JPH0198653A - Methacrylic resin composition - Google Patents

Methacrylic resin composition

Info

Publication number
JPH0198653A
JPH0198653A JP25650787A JP25650787A JPH0198653A JP H0198653 A JPH0198653 A JP H0198653A JP 25650787 A JP25650787 A JP 25650787A JP 25650787 A JP25650787 A JP 25650787A JP H0198653 A JPH0198653 A JP H0198653A
Authority
JP
Japan
Prior art keywords
weight
methacrylic resin
monomer
methyl methacrylate
graft copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25650787A
Other languages
Japanese (ja)
Inventor
Suehiro Tayama
田山 末広
Masamitsu Tateyama
立山 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP25650787A priority Critical patent/JPH0198653A/en
Publication of JPH0198653A publication Critical patent/JPH0198653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the title composition excellent in impact and solvent resistances, by mixing a methacrylic resin with a specified multi-structure graft copolymer. CONSTITUTION:20-200pts.wt. mixture comprising 80-100% methyl methacrylate and 20-0% other copolymerizable vinyl or vinylidene monomers is copolymerized in the presence of 100pts.wt. rubberlike copolymer obtained by copolymerizing 74.8-84.9wt.% (1-8C) alkyl acrylate with 15-25% at least one macromonomer selected from styrene and vinyltoluene each having a polymerizable functional group on one end, 0.1-5% crosslinking monomer having at least two C-C double bonds and 0-20% other vinyl or vinylidene monomers to obtain a multi-structure graft copolymer (B) containing 0.1-50% rubberlike polymer. A methacrylic resin (A) obtained by polymerizing methyl methacrylate or copolymerizing this monomer with other copolymerizable vinyl or vinylidene monomers is blended with component B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐衝撃性及び耐溶剤性に優れたメタクリル樹
脂組成物に関し、よシ詳しくはメタクリル酸メチ〃を主
要構成成分とするメタクリル樹脂と、特定の構造を有す
る多重構造グラフト共重合体とからなシ、透明性、表面
光沢に優れ、かつ低温域及び常温域での優れた耐衝撃性
や耐溶剤性を示すメタクリル樹脂組成物に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a methacrylic resin composition having excellent impact resistance and solvent resistance, and more specifically, a methacrylic resin composition containing methacrylate methacrylate as a main component. and a multi-structure graft copolymer having a specific structure, and a methacrylic resin composition that has excellent transparency and surface gloss, and also exhibits excellent impact resistance and solvent resistance in low temperature range and room temperature range. .

〔従来の技術〕[Conventional technology]

メタクリル樹脂は、高分子材料の中でも透明性や表面光
沢などの光学的性質、機械的性質、耐候性などに卓越し
た特性を有し、また成形加工性においても優れた特性を
有している。これらの特性を生かして照明器具、看板、
窓材、光学レンズ、車輌部品及び各種デイスプレィなど
多くの分野で使用されている。
Among polymer materials, methacrylic resin has excellent optical properties such as transparency and surface gloss, mechanical properties, and weather resistance, and also has excellent moldability. Taking advantage of these characteristics, lighting equipment, signboards,
It is used in many fields such as window materials, optical lenses, vehicle parts, and various displays.

しかし、メタクリル樹脂は耐衝撃性が不足しているため
、多くの用途分野においてその改良が強く望まれておシ
、上述のメタクリル樹脂本来の特性を損わず耐衝撃性を
付与する方法が古くから検討されている。本発明者らも
先にアクリル酸アルキルエステルとスチレン系単量体及
びイソフタル酸ジアリ〃の特定割合の単量体混合物を重
合させたアクリμ糸弾性体の存在下にメタクリル酸メチ
μを主成分とする単量体またはその混合物をグラフト共
重合させたグラフト共重合体とメタクリル樹脂をプVン
ドした樹脂組成物(特願昭60−99115号公報)や
、メタクリμ酸メチルを主成分とする硬質架橋樹脂を内
部に含有し、架橋アクリ〃酸エステル系共重合体が外層
を構成する2重構造アクリル系弾性体の存在下に、架橋
性単量体と非架橋性単量体を重合したゴム状弾性体とメ
タクリル樹脂をプVンドした樹脂組成物(U S P 
4.433.103号、特開昭56%、67712号公
報)などについて提案した。
However, since methacrylic resin lacks impact resistance, its improvement is strongly desired in many application fields, and the method of imparting impact resistance without impairing the original properties of methacrylic resin is outdated. It is being considered since. The present inventors also previously polymerized a monomer mixture of acrylic acid alkyl ester, styrene monomer, and diary isophthalate in the presence of an acrylic μ yarn elastic material, which contained methiμ methacrylate as the main component. A resin composition in which a graft copolymer obtained by graft copolymerizing a monomer or a mixture thereof and a methacrylic resin (Japanese Patent Application No. 1983-99115), and a resin composition containing methyl methacrylate as a main component A crosslinkable monomer and a non-crosslinkable monomer are polymerized in the presence of a double-structure acrylic elastic body containing a hard crosslinked resin inside and a crosslinked acrylic acid ester copolymer forming the outer layer. Resin composition (U.S.P.
No. 4.433.103, Japanese Unexamined Patent Application Publication No. 1987, No. 67712), etc.

これらの他に、アクリル酸アルキルエステルとスチレン
系単量体をゴム状エヲストマー成分として用いる方法は
多数提案されている。
In addition to these methods, many methods have been proposed in which acrylic acid alkyl esters and styrene monomers are used as rubbery elastomer components.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、アクリル酸アルキルエステルとスチレン
系単量体の共重合体のガラス転移点は、アクリμ酸アμ
キpエステル単独重合体のガラス転移点(−50〜−6
0℃)に比較して%、0〜−20℃となり、低温域での
エラストマー特性に影響を及ぼし、耐衝撃性の発現性が
低下するという欠点を有していた。
However, the glass transition point of the copolymer of acrylic acid alkyl ester and styrene monomer is
Glass transition point of Kip ester homopolymer (-50 to -6
%, 0 to -20°C, compared to 0°C), which had the disadvantage of affecting the elastomer properties in the low temperature range and reducing the ability to develop impact resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上述の問題点に鑑み、透明性、表面光沢
、成形加工性、耐候性などのメタクリル樹脂本来の特性
を犠牲にすることなく、温度変化に依存しない耐衝撃性
や耐溶剤性が付与されたメタクリル樹脂組成物を得るべ
く鋭意検討した結果、耐衝撃性を付与する成分であるア
クリル酸アルキルエステμと、透明性を付与する成分で
あるスチレン系単社体を、ブロック状に重合させること
によジアクリル酸アμキルエステルの低いガラス転移点
を保持した状顔で、透明性も付与できることを見出し本
発明に到達した。
In view of the above-mentioned problems, the present inventors have developed a method that provides impact resistance and solvent resistance that do not depend on temperature changes, without sacrificing the inherent properties of methacrylic resin such as transparency, surface gloss, moldability, and weather resistance. As a result of intensive studies to obtain a methacrylic resin composition that has been imparted with properties, we have combined acrylic acid alkyl ester μ, which is a component that imparts impact resistance, and styrene, which is a component that imparts transparency, into a block-shaped methacrylic resin composition. The present invention was accomplished by discovering that by polymerizing diacrylic acid acryl ester, transparency can be imparted while maintaining the low glass transition point.

