、Fe −C−Si −
Cr合金粉末は従来のFCrH3(高炭素フエロクロム
)に較べSt含有量が低いため、α鉄の析出がなく殆ん
ど(CrFe) ?C3の粉末となり、耐摩耗性を高め
たところにある。
The piston ring features high carbon, low silicon Fe-C-S
The significance lies in the use of a plasma sprayed ring made of a mixed powder of i-Cr alloy and Mo.
Cr alloy powder has a lower St content than conventional FCrH3 (high carbon ferrochrome), so there is no α-iron precipitation and most of it is (CrFe). It is a C3 powder with improved wear resistance.

又、母材の材質は、C0,35〜0.55%、SiO,
40%以下、Mn 0.40〜1.00%、残部実質的
にFeからなるものである。炭素およびマンガンは何れ
もマトリックスの強化元素であり、含有量がそれぞれ0
.35%および0.40%未満であると、硬質粒子の保
持能力が低下する。炭素が0.35%未満ではパーライ
トの析出が少なく初晶フェライトが多くなり、マンガン
が0.40%未満ではフェライト中の固溶マンガンが少
なくなり、かつ初析フェライトが多くなり、何れも強度
低下をもたらす。一方、炭素含有量が0.55%を越え
るとパーライトの析出が過多となりS’rC等の硬質粒
子が埋め込みにくくなりSic等の硬質粒子の細粒化と
ともにSiC粒子が脱落しやすくなるし、薄肉ライナの
鍔出しに際し塑性加工性の悪化を招く。。
In addition, the material of the base material is C0.35~0.55%, SiO,
40% or less, Mn 0.40 to 1.00%, and the remainder substantially Fe. Carbon and manganese are both matrix reinforcing elements, and their content is 0.
.. When it is less than 35% and 0.40%, the retention ability of hard particles decreases. If the carbon content is less than 0.35%, there will be less pearlite precipitation and more primary ferrite will be present, and if the manganese content is less than 0.40%, there will be less solid solution manganese in the ferrite and more pro-eutectoid ferrite, both of which will reduce the strength. bring about. On the other hand, if the carbon content exceeds 0.55%, pearlite precipitates excessively, making it difficult to embed hard particles such as S'rC, making it easier for SiC particles to fall off as hard particles such as SiC become finer, and causing thin walls. This leads to deterioration of plastic workability when the liner is flanged. .

又、マンガン含有量が1.00%を越えると、硬さ力(
必要以上に高くなり、塑性加工性の悪化をまねく。よっ
て、炭素含有量は0.35〜0.55%、マンガン含有
量は0.40〜1.00%とするが、より好ましくは炭
素含有10.40〜0.50%、マンガン含有to、4
〜0.8%である。ケイ素は、脱酸元素として必要であ
り、また硬質粒子の埋収性に強い影響をフェライトの形
成元素として必要である。その含有量が0.40%を越
えると、フェライトの量が過剰になりすぎて、硬質粒子
の脱落が起こり易くなる。
In addition, if the manganese content exceeds 1.00%, the hardness force (
It becomes higher than necessary, leading to deterioration of plastic workability. Therefore, the carbon content is 0.35 to 0.55%, and the manganese content is 0.40 to 1.00%, but more preferably carbon content is 10.40 to 0.50%, manganese content is 4 to 4.
~0.8%. Silicon is necessary as a deoxidizing element and is also necessary as a ferrite forming element that has a strong influence on the embeddability of hard particles. If the content exceeds 0.40%, the amount of ferrite becomes too excessive and hard particles tend to fall off.

母材の調質状態は、熱間圧延のまま、焼なまし、焼なら
し、焼入れ焼もどし等であるが、初析フェライトとパー
ライトがバランスした組織が得られ昌い点で焼ならしお
よび焼なまし、特に焼ならしが好ましい。焼ならしは8
00〜b 均熱後空冷し、パーライト体積率40〜60%、残部初
析フェライト組織が得られるように行なうことが好まし
い。
The tempering condition of the base material is as hot rolled, annealing, normalizing, quenching and tempering, etc., but it is normalized and tempered at a point where a structure with a balance of pro-eutectoid ferrite and pearlite is obtained. Annealing, especially normalizing, is preferred. Normalizing is 8
00-b After soaking, it is preferably air-cooled to obtain a pearlite volume fraction of 40 to 60% and a pro-eutectoid ferrite structure in the remainder.

次いで、本発明に係る組合わせの他方ピストンリングに
ついて述べる。
Next, the other piston ring of the combination according to the present invention will be described.

ピストンリングの特徴はFe −C−Si −Cr合金
粉末とMo粉末とを混合した混合粉末をプラズマ溶射す
ることにあり、その意義はFe−C−Si −Cr合金
粉末及びMo粉末とが夫々相互補完的作用によ″って、
ピストンリングのシリンダに対する相性を飛躍的に向上
させ、双方の摩耗を適度にバランスさせると共に耐スカ
ッフィング性を改善し、以って内燃機間の耐久性信頼性
をより高度化するところにある。
The feature of the piston ring is that a mixed powder of Fe-C-Si-Cr alloy powder and Mo powder is plasma sprayed.The significance of this is that the Fe-C-Si-Cr alloy powder and Mo powder are mutually Through complementary action,
The aim is to dramatically improve the compatibility of the piston ring with the cylinder, appropriately balance the wear of both rings, and improve scuffing resistance, thereby further enhancing the durability and reliability of internal combustion engines.