即ち、本発明はメタクリル酸メチル単独、またはメタク
リル酸メチルと他の共重合性のビニルまたはビニリデン
系単量体の混合物を重合して得られたメタクリル樹脂(
I)と、 アルキル基の炭素数が1〜8のアクリル酸アμキルエス
テルから選ばれた少なくとも1種の単量体(a) 74
.9〜84.9重量%、片末端に重合性官能基を有する
スチレン及びビニルトルエンから選ばれた少なくとも1
種からなるマクロマー(b)15〜25重量%、及び炭
素間2重結合を2個以上有する架橋性単量体α1〜5重
量%、他の共重合性のビニ〃またはビニリデン系単量体
0〜20重量−からなる単量体混合物(c)を共重合さ
せてなるゴム状共重合体(n) 100重量部の存在下
に、メタクリル酸メチρ80〜100重量嗟と他の共重
合性のビニ/L/lたはビニリデン系単量体0〜20重
量−からなる単量体混合物(d) 20〜200重量部
を重合させて得られる多重構造グラフト共重合体(II
I) とからなる組成物であって、全組成物中に多重構造グラ
フト共重合体(m)のゴム状共重合体(II)成分がI
IL1〜50重量%含有されてなることを特徴とするメ
タクリル樹脂組成物を第1の発明とし、メタクリル酸メ
チル単独、またはメタクリル酸メチ〃と他の共重合性の
ビニルまたはビニリデン系単量体の混合物を重合して得
られたメタクリル樹脂CI)と、 ゴム状共重合体(U)の全重量に対し50重量−までの
範囲でメタクリル酸メチル80〜100重量−と他の共
重合性のビニA/またはビニリデン系単量体0〜20重
量−からなる単量体混合物を重合させてなる硬質樹脂成
分を粒子内部に含有し、アμキ〃基の炭素数が1〜8の
アクリμ酸ア〃キルエステルから選ばれた少なくとも1
種の単量体(a) 74.9〜84.9重量%、片末端
に重合性官能基を有するスチレン及びビニルトルエンか
ら選ばれた少なくとも1種からなるマクロマー(b)1
5〜25重量%、及び炭素間2重量体0〜20重量−か
らなる単量体混合物(c)を共重合させてなるゴム状共
重合体(n) t o o重tiの存在下に、メタクリ
ル酸メチル80〜100重量−と他の共重合性のビニル
またはビニリデン系単量体0〜20重量−からなる単量
体混合物(d)20〜200重量部を重合させて得られ
る多重構造グラフト共重合体(II)とからなる組成物
であって、全組成物中に多重構造グラフト共重合体(m
)のゴム状共重合体(力成分が11〜50重量%含有さ
れてなることを特徴とするメタクリル樹脂組成物を@2
の発明とする。
That is, the present invention provides a methacrylic resin (
I) and at least one monomer (a) selected from acrylic acid aμyl esters having an alkyl group having 1 to 8 carbon atoms 74
.. 9 to 84.9% by weight, at least one selected from styrene and vinyltoluene having a polymerizable functional group at one end
15 to 25% by weight of a macromer (b) consisting of seeds, 1 to 5% by weight of a crosslinkable monomer α having two or more carbon-carbon double bonds, and 0 of other copolymerizable vinyl or vinylidene monomers. In the presence of 100 parts by weight of a rubbery copolymer (n) obtained by copolymerizing a monomer mixture (c) consisting of ~20 parts by weight, 80 to 100 parts by weight of methyl methacrylate and other copolymerizable Monomer mixture (d) consisting of 0 to 20 parts by weight of vinyl/L/l or vinylidene monomer (II)
I), wherein the rubbery copolymer (II) component of the multi-structure graft copolymer (m) is present in the entire composition.
The first invention is a methacrylic resin composition characterized by containing 1 to 50% by weight of IL. methacrylic resin CI) obtained by polymerizing the mixture, methyl methacrylate in an amount of 80 to 100% by weight based on the total weight of the rubbery copolymer (U), and other copolymerizable vinyl. Acrylic acid containing inside the particle a hard resin component obtained by polymerizing a monomer mixture consisting of A/or vinylidene monomer 0 to 20% by weight, and having an acrylic acid group having 1 to 8 carbon atoms. At least one selected from acyl esters
Macromer (b) consisting of 74.9 to 84.9% by weight of seed monomer (a) and at least one selected from styrene and vinyltoluene having a polymerizable functional group at one end
In the presence of a rubbery copolymer (n) obtained by copolymerizing a monomer mixture (c) consisting of 5 to 25% by weight and 0 to 20% by weight of carbon-carbon dimers, A multilayer structure graft obtained by polymerizing 20 to 200 parts by weight of a monomer mixture (d) consisting of 80 to 100 parts by weight of methyl methacrylate and 0 to 20 parts by weight of other copolymerizable vinyl or vinylidene monomers. copolymer (II), wherein the entire composition contains a multi-structure graft copolymer (m
) rubber-like copolymer (containing 11 to 50% by weight of force component) @2
invention.