次いで、Fe −C−Si −Cr合金粉末及びMo粉
末の組成限定理由について述べる。
Next, the reason for limiting the composition of the Fe-C-Si-Cr alloy powder and Mo powder will be described.

CはCrとの関係でCrをカーバイドの形(CrFe)
 ?C3として固定するのに不可欠の元素であり、Cが
8.5重量%未満では(CrFe) ?C3の絶対量が
不足してピストンリングの耐摩耗性、耐スカッフィング
性に不満足を来たし、9.5重量%を越えると被溶射基
材との密着性を阻害する。遊離炭素(黒鉛)がFe −
C−Si −Cr合金中に発生するおそれがあるので9
.5%以下に留めるのが望ましい。
C refers to Cr in the form of carbide (CrFe)
? It is an essential element for fixation as C3, and if C is less than 8.5% by weight, it becomes (CrFe)? If the absolute amount of C3 is insufficient, the wear resistance and scuffing resistance of the piston ring will be unsatisfactory, and if it exceeds 9.5% by weight, the adhesion to the base material to be thermally sprayed will be impaired. Free carbon (graphite) is Fe −
9 as it may occur in the C-Si-Cr alloy.
.. It is desirable to keep it below 5%.

CrはFe −C−Si −Cr合金の主要成分であり
、強い炭化物形成作用をもつ元素であって、合金中に含
有されるCの殆んどを(CrFe) ?CI等の炭化物
として固定する。したがって、これらの炭化物は、Fe
 −C−Si −Cr合金の主要構成要素であり、かつ
若干の組成変化は伴うが混合溶射されたピストンリング
の摺動面中にも介在相として含まれ、シリンダの硬質粒
子に対する耐摩耗性及び耐スカッフィング性を付与する
重要な作用をもつ。上記組成中、遊離黒鉛としてFe−
C−Si −Cr合金中に存在することがある若干量の
Cは溶射中に燃焼されるので、溶射層には混入されない
。このFe  C−Si−Cr合金粉末中のCr含有量
は65重量%未満ではピストンリング摺動面中の炭化物
の硬度、耐熱性等が不足してピストンリング自身の耐摩
耗性及び耐スカッフィング性が低下し、70重量%を越
えると炭化物として固定されないCrがピストンリング
の耐摩耗性が劣化する傾向がある反面、相手シリンダの
摩耗を促進する傾向が現われる。従ってCr含有量は6
5〜70重量%の範囲とする。
Cr is the main component of the Fe-C-Si-Cr alloy, and is an element that has a strong carbide-forming effect, and most of the C contained in the alloy is converted into (CrFe). It is fixed as a carbide such as CI. Therefore, these carbides are Fe
-C-Si - It is a main component of the -Cr alloy, and although there is a slight change in composition, it is also included as an intervening phase in the sliding surface of the mixed thermally sprayed piston ring, and has excellent wear resistance against hard particles of the cylinder. It has an important effect of imparting scuffing resistance. In the above composition, Fe-
Some amount of C, which may be present in the C-Si-Cr alloy, is burned off during spraying and is therefore not incorporated into the sprayed layer. If the Cr content in this Fe C-Si-Cr alloy powder is less than 65% by weight, the hardness and heat resistance of the carbide in the piston ring sliding surface will be insufficient, resulting in poor wear resistance and scuffing resistance of the piston ring itself. When the amount of Cr decreases and exceeds 70% by weight, Cr, which is not fixed as carbide, tends to deteriorate the wear resistance of the piston ring, while at the same time tends to accelerate the wear of the mating cylinder. Therefore, the Cr content is 6
The content should be in the range of 5 to 70% by weight.

本発明で使用される高炭素低珪素Fe−C−Si −C
r合金粉末はスタンピング法により製造されている。あ
るいはJIS規格フェロクロムではない特殊フェロクロ
ムとして粟村金属工業株式会社よりQC−クロムの商品
名で製造されている。
High carbon low silicon Fe-C-Si-C used in the present invention
The r-alloy powder is manufactured by a stamping method. Alternatively, it is manufactured by Awamura Metal Industry Co., Ltd. under the trade name QC-Chrome as a special ferrochrome that is not JIS standard ferrochrome.

JISに規定される高炭素フエロクロム(例:FCrH
3:St 2.0%以下、C:8.0%以下)はα鉄と
(CrFe) 、csで構成されるが、Si含有量が高
い場合、Siを固溶したα鉄を多く析出する。然し、本
願の場合は1.0%以下とSiを低位に留めたためα鉄
の析出がなく殆んどが(CrFe) ?C3になる。
High carbon ferrochrome specified by JIS (e.g. FCrH
3: St 2.0% or less, C: 8.0% or less) is composed of α-iron, (CrFe), and CS, but when the Si content is high, a large amount of α-iron containing Si as a solid solution is precipitated. . However, in the case of the present application, since Si was kept at a low level of 1.0% or less, there was no precipitation of α iron, and most of it was (CrFe). It becomes C3.