本発明で用いられるメタクリル樹脂(I)は、ippす
w酸メチ〃単独、またはメタクリル酸メチルと他の共重
合性のビニ/I/jたはビニリデン系単量体の混合物を
重合して得られるものであシ、好ましくは80重量−以
上のメタクリル酸メチルを含有するものである。他の共
重合性のビニ/l/またはビニリデン系単量体としては
、好ましくはアクリル酸メチル、アクリル酸エチル、ア
クリル酸ブチル、アクリル酸2−エチルヘキVlvなど
の炭素数1〜Bのアクリル酸アルキルエステ〃、スチレ
ン、及びアクリロニトリμが挙げられる。
The methacrylic resin (I) used in the present invention can be obtained by polymerizing methacrylic methacrylate alone or a mixture of methyl methacrylate and other copolymerizable vinyl/I/j or vinylidene monomers. It preferably contains 80% by weight or more of methyl methacrylate. Other copolymerizable vinyl/l/ or vinylidene monomers are preferably alkyl acrylates having 1 to B carbon atoms such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate Vlv. Examples include ester, styrene, and acrylonitrium.

次に、多重構造グラフト共重合体(m)は、ア〃キ〃基
の炭素数が1〜8のアクリル酸アルキpエステルから選
ばれた少なくとも1種の単量体(6,) 74.9〜8
4.991G、片末端に重合性官能基を有するスチレン
及びビニルトルエンから選ばれた少なくとも1種からな
るマクロマー(b)15〜25重量%、及び炭素間2重
結合を2個以上有する架橋性単量体α1〜5重jtチ、
他の共重合性のビニμまたはビニリデン系単量体0〜2
0重量%からなる単量体混合物(c)を共重合させてな
るゴム状共重合体(n) 100重量部の存在下に、メ
タクリル酸メチ/L/80〜100重量−と他の共重合
性のビニルまたはビニリデン系単量体0〜20重量−か
らなる単量体混合物(d)20〜200重量部を重合さ
せて得られるものである。
Next, the multi-structure graft copolymer (m) is composed of at least one monomer (6,) selected from acrylic acid alkyl p esters in which the alkyl group has 1 to 8 carbon atoms. ~8
4.991G, 15 to 25% by weight of a macromer (b) consisting of at least one selected from styrene and vinyltoluene having a polymerizable functional group at one end, and a crosslinkable monomer having two or more carbon-carbon double bonds. mass α1-5fold jtchi,
Other copolymerizable vinyl μ or vinylidene monomers 0 to 2
In the presence of 100 parts by weight of a rubbery copolymer (n) obtained by copolymerizing a monomer mixture (c) consisting of 0% by weight, methymethacrylate/L/80 to 100% by weight and other copolymers It is obtained by polymerizing 20 to 200 parts by weight of a monomer mixture (d) consisting of 0 to 20 parts by weight of a vinyl or vinylidene monomer.

単量体(a)としてはアクリル酸ブチμ、アクリル酸2
−エチルヘキシμが特に好ましい。
As the monomer (a), acrylic acid butyμ, acrylic acid 2
-Ethylhexy μ is particularly preferred.

また、マクロマー(b)は、片末端に重合性官能基とし
て(メタ)アクリロイルオキシ基を有することが好まし
い。更に、分子量は1.000〜10.000の範囲が
好ましく、分子量が1,000未満ではゴム状共重合体
(II)のガラス転移点が上昇し、低温域での耐衝撃性
が改良されず、−方、10,000を超えると、特に乳
化重合の場合に安定な重合が行なえなかったシ、巨大粒
子の派生による透明性の低下がみられる。
Further, the macromer (b) preferably has a (meth)acryloyloxy group at one end as a polymerizable functional group. Furthermore, the molecular weight is preferably in the range of 1.000 to 10.000; if the molecular weight is less than 1,000, the glass transition point of the rubbery copolymer (II) will increase, and the impact resistance at low temperatures will not be improved. On the other hand, when the molecular weight exceeds 10,000, stable polymerization cannot be carried out, especially in the case of emulsion polymerization, and a decrease in transparency is observed due to the formation of giant particles.

単量体−)及びマクロマー(b)としては透明性の点か
ら使用割合はゴム状共重合体(II)中にそれぞれ74
.9〜84.9重iチ、15〜25重量%であることが
必要である。
From the viewpoint of transparency, the monomer (-) and macromer (b) are used in a proportion of 74% each in the rubbery copolymer (II).
.. It is necessary that the amount is 9 to 84.9 weight percent and 15 to 25 weight percent.

次に、ゴム状共重合体(TI)を製造する際に使用され
る、炭素間2重結合を2個以上有する架橋性単量体の使
用割合は11〜5重量%である。
Next, the proportion of the crosslinkable monomer having two or more carbon-carbon double bonds used in producing the rubbery copolymer (TI) is 11 to 5% by weight.

架橋性単量体としては特に限定されず、エチレングリコ
−μジ(メタ)アクリレート、1.3−ブチレンジ(メ
タ)アクリレート、ポリエチレングリコ−μジ(メタ)
アクリレート、トリメチロールプロパントリ(メタ)ア
クリレート、アリA/(メタ)アクリレート、メタリ/
L/(メタ)アクリレート、アリpソpベート、アリル
シンナメート、トリアリルシアヌレート、トリアリμイ
ソVアヌレート、フタル酸ジアリ〜、イソフタル酸ジア
リμ、ジアリルマレエート、ジアリルフマレート、トリ
アリルトリメリテートなどが挙げられ、これらは単独で
、あるいは2種以上を混合して用いることができる。
The crosslinkable monomer is not particularly limited, and includes ethylene glyco-μ di(meth)acrylate, 1,3-butylene di(meth)acrylate, and polyethylene glyco-μ di(meth)acrylate.
Acrylate, trimethylolpropane tri(meth)acrylate, Ari A/(meth)acrylate, Metali/
L/(meth)acrylate, aryl psobate, allyl cinnamate, triallyl cyanurate, triallyl iso V anurate, diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl fumarate, triallyl trimer Examples include tate, and these can be used alone or in combination of two or more.

また、500重量部での範囲で他の共重合性のビニルま
たはビニリデン系単量体を使用することができ、メタク
リル酸メチル、メタクリル酸エチμ、メタクリル酸ブチ
〜、メタクリル酸2−エチ〃ヘキVJvなどの炭素数1
〜8のメタクリル酸ア〃キμエステル、スチレン、アク
リロニトリμなどを挙げることができる。
In addition, other copolymerizable vinyl or vinylidene monomers can be used in an amount of 500 parts by weight, such as methyl methacrylate, ethyl methacrylate, buty-methacrylate, 2-ethyl hexyl methacrylate, etc. Carbon number 1 such as VJv
-8 methacrylic acid esters, styrene, acrylonitrile esters, and the like.