次にFeC−Cr合金粉末を74μm以下の粒度に限定
した理由について述べる。
Next, the reason why the grain size of the FeC-Cr alloy powder is limited to 74 μm or less will be described.

−aに溶射層は気孔を有し、これが油溜りとなって耐ス
カッフィング性に貢献するが一方気孔が粗大になると溶
射粒子間の自己結合力が不足して摺動中に溶射粒子が脱
落して摺動面間に介在し、シールリング及び相手シリン
ダが摩耗する結果を招く。そこで潤滑油保持及び双方の
゛摺動面の耐摩耗性の面から気孔率、気孔の大きさ及び
その分布状態を適正に制御すべきであり、これは溶射法
をプラズマ溶射と特定した場合主として溶射材料特に溶
射粉末の粒度に大きく影響されるから前記諸点を勘案し
て74μm以下の粒度に限定した。更に、溶射の作業性
ひいては溶射層の性質も溶射粉末粒度によって影響を受
は余りに微粉になると流動性が低下し、溶射ノズルへの
粉末の安定供給が困難になるのでこの面から20μm以
上の粒度が好ましい。
-a, the sprayed layer has pores, which become oil pockets and contribute to scuffing resistance, but when the pores become coarse, the self-bonding force between the sprayed particles is insufficient and the sprayed particles fall off during sliding. This causes the seal ring and mating cylinder to wear out. Therefore, from the viewpoint of lubricant retention and wear resistance of both sliding surfaces, the porosity, pore size, and distribution state should be appropriately controlled. Since the particle size of the thermal spraying material, especially the thermal spray powder, is greatly affected, the particle size is limited to 74 μm or less in consideration of the above points. Furthermore, the workability of thermal spraying and the properties of the thermal spray layer are also affected by the particle size of the thermal spray powder.If the powder becomes too fine, the fluidity will decrease and it will be difficult to stably supply the powder to the thermal spray nozzle. is preferred.

本発明のシールリングにおいては更にMoが混合溶射さ
れる。Mo単独溶射は耐スカッフィング性に優れている
ものの、耐アブレーシブ摩耗に劣る他、耐酸化性に劣る
ため溶射層内のMo粒子相互の結合力が弱く、応々にし
て眉間剥離を起し易い欠陥がある。
In the seal ring of the present invention, Mo is further mixed and sprayed. Although thermal spraying of Mo alone has excellent scuffing resistance, it has poor abrasive wear resistance and poor oxidation resistance, so the bonding force between Mo particles in the sprayed layer is weak, resulting in defects that tend to cause peeling between the eyebrows. There is.

本発明においては、Mo粉末はFe−C−Si−Cr合
金粉末との混合粉末としてプラズマ溶射法によって混合
溶射されるから、各溶射粒子は溶融状態において共存し
Mo粒子自身の低い耐酸化性も緩和される。
In the present invention, since Mo powder is sprayed as a mixed powder with Fe-C-Si-Cr alloy powder by plasma spraying, each sprayed particle coexists in a molten state and the Mo particles themselves have low oxidation resistance. eased.

Mo粉末は単独粉末でもよいが、Mo微粒子を有機その
他のバインダーで結合したMo造粒粉末を使用すれば、
Mo粒子が微細に分散した溶射層が得られ各溶射粒子間
の結合強度の向上が期待される。しかも単独粉末ではM
oの昇華性故に使用できない超微粉も造粒することによ
って均−分布性達良好となるので使用可能となる。Mo
粉末を74μ以下の粒度としたのは、74μmよりも粗
粒であると溶射層の表面気孔率が高くなり耐アブレーシ
ブ摩耗性が劣化する地均−分布性が損われるからである
Mo powder may be a single powder, but if you use Mo granulated powder in which Mo fine particles are bound with an organic or other binder,
A sprayed layer in which Mo particles are finely dispersed is obtained, and it is expected that the bonding strength between the sprayed particles will be improved. Moreover, M
Even ultrafine powder, which cannot be used due to its sublimation property, can be used by granulating it to achieve good uniform distribution. Mo
The reason why the particle size of the powder is set to be 74 μm or less is because if the particles are coarser than 74 μm, the surface porosity of the thermally sprayed layer increases, resulting in poor geographical distribution and deterioration of abrasive wear resistance.

そしてMo粉末の粒度は好ましくは5μm以上である。The particle size of the Mo powder is preferably 5 μm or more.

Mo造粒粉末の見掛密度を2.5g/cJ以下、好まし
くは2.0〜2.5g/cj以下とすれば、溶射段階で
Fe −C−Si −Cr合金粉末とM。
If the apparent density of the Mo granulated powder is 2.5 g/cJ or less, preferably 2.0 to 2.5 g/cJ or less, it will be mixed with the Fe-C-Si-Cr alloy powder in the thermal spraying stage.