さらに、ゴム状共重合体(n)内部に、必要に応じてゴ
ム状共重合体(n)の全重量に対して、芯としてメタク
リル酸メチfi/80〜100重量%、他の共重合性の
ビニIvまたはビニリデン系単量体0〜20重量嗟から
なる単量体混合物を重合させてなる硬質樹脂成分を含有
させることも可能である。この場合、他の共重合性のビ
ニ/I/またはビニリデン系単量体としてはアクリル酸
メチ〜、アクリル酸ブチル、アクリμ酸2−エチμヘキ
シルなどの炭素数1〜8のアクリ〃酸アμキμエステル
、スチレン、アクリロニトリμなどを挙げることができ
る。また、前述の炭素間2重結合を2個以上有する架橋
性単量体も使用することができる。
Furthermore, inside the rubbery copolymer (n), if necessary, methyl methacrylic acid fi/80 to 100% by weight as a core, based on the total weight of the rubbery copolymer (n), and other copolymerizable materials. It is also possible to contain a hard resin component obtained by polymerizing a monomer mixture consisting of 0 to 20 weight portions of vinyl Iv or vinylidene monomers. In this case, other copolymerizable vinyl/I/ or vinylidene monomers include acrylic acid esters having 1 to 8 carbon atoms, such as methacrylate, butyl acrylate, and 2-ethymuhexyl acrylate. Examples include μkiμ ester, styrene, acrylonitriμ, and the like. Furthermore, the aforementioned crosslinkable monomer having two or more carbon-carbon double bonds can also be used.

なお、ゴム状共重合体(If)は重合完了時における粒
子径がα05〜CL45μmであることが好ましい。粒
子径が(LO5μm未満では耐衝撃性の発現が劣り、一
方、(145μmを超えると透明性や表面光沢などが劣
る傾向となる。
In addition, it is preferable that the rubbery copolymer (If) has a particle diameter of α05 to CL45 μm at the time of completion of polymerization. If the particle size is less than (LO5 μm), impact resistance will be poor, while if it exceeds (LO145 μm), transparency, surface gloss, etc. will tend to be poor.

次に、本発明の多重構造グフフト共重合体(ト)は、ゴ
ム状共重合体(n)の存在下で単量体混合物(d)を重
合せしめたものであるが、これを構成する成分の組成は
、メタクリル酸メチ/L/80〜100重量−と他の共
重合性のビニルまたはビニリデン系単量体0〜20重量
−からなるものである。メタクリル酸メチルが80重量
−未満では得られたメタクリル樹脂組成物の耐熱性が劣
る傾向となる。他の共重合性のビニルまたはビニリデン
系単量体としてはアクリル酸メチル、アクリル酸ブチ〃
、アクリル酸2−エチルヘキシμなどの炭素数1〜8の
アクリル酸アルキ〃エステμ、スチレン、アクリロニト
リルなどを挙げることができる。さらに前述の炭素間2
重結合を2個以上有する架橋性単量体も使用することが
できる。単量体混合物の使用量はゴム状共重合体(II
) 100重量部に対して20〜200重量部であり、
20重量部未満では耐衝撃性や表面光沢な、どが劣り、
200重量部を超えると多重構造グラフト共重合体(■
)の生産性が低下する傾向となる。
Next, the multi-structure Gofuft copolymer (g) of the present invention is obtained by polymerizing the monomer mixture (d) in the presence of the rubbery copolymer (n), and the constituent components thereof are The composition consists of methi methacrylate/L/80 to 100 weight by weight and other copolymerizable vinyl or vinylidene monomers from 0 to 20 weight. If the amount of methyl methacrylate is less than 80% by weight, the resulting methacrylic resin composition tends to have poor heat resistance. Other copolymerizable vinyl or vinylidene monomers include methyl acrylate and butylacrylate.
, acrylic acid alkyl esters having 1 to 8 carbon atoms such as 2-ethylhexyl acrylate μ, styrene, acrylonitrile, and the like. Furthermore, the above-mentioned carbon 2
Crosslinkable monomers having two or more heavy bonds can also be used. The amount of monomer mixture used is rubbery copolymer (II
) 20 to 200 parts by weight per 100 parts by weight,
If it is less than 20 parts by weight, impact resistance and surface gloss will be poor.
If it exceeds 200 parts by weight, the multi-structure graft copolymer (■
) productivity tends to decline.

さらに、単量体混合物(d)の重合に際してメルカプタ
ン類の重合度調節剤を添加することも可能である。メル
カプタン類としては各種のアルキルメルカプタン、チオ
グリコ−〃酸及びそのエステμ、β−メ〜カプトプロピ
オン酸及びそのエステル、チオフェノ−μ、チオクレゾ
ールなどが挙げられる。
Furthermore, it is also possible to add a polymerization degree regulator such as mercaptans during the polymerization of the monomer mixture (d). Examples of mercaptans include various alkyl mercaptans, thioglyco-acid and its esters, β-me-captopropionic acid and its esters, thiopheno-μ, thiocresol, and the like.

本発明の多重構造グラフト共重合体Cm>の製造方法と
しては、乳化重合法が特に好ましい。
As a method for producing the multilayer graft copolymer Cm> of the present invention, an emulsion polymerization method is particularly preferred.

以下、乳化重合法による製造例について説明する。Hereinafter, a production example using the emulsion polymerization method will be explained.

まず、反応容器内に脱イオン水、必要があれば乳化剤を
加えた後、ゴム状共重合体(n)を構成する単量体混合
物(c)を加え重合を行ない、次いでゴム状共重合体(
If)の存在下に@シの単量体混合物(d)を加え重合
を行なう。
First, after adding deionized water and an emulsifier if necessary into a reaction vessel, the monomer mixture (c) constituting the rubbery copolymer (n) is added and polymerized, and then the rubbery copolymer (
In the presence of If), the monomer mixture (d) of @shi is added to carry out polymerization.

重合温度は30〜120℃、好ましくは50〜100℃
である。重合時間は重合開始剤や乳化剤の種類と使用量
及び重合温度によって異なるが、通常は(L5〜15時
間である。
Polymerization temperature is 30-120°C, preferably 50-100°C
It is. The polymerization time varies depending on the type and amount of the polymerization initiator and emulsifier used and the polymerization temperature, but is usually (L5 to 15 hours).

重合性成分と水の比は、重合性成分/水%、/20〜1
/1の範囲が好ましい。
The ratio of polymerizable component to water is polymerizable component/water%, /20 to 1.
A range of /1 is preferred.

重合開始剤及び乳化剤は、水相、単量体相のいずれか片
方または双方に添加する。
The polymerization initiator and emulsifier are added to either or both of the aqueous phase and the monomer phase.

各重合段階における各単量体の仕込方法は一括仕込法、
あるいは分割仕込法を用い得る。
The method of charging each monomer in each polymerization stage is the batch charging method,
Alternatively, a split preparation method can be used.

乳化剤は通常用いられる乳化剤であれば特に限定されず
、例えば長鎖アρキ〜カルボン酸塩、スルホコハク酸シ
ア〜キルエステ、ル塩、アルキルベンゼンス〃ホン酸塩
などが例示される。
The emulsifier is not particularly limited as long as it is a commonly used emulsifier, and examples thereof include long-chain alkyl carboxylates, cyano-kyle sulfosuccinic acid salts, alkylbenzene sulfonates, and the like.

重合開始剤の種類も特に限定されることはなく、例えば
水溶性の過硫酸塩、過硼酸塩などの無機開始剤を単独で
、または亜硫酸塩、チオ硫酸塩などと組み合わせてレド
ックス開始剤として用いることもできる。また有機ヒド
ロパーオキシド−第1鉄塩、有機ヒドロパーオキVドー
ソジウムスルホキシレートのようなレドックス開始系、
ベンゾイルパーオキシド、アゾビスイソブチロニトリル
などの開始剤も用いることができる。
The type of polymerization initiator is not particularly limited, and for example, inorganic initiators such as water-soluble persulfates and perborates are used alone or in combination with sulfites, thiosulfates, etc. as redox initiators. You can also do that. Also, redox initiation systems such as organic hydroperoxide-ferrous salts, organic hydroperoxide V dosodium sulfoxylates,
Initiators such as benzoyl peroxide and azobisisobutyronitrile can also be used.

乳化重合法により得られた多重構造グラフト共重合体(
III)は、重合体ラテックスから公知の方法により凝
固、回収、洗浄、乾燥することにより粉体状重合体とし
て得られる。
Multi-structure graft copolymer obtained by emulsion polymerization method (
III) is obtained as a powdery polymer by coagulating, recovering, washing and drying a polymer latex by a known method.

上述の如くして得られた多重構造グラフト共重合体(I
II)は、前記のメタクリル樹脂(I)とブレンドされ
ることにより、本発明のメタクリル樹脂組成物とされる
。なお、メタクリル樹脂組成物中には、多重構造グラフ
ト共重合体(m)のゴム状共重合体(n)成分が(L1
〜50重量%含有されていることが必要であり、α1重
量−未満では耐溶剤性や耐衝撃性の効果の発現に劣シ、
一方、50重量%を超えると耐熱性に劣る傾向となる。
The multi-structure graft copolymer (I) obtained as described above
II) is blended with the methacrylic resin (I) to form the methacrylic resin composition of the present invention. In addition, in the methacrylic resin composition, the rubbery copolymer (n) component of the multilayer graft copolymer (m) is (L1
It is necessary that the content is ~50% by weight, and if it is less than α1% by weight, the effect of solvent resistance and impact resistance will be poor.
On the other hand, if it exceeds 50% by weight, heat resistance tends to be poor.

メタクリル樹脂CI)と多重構造グラフト共重合体(m
)をブレンドするには溶融混合するのが好ましい。溶融
混合に先立って、必要があれば安定剤、滑剤、可纜剤、
着色剤、充填剤などをa宜m加t、、v型タンブラ−や
ヘンシェルミキサーを使用してブレンドした後、ミキシ
ングロー〃、スクリュー型押出機などを用いて150〜
50℃で溶融混合することができる。
Methacrylic resin CI) and multi-structure graft copolymer (m
) is preferably blended by melt mixing. Prior to melt mixing, add stabilizers, lubricants, softeners, etc., if necessary.
After blending coloring agents, fillers, etc. using a V-type tumbler or Henschel mixer, it is mixed using a mixing glow, screw type extruder, etc.
Melt mixing can be performed at 50°C.

〔実施例〕 以下、実施例によシ本発明をさらに詳しく説明する。な
お、実施例中「部」、「−」とあるのは、それぞれ「重
量部」、「重量%」を表わす。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. In the examples, "parts" and "-" represent "parts by weight" and "% by weight," respectively.

実施例1〜5、比較例1〜2、参考例 (1)多重構造グラフト共重合体(III)の製造(1
%、)ゴム状共重合体(II)の製造内容積SOZのス
テンレス製反応容器に、先ず下肥(1)の原料と第1表
に示す(11)の原料を各割合で入れ、攪拌下に窒素ガ
スを吹き込み実質的に酸素の影響のない状聾とした後、
65℃に昇温して下記CIll )の原料を添加して、
さらに80℃に昇温して90分間重合を継続した。その
後(11)に示したものと同組成の原料1015ゆを9
0分間にわたって連続的に添加しさらに120分間重合
を継続しゴム状共重合体(n)をラテックス状で得た。
Examples 1-5, Comparative Examples 1-2, Reference Example (1) Production of multi-structure graft copolymer (III) (1)
%,) Production of Rubbery Copolymer (II)Into a stainless steel reaction vessel with an internal volume of SOZ, the raw materials for the manure (1) and the raw materials for (11) shown in Table 1 were placed in various proportions, and the mixture was stirred. After blowing nitrogen gas into the room to make it virtually unaffected by oxygen,
The temperature was raised to 65°C, and the following CIll) raw materials were added.
The temperature was further raised to 80°C and polymerization was continued for 90 minutes. After that, 9 pieces of raw material 1015YU with the same composition as shown in (11) were added.
The polymerization was continued for 120 minutes to obtain a rubbery copolymer (n) in the form of a latex.