粉末との均一分布が良好となり、微粉の造粒粉を使用し
ても溶射の際の流動性悪化による溶射操作トラブルを解
消することが出来る。次にMo粉末混合量の限定理由に
ついては、その混合量が15%未満ではMo独自の耐ス
カツフイング性、各溶射粒子間の結合強度の向上による
摺動面相互間のアブレーシブな摩耗に対する抵抗性等の
効果が発揮されず、30%を越えると溶射層の耐酸化性
が劣化して、内燃機関運転中に粒子間結合力が急速に低
下する結果を招きアブレーシブ摩耗を促す。
The uniform distribution with the powder is improved, and even if fine granulated powder is used, it is possible to eliminate thermal spraying operation troubles due to poor fluidity during thermal spraying. Next, the reason for limiting the amount of Mo powder mixed is that if the amount is less than 15%, Mo's unique scuffing resistance and resistance to abrasive wear between sliding surfaces due to improved bonding strength between each sprayed particle, etc. If the amount exceeds 30%, the oxidation resistance of the sprayed layer deteriorates, resulting in a rapid decrease in interparticle bonding force during internal combustion engine operation, and promoting abrasive wear.

従って、Mo粉末の混合量は15〜30重景%の重量、
好ましくは15〜25重量%の範囲とする。一方、Fe
−C−Cr合金粉末の混合量はMo粉末混合量に見合っ
て70〜85重景%、重量しくは75〜85重量%であ
る。
Therefore, the amount of Mo powder mixed is 15-30% by weight,
Preferably it is in the range of 15 to 25% by weight. On the other hand, Fe
The amount of the -C-Cr alloy powder mixed is 70-85% by weight, or 75-85% by weight, depending on the amount of Mo powder mixed.

シールリングは、母材としての鋳鉄又は鋼材に直接溶射
した場合でも可成りな密着強度を得られるが、より苛酷
な条件下で使用する場合には下地溶射としてNi−Mo
系合金(Mo70%)等を用いてもよい。
Even when the seal ring is sprayed directly onto cast iron or steel as the base material, it can obtain a considerable adhesion strength, but when used under more severe conditions, Ni-Mo can be sprayed as a base material.
A base alloy (70% Mo) or the like may also be used.

以下、実施例により詳しく説明する。Hereinafter, this will be explained in detail with reference to examples.

〔実施例〕〔Example〕

本発明の実施例および比較例としてのシリンダライナと
ピストンリングの組合わせを次表に示す。
The following table shows combinations of cylinder liners and piston rings as examples of the present invention and comparative examples.

以下余白 第1表 比較例1の硬質クロムメツキライナ(クロマードライナ
)の作り方は次のとおりである。
The hard chrome liner (chromad liner) of Comparative Example 1 is made as follows.

加工前熱処理として800〜850℃×30〜60分後
、空冷の焼ならしを行ったSTKM15Aの管素材の内
径を中ぐりしてセミ仕上とし、更にシリンダライナの鍔
出しのためプレス加工を施した管素材に、200′の粗
砥石で粗ラッピング、次いで600”の仕上砥石で仕上
ラッピングを施して107φ (外径)×105φ (
内径’) X203(長さ)+Il/Il+の薄肉ライ
ナを作成した。前記ラッピングの条件としては70〜1
100rp (回転数)×20回/分(ストローク)×
1〜3分゛(時間)の条件を用いた。
After 30 to 60 minutes at 800 to 850°C as pre-processing heat treatment, the inner diameter of the STKM15A tube material, which had been air-cooled and normalized, was bored to give it a semi-finished finish, and further press work was performed to flange the cylinder liner. The prepared tube material was roughly lapped with a 200' coarse grindstone, and then finished lapped with a 600'' finishing whetstone to obtain a 107φ (outside diameter) x 105φ (
A thin liner with inner diameter') X203 (length)+Il/Il+ was prepared. The wrapping conditions are 70-1
100rp (rotation speed) x 20 times/min (stroke) x
Conditions of 1 to 3 minutes (hours) were used.

比較例2および実施例におけるライナの作成方法は次の
とおりである。
The method for producing the liner in Comparative Example 2 and Examples is as follows.

規定寸法に加工しかつ脱脂洗滌した107φ (外径)
m/m X 105φ (内径)+/m X203m/
m(長さ)の鋼製シリンダライナ(材質:第1表記載の
通り)の内周面を平均粒径220メツシユのSiC粒子
を含むスラリーを用いて、ホーニングシュー圧力1.0
kg/j、回転数xストロークX時間: 80 rpm
/■1nX30回/l1lin×2分の条件で、その内
周摺動面に螺旋状交叉溝を加工すると同時に該溝内及び
プラトー部にSiC粒子を埋め込み、次いで、平均粒径
400メツシユのSiC微粒子を含むスラリーを用い、
ホーニングシュー圧力1.0ksr/aJ、回転゛数x
ストロークX時間: 80 rpm/a+in x 3
0回/lll1n×2分の条件で内周摺動面を研摩仕上
し、最後に灯油で洗滌し常法により脱脂した。
107φ processed to specified dimensions and degreased and cleaned (outer diameter)
m/m x 105φ (inner diameter) +/m x 203m/
The inner circumferential surface of a steel cylinder liner (material: as listed in Table 1) with a length of
kg/j, rotation speed x stroke x time: 80 rpm
/■ Under the conditions of 1n x 30 times/11lin x 2 minutes, a spiral cross groove was formed on the inner peripheral sliding surface, and at the same time SiC particles were embedded in the groove and the plateau portion, and then SiC fine particles with an average particle size of 400 mesh were formed. Using a slurry containing
Honing shoe pressure 1.0ksr/aJ, number of rotations x
Stroke x time: 80 rpm/a+in x 3
The inner peripheral sliding surface was polished and finished under the conditions of 0 times/lll1n x 2 minutes, and finally washed with kerosene and degreased by a conventional method.