(1)原料 メタノ−N            soog硼酸  
            100g炭酸ナトリウム  
         10g(IH)原料 脱イオン水           500gリジウムホ
μムアルデヒドス〃ホキシレート      509壷
1)N−アη−セVン酸塩(日光ケミカ〃ズ(株)製品
)なお、得られたラテックスの粒子径は吸光度法により
測定した結果、115μmであった。
(1) Raw material methano-N soog boric acid
100g sodium carbonate
10g (IH) Raw material deionized water 500g Lysium formaldehyde phoxylate 509 jar 1) N-Aeta-SeV phosphate (Nikko Chemicals Co., Ltd. product) The particle size of the obtained latex is determined by the absorbance. As a result of measurement according to the method, it was 115 μm.

(1−2)多重構造グラフト共重合体d■)の製造 次に、得られたゴム状共重合体(II) 10 kP(
100部)を含むラテックスの存在する反応容器を80
℃に保って攪拌しながら、 脱イオン水    soog 8−LN       259 を添加して、さらに下記の(IV)の原料(60部)を
90分間にわたって連続的に加えて重合した。
(1-2) Production of multi-structure graft copolymer d■) Next, the obtained rubbery copolymer (II) 10 kP (
A reaction vessel containing latex containing 100 parts of
Deionized water (SOOG 8-LN 259 ) was added while stirring while maintaining the temperature at °C, and the following raw material (IV) (60 parts) was further added continuously over 90 minutes for polymerization.

その後さらに60分間重合を継続し多重構造グラフト共
重合体(m)をラテックス状で得た。
Thereafter, polymerization was continued for another 60 minutes to obtain a multilayer graft copolymer (m) in the form of latex.

メタクリμ酸メチル’(MMA)(96チ)     
57609アクリ〜酸エチ/I/(g人)  (4−)
    zao9ノμマルオクチ〃メルカプタン(n−
C,SR)        159クメンハイドロパー
オキサイド(cHP)          18gこの
ラテックスを以下に述べる方法により凝固、洗浄、乾燥
した。
Methyl methacrylate (MMA) (96)
57609 Acrylic acid ethyl/I/(g people) (4-)
zao9 normal octyl mercaptan (n-
C, SR) 159 cumene hydroperoxide (cHP) 18 g This latex was coagulated, washed and dried by the method described below.

ステンレス製容器に1.0 %硫酸水50kgを仕込み
、攪拌下で85℃に昇温し、先に製造したラテックス2
5に9を15分間にわたって連続的に添加し、その後内
温を90℃まで昇温し5分間保持した。室温まで冷却し
た後重合体をr別し脱イオン水で洗浄し、白色のクリー
ム状重合体を得、これを70℃×36時間の条件下で乾
燥し白色粉体状の重合体を得た。
Pour 50 kg of 1.0% sulfuric acid water into a stainless steel container, raise the temperature to 85°C while stirring, and mix the latex 2 prepared earlier.
9 was continuously added to 5 over 15 minutes, and then the internal temperature was raised to 90°C and held for 5 minutes. After cooling to room temperature, the polymer was separated and washed with deionized water to obtain a white creamy polymer, which was dried at 70°C for 36 hours to obtain a white powdery polymer. .

(2)  メタクリル樹脂(I)の製造メタクリル樹脂
(I)として、メタクリ〃酸メチμ/アクリ〃酸メチ〃
が99/1であシ、かつクロロホルム中での還元粘度が
1060(A/g)のビーズ状の共重合体を公知の懸濁
重合法により製造した。
(2) Production of methacrylic resin (I) As methacrylic resin (I), methacrylic acid methacrylate μ/methacrylic acid methacrylate
A bead-shaped copolymer having a ratio of 99/1 and a reduced viscosity of 1060 (A/g) in chloroform was produced by a known suspension polymerization method.

(3)  メタクVtV樹脂組成物の製造上記(1)、
(2)で得られたメタクリル樹脂CI)と多重構造グラ
フト共重合体(m)を第2表に示しり割合で10kg、
およびトリフェニルフォスファイト309を内容積20
1のスーパーミキサー((株)月日製作所製、8MV−
20タイプ)によシ攪拌回転数180 Orpmで5分
間ブレンドした。
(3) Production of Metac VtV resin composition (1) above,
The methacrylic resin CI) obtained in (2) and the multi-structure graft copolymer (m) are shown in Table 2, and the proportions are 10 kg,
and triphenylphosphite 309 with an internal volume of 20
1 super mixer (manufactured by Tsukihi Seisakusho Co., Ltd., 8MV-
20 type) and blended for 5 minutes at a stirring speed of 180 rpm.

得られたプVンド物を、外径40mφのスクリュー型押
出し機((株)日本製鋼新製、P−40−26AB−V
型、L/D−26)を使用し、Vリンダ−温度200〜
260℃、ダイ温度250℃で溶融混練してベレットと
した後、下記の条件で射出成形して得られた試験片を評
価し、第2表に示した結果を得た。
The obtained pressed product was transferred to a screw extruder with an outer diameter of 40 mφ (P-40-26AB-V manufactured by Nippon Steel Co., Ltd.).
mold, L/D-26), V cylinder temperature 200~
After melt-kneading to form pellets at 260°C and a die temperature of 250°C, the test pieces obtained by injection molding under the following conditions were evaluated, and the results shown in Table 2 were obtained.

射出成形機:(株)日本製鋼新製、V%、7−65型ス
クリユ一式自動射出成 形機 射出成形条件:vリンダ−温度 230〜260℃、金
型温度55℃ 実施例6〜8 実施例1で使用した多重構造グラフト共重合体Cm)を
、下記に述べる方法によシ製造したものを使用した以外
は実施例1と同様に実験を行なった。結果を第4表に示
す。
Injection molding machine: Nippon Steel Shinsei Co., Ltd., V%, 7-65 type screw complete set automatic injection molding machine Injection molding conditions: V cylinder temperature 230-260°C, mold temperature 55°C Examples 6-8 Examples An experiment was carried out in the same manner as in Example 1, except that the multi-structure graft copolymer Cm) used in Example 1 was manufactured by the method described below. The results are shown in Table 4.

(1)  ゴム状共重合体(n)の製造内容積50tの
ステンレス製反応容器に、先ず下記(1)の原料を入れ
、攪拌下に窒素ガスを吹き込み実質的に酸素の影響のな
い状態とした後、70℃に昇温して下記(1)の原料を
添加して、2時間重合を行ない硬質架橋樹脂体のラテッ
クスを得た。
(1) Production of rubbery copolymer (n) First, the following raw materials (1) were placed in a stainless steel reaction vessel with an internal volume of 50 tons, and nitrogen gas was blown into the container while stirring to create a state substantially free from the influence of oxygen. Thereafter, the temperature was raised to 70°C, the following raw materials (1) were added, and polymerization was carried out for 2 hours to obtain a latex of a hard crosslinked resin body.

(1)原料 脱イオン水            20に9S−LN
              16g硼酸      
         sag炭酸ソーダ        
     81MMA        C97%)  
  1vaa9HA         (1%)   
  2091.3−ブチレンジメタクリレ−)(2%)
         4090)原料 脱イオン水           500g過硫酸カリ
ウム(KPS)       249上記の重合が実質
的に終了した固型分で2に9(20部)に相当する量の
硬質架橋樹脂ラテックスの入った上記容器内に、下記(
lil )の原料を加え80℃に昇温した後、第3表に
示した(IV)の原料(80部)を150分間にわたっ
て連続的に添加し、添加終了後さらに180分間重合を
継続し硬質樹脂成分を粒子内部に含有するゴム状共重合
体(II)をラテックス状で得た。々お、得られたラテ
ックスの粒子径は吸光度法により測定した結果、128
μ翼であった。
(1) Raw material deionized water 20 to 9S-LN
16g boric acid
sag carbonated soda
81MMA C97%)
1vaa9HA (1%)
2091.3-butylene dimethacrylate (2%)
4090) Raw material deionized water 500g Potassium persulfate (KPS) 249 Into the above container containing the hard crosslinked resin latex in an amount equivalent to 2 to 9 (20 parts) of the solid content after the above polymerization has substantially completed. ,the below described(
After adding the raw material (IV) and raising the temperature to 80°C, the raw material (IV) shown in Table 3 (80 parts) was added continuously over 150 minutes, and after the addition was completed, polymerization was continued for an additional 180 minutes to form a hard material. A rubbery copolymer (II) containing a resin component inside the particles was obtained in the form of a latex. As a result of measuring the particle size of the obtained latex by an absorbance method, it was found to be 128
It was a μ wing.

(lit )原料 脱イオン水           500gメタノ−A
/             soogB−LN   
           509ソジウムホpムアμデヒ
ドスpホキシV−)         529(2)多
重構造グラフト共重合体(I[[)の製造上記の重合で
得られた固型分10kIP(100部)に相当するラテ
ックスを入れた上記容器内に、下記(V)の原料を添加
して攪拌した後、下記(vl)の原料を150分間にわ
たって連続的に添加した。その後さらに1時間重合を継
続し、多重構造グラフト共重合体(Ill)をラテック
ス状で得た。
(lit) Raw material deionized water 500g Methanol-A
/ soogB-LN
509 Sodium phopolymer μdehyde spoxy V-) 529(2) Production of multi-structure graft copolymer (I After adding and stirring the raw material (V) below into the above container, the raw material (vl) below was continuously added over 150 minutes. Thereafter, polymerization was continued for an additional hour to obtain a multilayer graft copolymer (Ill) in the form of a latex.

(V)原料 脱イオン水           soogB−LN 
             20g(vl)原料 MMA  (96チ)        4800gHA
   (4%)        1009n−C,8H
12,5Jil ターシヤリブチルヒドロキシパーオキサイド     
     5I得られたラテックスを実施例1と同様に
凝固、洗浄、乾燥して多重構造グラフト共重合体(■)
の粉体を得た後、メタクリル樹BvJ(I)と第4表に
示す割合でプVンドし評価した。
(V) Raw material deionized water soogB-LN
20g (vl) Raw material MMA (96chi) 4800gHA
(4%) 1009n-C,8H
12,5Jil tertiary butyl hydroxy peroxide
5I The obtained latex was coagulated, washed, and dried in the same manner as in Example 1 to obtain a multilayer graft copolymer (■).
After obtaining the powder, it was mixed with methacrylic resin BvJ (I) at the ratio shown in Table 4 and evaluated.

第  3  表 ■ ※1)は前記した通りである。Table 3 ■ *1) is as described above.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明のメタクリル樹脂組成物は、低
温域及び常温域での耐衝撃性や耐溶剤性に優れるため工
業上優れた効果を奏する。
As described above, the methacrylic resin composition of the present invention has excellent impact resistance and solvent resistance in the low temperature range and room temperature range, and therefore has excellent industrial effects.

Claims (1)