この加工によって得られたシリンダライナの摺動面はS
iC粒子が埋め込み面積率で約6%螺旋状交叉溝及びプ
ラトー部に均一に埋め込まれ、該交叉溝によって囲まれ
た略菱形のプラトー部の占有面積率(プラトー率ンは約
80%、該プラトー、部の最大表面粗らさは約3μm、
であった、一方、本発明のピストンリングセントとして
は、105φflI/ll+(外径) x2.5 m/
a+(幅) X3.55 tm/m  (厚)の球状黒
鉛鋳鉄製ピストンリング(TOPリング)の外周面に削
設した溝内にNi −Mo系合金を約20μmの厚さに
下地溶射した後下記に示す組成及び粒度を有するFe 
−C−Si −Cr合金粉末及びMo粉末とを混合した
混合粉末をMETCO7MBガンを用いてプラズマ溶射
し、混合溶射層の厚さが180μmで該溝が完全に充填
され、かつ表面粗らさが0.5〜1.5μmになるよう
に研摩加工を施し供試ピストンリングとした。又、2n
dリングには外周面クロムメツキの鋳鉄製リングを、o
Nリングには内外周クロムメツキのコイルエキスパンダ
付鋼製リングを用いた。
The sliding surface of the cylinder liner obtained by this process is S
The iC particles are uniformly embedded in the spiral cross grooves and the plateau part at an embedded area ratio of about 6%, and the occupied area ratio of the approximately rhombic plateau part surrounded by the cross grooves (the plateau ratio is about 80%, the plateau part is approximately 80%). , the maximum surface roughness of the area is approximately 3 μm,
On the other hand, the piston ring center of the present invention is 105φflI/ll+(outer diameter) x2.5 m/
a+ (width) Fe having the composition and particle size shown below
A mixed powder of -C-Si-Cr alloy powder and Mo powder was plasma sprayed using a METCO7MB gun, and the thickness of the mixed sprayed layer was 180 μm, the grooves were completely filled, and the surface roughness was reduced. A sample piston ring was prepared by polishing to a thickness of 0.5 to 1.5 μm. Also, 2n
The d ring is a cast iron ring with a chrome plated outer circumference, and the o
A steel ring with a coil expander with chrome plating on the inner and outer peripheries was used for the N ring.

各実施例及び比較例に用いた溶射粉末の組成及び粒度は
下記のとおりである。
The composition and particle size of the thermal spray powder used in each example and comparative example are as follows.

−FCrH363μm以下 64.2%Cr、 6.56%C,1,6%St・高ク
ロム鋳鉄 63μm以下2011m以上34.8%Cr
、 5.74%C ・Fe−C−5i−Cr   63μm以下66.3%
Cr、9.1%C,0,2%St・Mo粉末(3−5t
tmのMo jj11粉末を有機バインダで造粒) 99%以上Mo  74#m以下 ・比較例の硬質クロムめっき:めっき厚さ0.3m/m
硬さHv960 尚、第2表に本発明に係るシールリングと比較例として
のシールリングの各溶射粉末の混合割合、Fe−C−C
r合金粉末との混合粉末のC及びCr含有量、各溶射層
の表面気孔率、仕上面の表面粗らさ及び表面硬さを示す
-FCrH 363 μm or less 64.2% Cr, 6.56% C, 1.6% St/High chromium cast iron 63 μm or less 2011 m or more 34.8% Cr
, 5.74%C ・Fe-C-5i-Cr 63μm or less 66.3%
Cr, 9.1%C, 0.2%St/Mo powder (3-5t
tm Mo jj11 powder granulated with an organic binder) 99% or more Mo 74 #m or less ・Hard chrome plating of comparative example: Plating thickness 0.3 m/m
Hardness Hv960 Table 2 shows the mixing ratio of each thermal spray powder of the seal ring according to the present invention and the seal ring as a comparative example, Fe-C-C
The C and Cr contents of the mixed powder with the r alloy powder, the surface porosity of each sprayed layer, and the surface roughness and surface hardness of the finished surface are shown.

第2表 前記処理を施した鋼製シリンダライナと第1表の本発明
及び比較例のピストンリングを組付け、台上耐久摩耗比
較テストを行った結果を第6図に示す。
Table 2 The treated steel cylinder liner and the piston rings of the present invention and comparative example shown in Table 1 were assembled, and a bench durability and wear comparison test was conducted. The results are shown in FIG.

第7図は本発明に係るピストンリングの@面図であって
、(8)はピストンリング、(9)は摺動面の溝(10
)は溶射層を示す。
FIG. 7 is a side view of the piston ring according to the present invention, in which (8) is the piston ring and (9) is the groove (10) on the sliding surface.
) indicates a sprayed layer.

供試、エンジン及びテスト条件は以下のとおりであった
The test specimen, engine, and test conditions were as follows.

内径(105φ−7m)X工程(125m/@) X 
6気筒総排気量6.494CC175PSデイ一ゼルエ
ンジン運転条件3100rpm x全負荷X 100”
水温110℃ (機関出口) 高水温テスト 第6図において、シリンダライナの摩耗量はTOPリン
グ上死点位置における100 Hr当りの各45°方向
計測値の平均摩耗M(μm)を示し、ピストンリングの
摩耗量はTOPリングの平均外周摩耗量(μm)を示す
。又、ライナとリング摩耗量の合計は比較例1の合計摩
耗量(μm/100Hr)を100%とした相対値であ
る。
Inner diameter (105φ-7m) X process (125m/@)
6-cylinder total displacement 6.494CC175PS diesel engine Operating conditions 3100rpm x full load x 100”
Water temperature: 110°C (engine outlet) High water temperature test In Figure 6, the wear amount of the cylinder liner is the average wear M (μm) of the measured values in each 45° direction per 100 hours at the top dead center position of the TOP ring, and The wear amount indicates the average outer peripheral wear amount (μm) of the TOP ring. Further, the total amount of wear on the liner and ring is a relative value with the total amount of wear (μm/100Hr) of Comparative Example 1 taken as 100%.

第6図の結果を見ると、現用されているクロマードライ
ナと燐酸塩処理ピストンリングの組合わせである比較例
1はライナ摩耗において極めて優れた性能を示すものの
相手リングを異常に摩耗させ、相性において好ましくな
いことが明瞭に把握される。
Looking at the results in Figure 6, Comparative Example 1, which is a combination of the currently used chromade liner and phosphate-treated piston ring, shows extremely excellent performance in terms of liner wear, but causes abnormal wear on the mating ring, resulting in poor compatibility. It is clearly understood that this is unfavorable.

比較例2はライナ摩耗およびシリンダ摩耗の両面で比較
例1より劣る性能となっている。
Comparative Example 2 has inferior performance to Comparative Example 1 in both liner wear and cylinder wear.

これに対して本発明の実施例ではライナ摩耗およびシリ
ンダ摩耗の両面で最良の結果が得られている。
In contrast, the embodiments of the present invention provide the best results in terms of both liner wear and cylinder wear.

が飛躍的に改善され、クロマードライナと同等以上の性
能が得られ、しかもクロマードライナのようにめっきの
ための湿式1程に起因する廃液公害がないために、本発
明に係るシリンダとピストンリングとの組合わせは理想
的なものと云うことが出来る。
The cylinder and piston according to the present invention have been dramatically improved, and have a performance equivalent to or better than that of the Chromard liner, and also do not cause waste liquid pollution caused by wet plating method 1, unlike the Chromard liner. The combination with the ring can be said to be ideal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリンダライナの縦断面図、第2図は本発明に
係るシリンダライナの摺動面を示す第1図のA部拡大断
面図、第3図(a)は本発明に係るシリンダライナ摺動
面の仕上加工前の表面状況を模型的に示す一部拡大断面
図、第3図(b)は仕上加工後の第3図(a)に対応す
る一部拡大断面図、第3図(C)は硬質粒子がシリンダ
ライナ母材中に埋没した表面状態を示す第3図(b)に
準じた一部拡大断面図、第4図はプラトー率計算法の説
明図、第5図はシリンダライナ摺動面の表面粗らさを示
す説明図、第6図は本発明に係る鋼製シリンダライナと
、本発明及び比較例のピストンリングを組付は台上耐久
摩耗比較テストを行った結果を示すグラフ、第7図は本
発明に係るピストンリングの断面図である。 1ニジリンダライナ、  2:摺動面、3:油溜′り溝
部、   4ニブラド一部、5:硬質粒子、    6
:断面曲線、7:基線、       8:ピストンリ
ング、9:外周摺動面の溝、10:溶射層、 H:油溜り溝部の深さ。
FIG. 1 is a vertical sectional view of a cylinder liner, FIG. 2 is an enlarged sectional view of section A in FIG. 1 showing the sliding surface of the cylinder liner according to the present invention, and FIG. FIG. 3(b) is a partially enlarged sectional view schematically showing the surface condition of the sliding surface before finishing processing, and FIG. 3(b) is a partially enlarged sectional view corresponding to FIG. 3(a) after finishing processing. (C) is a partially enlarged cross-sectional view based on FIG. 3(b) showing the surface condition where hard particles are buried in the cylinder liner base material, FIG. 4 is an explanatory diagram of the plateau rate calculation method, and FIG. 5 is An explanatory diagram showing the surface roughness of the sliding surface of the cylinder liner, Figure 6 shows the steel cylinder liner according to the present invention and the piston rings of the present invention and comparative examples assembled and subjected to a bench durability and wear comparison test. The graph showing the results, FIG. 7, is a cross-sectional view of the piston ring according to the present invention. 1 Nijilinda liner, 2: Sliding surface, 3: Oil sump groove, 4 Nibrad part, 5: Hard particles, 6
: Cross-sectional curve, 7: Base line, 8: Piston ring, 9: Groove on outer peripheral sliding surface, 10: Sprayed layer, H: Depth of oil sump groove.