【特許請求の範囲】 1)メタクリル酸メチル単独、またはメタクリル酸メチ
ルと他の共重合性のビニルまたはビニリデン系単量体の
混合物を重合して得られたメタクリル樹脂( I )と、 アルキル基の炭素数が1〜8のアクリル酸 アルキルエステルから選ばれた少なくとも1種の単量体
(a)74.9〜84.9重量%、片末端に重合性官能
基を有するスチレン及びビニルトルエンから選ばれた少
なくとも1種からなるマクロマー(b)15〜25重量
%、及び炭素間2重結合を2個以上有する架橋性単量体 0.1〜5重量%、他の共重合性のビニルまたはビニリ
デン系単量体0〜20重量%からなる単量体混合物(c
)を共重合させてなるゴム状共重合体(II)100重量
部の存在下に、メタクリル酸メチル80〜100重量%
と他の共重合性のビニルまたはビニリデン系単量体0〜
20重量%からなる単量体混合物(d)20〜200重
量部を重合させて得られる多重構造グラフト共重合体(
III) とからなる組成物であつて、全組成物中に多重構造グラ
フト共重合体(III)のゴム状共重合体(II)成分が0
.1〜50重量%含有されてなることを特徴とするメタ
クリル樹脂組成物。 2)マクロマー(b)の片末端の重合性官能基が(メタ
)アクリロイルオキシ基であることを特徴とする特許請
求の範囲第1項記載のメタクリル樹脂組成物。 3)メタクリル酸メチル単独、またはメタクリル酸メチ
ルと他の共重合性のビニルまたはビニリデン系単量体の
混合物を重合して得られたメタクリル樹脂( I )と、 ゴム状共重合体(II)の全重量に対し、50重量%まで
の範囲でメタクリル酸メチル80〜100重量%と他の
共重合性のビニルまたはビニリデン系単量体0〜20重
量%からなる単量体混合物を重合させてなる硬質樹脂成
分を粒子内部に含有し、アルキル基の炭素数が1〜8の
アクリル酸アルキルエステルから選ばれた少なくとも1
種の単量体(a)74.9〜84.9重量%、片末端に
重合性官能基を有するスチレン及びビニルトルエンから
選ばれた少なくとも1種からなるマクロマー(b)15
〜25重量%、及び炭素間2重結合を2個以上有する架
橋性単量体0.1〜5重量%、他の共重合性のビニルま
たはビニル系単量体0〜 20重量%からなる単量体混合物(c)を共重合させて
なるゴム状共重合体(II)100重量部の存在下に、メ
タクリル酸メチル80〜100重量%と他の共重合性の
ビニルまたはビニリデン系単量体0〜20重量%からな
る単量体混合物(d)20〜200重量部を重合させて
得られる多重構造グラフト共重合体(III) とからなる組成物であつて、全組成物中に多重構造グラ
フト共重合体(III)のゴム状共重合体(II)成分が0
.11〜50重量%含有されてなることを特徴とするメ
タクリル樹脂組成物。 4)マクロマー(b)の片末端の重合性官能基が(メタ
)アクリロイルオキシ基であることを特徴とする特許請
求の範囲第3項記載のメタクリル樹脂組成物。
[Scope of Claims] 1) A methacrylic resin (I) obtained by polymerizing methyl methacrylate alone or a mixture of methyl methacrylate and other copolymerizable vinyl or vinylidene monomers, and an alkyl group. At least one monomer selected from acrylic acid alkyl esters having 1 to 8 carbon atoms (a) 74.9 to 84.9% by weight, selected from styrene and vinyltoluene having a polymerizable functional group at one end 15 to 25% by weight of a macromer (b) consisting of at least one type of carbon-carbon double bond, 0.1 to 5% by weight of a crosslinkable monomer having two or more carbon-carbon double bonds, and other copolymerizable vinyl or vinylidene. A monomer mixture (c
) in the presence of 100 parts by weight of rubbery copolymer (II), 80 to 100% by weight of methyl methacrylate.
and other copolymerizable vinyl or vinylidene monomers 0~
A multilayer structure graft copolymer obtained by polymerizing 20 to 200 parts by weight of a monomer mixture (d) consisting of 20% by weight (
III), wherein the rubbery copolymer (II) component of the multi-structure graft copolymer (III) is 0 in the entire composition.
.. A methacrylic resin composition containing 1 to 50% by weight. 2) The methacrylic resin composition according to claim 1, wherein the polymerizable functional group at one end of the macromer (b) is a (meth)acryloyloxy group. 3) A methacrylic resin (I) obtained by polymerizing methyl methacrylate alone or a mixture of methyl methacrylate and other copolymerizable vinyl or vinylidene monomers, and a rubbery copolymer (II). Made by polymerizing a monomer mixture consisting of 80 to 100% by weight of methyl methacrylate and 0 to 20% by weight of other copolymerizable vinyl or vinylidene monomers in a range of up to 50% by weight based on the total weight. At least one selected from acrylic acid alkyl esters containing a hard resin component inside the particles and having an alkyl group having 1 to 8 carbon atoms.
Macromer (b) consisting of 74.9 to 84.9% by weight of seed monomer (a) and at least one selected from styrene and vinyltoluene having a polymerizable functional group at one end 15
~25% by weight, 0.1 to 5% by weight of a crosslinking monomer having two or more carbon-carbon double bonds, and 0 to 20% by weight of other copolymerizable vinyl or vinyl monomers. In the presence of 100 parts by weight of rubbery copolymer (II) obtained by copolymerizing polymer mixture (c), 80 to 100 parts by weight of methyl methacrylate and other copolymerizable vinyl or vinylidene monomers. A composition consisting of a multi-structured graft copolymer (III) obtained by polymerizing 20-200 parts by weight of a monomer mixture (d) of 0 to 20% by weight, wherein the multi-structure graft copolymer (III) is obtained by polymerizing 20 to 200 parts by weight of a monomer mixture (d) of 0 to 20% by weight, wherein the multistructured graft copolymer (III) is The rubbery copolymer (II) component of the graft copolymer (III) is 0.
.. A methacrylic resin composition containing 11 to 50% by weight. 4) The methacrylic resin composition according to claim 3, wherein the polymerizable functional group at one end of the macromer (b) is a (meth)acryloyloxy group.
JP25650787A 1987-10-12 1987-10-12 Methacrylic resin composition Pending JPH0198653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25650787A JPH0198653A (en) 1987-10-12 1987-10-12 Methacrylic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25650787A JPH0198653A (en) 1987-10-12 1987-10-12 Methacrylic resin composition

Publications (1)

Publication Number Publication Date
JPH0198653A true JPH0198653A (en) 1989-04-17

Family

ID=17293591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25650787A Pending JPH0198653A (en) 1987-10-12 1987-10-12 Methacrylic resin composition

Country Status (1)

Country Link
JP (1) JPH0198653A (en)

Similar Documents

Publication Publication Date Title
US3808180A (en) Composite interpolymer and low haze impact resistant thermoplastic compositions thereof
US3833686A (en) Sequentially produced alkyl acrylate polymers blended with poly(vinyl halides)
JP3723576B2 (en) Thermoplastic molding material with low haze value
JPS6221804B2 (en)
JPH0370747B2 (en)
JP2003522244A (en) Impact-resistant composition based on thermoplastic methacrylic (co) polymer
JPH0465848B2 (en)
JPH0198653A (en) Methacrylic resin composition
JP3059201B2 (en) Thermoplastic resin composition and multi-stage rigid polymer suitable for the same
JPS62275147A (en) Impact-resistant methacrylate resin composition
JP2002060439A (en) Copolymer having multilayer structure and methacrylic resin composition
JPH0518862B2 (en)
JP2854696B2 (en) Method for producing nitrile polymer composition
JPH0154361B2 (en)
JPS6342940B2 (en)
JPH01101354A (en) Methacrylate resin composition
JPS6245886B2 (en)
JP2616073B2 (en) Impact resistant thermoplastic resin composition and molded article
JPH0248176B2 (en)
JP2613860B2 (en) High nitrile polymer composition, molded article and method for producing the same
US6072002A (en) Weatherable resinous composition
JPS63135440A (en) Impact-resistant methacrylate resin composition
JP2613668B2 (en) Nitrile polymer composition, molded article and method for producing the same
JPH01101353A (en) Methacrylate resin composition
JPH0553829B2 (en)