Claims (1)

【特許請求の範囲】 1、重量比でC0.35〜0.55%、Si0.40%
以下、Mn0.40〜1.00%、残部実質的にFeか
らなる組成を有するシリンダの摺動面に特定パターンの
油溜り溝部が配設されるとともに該溝の内部及びプラト
ー部に平均粒径3〜20μmの硬質粒子が面積率で5〜
15%均一に分散埋設されておりかつ上面が平滑化され
ている摺動面を有するシリンダと、重量比でC8.5〜
9.5%、Cr65〜70%、Si1.0%以下を含有
し、残部が実質的にFeからなる粒度が74μmより粗
粒でない高炭素低珪素Fe−C−Si−Cr合金粉末7
0〜85重量%及び粒度が74μmより粗粒でないMo
粉末15〜30重量%の混合粉末をプラズマ溶射してな
る溶射層を摺動面に形成したピストンリングとからなる
シリンダとピストンリングの組合わせ。 2、油溜り溝部の特定パターンが連続及び不連続の螺旋
状交叉溝状である特許請求の範囲第1項記載のシリンダ
とピストンリングの組合わせ。 3、油溜り溝によって囲まれたシリンダ摺動面における
プラトー部の占有面積率(プラトー率)がプラトー率1
.0%の基線から2μmの深さにおいて75〜95%で
ある特許請求の範囲第1項記載のシリンダとピストンリ
ングの組合わせ。 4、硬質粒子がSiC、Al_2O_3、Cr_2O_
3、Si_3N_4よりなる群から選ばれた単一粒子で
ある特許請求の範囲第1項記載のシリンダとピストンリ
ングの組合わせ。 5、シリンダ摺動面のプラトー部の最大表面粗らさが3
〜7μm、ピストンリング摺動面の表面粗らさが1.0
μm以下、気孔の深さが2〜5μmである特許請求の範
囲第1項記載のシリンダとピストンリングの組合わせ。 6、ピストンリングの溶射層が高炭素低珪素Fe−C−
Si−Cr合金粉末75〜85%、Mo粉末15〜25
重量%の混合粉末をプラズマ溶射してなる特許請求の範
囲第1項記載のシリンダとピストンリングの組合わせ。 7、Mo粉末が10μm以下のMo微粉末を74μmよ
り粗粒でないようにバインダーで造粒した造粒粉末であ
る特許請求の範囲第1項記載のシリンダとピストンリン
グの組合わせ。
[Claims] 1. C0.35 to 0.55%, Si 0.40% by weight
Hereinafter, a specific pattern of oil sump grooves is provided on the sliding surface of a cylinder having a composition consisting of 0.40 to 1.00% Mn and the remainder substantially Fe, and an average particle size is provided inside the grooves and in the plateau portion. Hard particles of 3 to 20 μm have an area ratio of 5 to 20 μm.
A cylinder with a sliding surface that is 15% uniformly dispersed and buried and whose upper surface is smoothed, and a weight ratio of C8.5~
High-carbon, low-silicon Fe-C-Si-Cr alloy powder 7 containing 9.5% Cr, 65-70% Cr, 1.0% or less Si, and the balance being substantially Fe and having a particle size not coarser than 74 μm.
0 to 85% by weight and Mo with a particle size not coarser than 74 μm
A combination of a cylinder and a piston ring, each consisting of a piston ring whose sliding surface is coated with a sprayed layer formed by plasma spraying a 15 to 30% by weight mixed powder. 2. The combination of a cylinder and a piston ring according to claim 1, wherein the specific pattern of the oil reservoir grooves is a continuous or discontinuous spiral cross groove shape. 3. The occupied area ratio (plateau ratio) of the plateau portion on the cylinder sliding surface surrounded by the oil sump groove is plateau ratio 1
.. The combination of a cylinder and a piston ring according to claim 1, which is 75 to 95% at a depth of 2 μm from a base line of 0%. 4. Hard particles are SiC, Al_2O_3, Cr_2O_
3. The combination of a cylinder and a piston ring according to claim 1, which is a single particle selected from the group consisting of Si_3N_4. 5. The maximum surface roughness of the plateau portion of the cylinder sliding surface is 3.
~7μm, surface roughness of piston ring sliding surface is 1.0
The combination of a cylinder and a piston ring according to claim 1, wherein the depth of the pores is 2 to 5 μm. 6. The sprayed layer of the piston ring is high carbon low silicon Fe-C-
Si-Cr alloy powder 75-85%, Mo powder 15-25%
A combination of a cylinder and a piston ring according to claim 1, which is obtained by plasma spraying a mixed powder of % by weight. 7. The combination of a cylinder and a piston ring according to claim 1, wherein the Mo powder is a granulated powder obtained by granulating Mo fine powder of 10 μm or less with a binder so that the particle size is not coarser than 74 μm.
JP25238387A 1987-10-08 1987-10-08 Combination of cylinder and piston ring Expired - Lifetime JPH0765683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25238387A JPH0765683B2 (en) 1987-10-08 1987-10-08 Combination of cylinder and piston ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25238387A JPH0765683B2 (en) 1987-10-08 1987-10-08 Combination of cylinder and piston ring

Publications (2)

Publication Number Publication Date
JPH0198764A true JPH0198764A (en) 1989-04-17
JPH0765683B2 JPH0765683B2 (en) 1995-07-19

Family

ID=17236554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25238387A Expired - Lifetime JPH0765683B2 (en) 1987-10-08 1987-10-08 Combination of cylinder and piston ring

Country Status (1)

Country Link
JP (1) JPH0765683B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211728A (en) * 2002-12-27 2004-07-29 Nsk Warner Kk Separator plate for wet multiple disc clutch and wet multiple disc clutch equipped therewith
WO2012157336A1 (en) * 2011-05-19 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
WO2012157334A1 (en) * 2011-05-16 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
WO2012169261A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169258A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169262A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169255A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169256A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
JP2015508871A (en) * 2012-02-11 2015-03-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG Thermally coated components with friction-optimized sliding surfaces
JP2016211727A (en) * 2015-03-31 2016-12-15 株式会社クボタ Slide member
JP2018105364A (en) * 2016-12-23 2018-07-05 株式会社クボタ Shaft/bearing structure and standby operation pump
JP2019190643A (en) * 2018-04-27 2019-10-31 株式会社クボタ Slide member and manufacturing method thereof
JP2020085468A (en) * 2018-11-15 2020-06-04 アダマンド並木精密宝石株式会社 Optical measurement device of surface pores on inner peripheral surface, and measurement method for porosity
EP3134560B1 (en) * 2014-04-24 2021-04-21 Daimler AG Thermally coated component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479658B1 (en) * 2012-10-02 2014-04-23 株式会社リケン piston ring

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211728A (en) * 2002-12-27 2004-07-29 Nsk Warner Kk Separator plate for wet multiple disc clutch and wet multiple disc clutch equipped therewith
JPWO2012157334A1 (en) * 2011-05-16 2014-07-31 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012157334A1 (en) * 2011-05-16 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
JP5917502B2 (en) * 2011-05-16 2016-05-18 株式会社東芝 Method for producing molybdenum granulated powder
WO2012157336A1 (en) * 2011-05-19 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
JP5917503B2 (en) * 2011-05-19 2016-05-18 株式会社東芝 Method for producing molybdenum granulated powder
JPWO2012157336A1 (en) * 2011-05-19 2014-07-31 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169257A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169256A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169255A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169262A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169258A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169261A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
JP2015508871A (en) * 2012-02-11 2015-03-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG Thermally coated components with friction-optimized sliding surfaces
EP3134560B1 (en) * 2014-04-24 2021-04-21 Daimler AG Thermally coated component
JP2016211727A (en) * 2015-03-31 2016-12-15 株式会社クボタ Slide member
JP2018105364A (en) * 2016-12-23 2018-07-05 株式会社クボタ Shaft/bearing structure and standby operation pump
JP2019190643A (en) * 2018-04-27 2019-10-31 株式会社クボタ Slide member and manufacturing method thereof
JP2020085468A (en) * 2018-11-15 2020-06-04 アダマンド並木精密宝石株式会社 Optical measurement device of surface pores on inner peripheral surface, and measurement method for porosity

Also Published As

Publication number Publication date
JPH0765683B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US7059290B2 (en) Cylinder liner with its inner peripheral surface formed with surface treatment layer, and method for machining to the surface treatment layer
KR102134742B1 (en) Cast iron cylinder liner and internal combustion engine
JPH0198764A (en) Combination of cylinder and piston ring
US7543557B2 (en) Scuff resistant aluminum piston and aluminum cylinder bore combination and method of making
US5846349A (en) Low alloy steel powder for plasma deposition having solid lubricant properties
WO1995021994A1 (en) A method of manufacturing a cylinder liner, and such a liner
JPH04117956U (en) combination oil ring
US20170122247A1 (en) Method of forming a cylinder liner
JPWO2004035852A1 (en) Piston ring, thermal spray coating used therefor, and manufacturing method
JPS61144469A (en) Sliding surface opposed structure
JP2004116707A (en) Combined sliding member
JPH11153059A (en) Cylinder liner and manufacture thereof
JPS61157875A (en) Combination of cylinder and seal ring
JPS5827860A (en) Combination of cylinder liner and piston ring
JP6553275B1 (en) Cylinder liner and method of manufacturing the same
JP2004060619A (en) Piston ring set for internal combustion engine
JPH0127145B2 (en)
JP7343843B2 (en) sliding mechanism
JP2724706B2 (en) Finishing method for sliding members
JPS6113103B2 (en)
JPH08253852A (en) Formation of wear resistant film onto aluminum alloy substrate
JPH09209072A (en) Wear resistant cast iron and its production
JPS635147A (en) Combination of piston ring with cylinder
WO2009014107A1 (en) Cylinder block and process for manufacturing the same
JPH0432549A (en) Wear resistant nitrided layer of cast iron material and its production