JPH0197303A - Electric insulating material having heat resistance and moisture absorption resistance - Google Patents
Electric insulating material having heat resistance and moisture absorption resistanceInfo
- Publication number
- JPH0197303A JPH0197303A JP25383487A JP25383487A JPH0197303A JP H0197303 A JPH0197303 A JP H0197303A JP 25383487 A JP25383487 A JP 25383487A JP 25383487 A JP25383487 A JP 25383487A JP H0197303 A JPH0197303 A JP H0197303A
- Authority
- JP
- Japan
- Prior art keywords
- group
- insulating material
- powder
- resistant
- moisture absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011810 insulating material Substances 0.000 title claims abstract description 14
- 238000010521 absorption reaction Methods 0.000 title claims description 14
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000000843 powder Substances 0.000 claims abstract description 45
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 15
- 125000000524 functional group Chemical group 0.000 claims abstract description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 5
- 229920002545 silicone oil Polymers 0.000 claims description 13
- 239000005871 repellent Substances 0.000 claims description 2
- 239000012772 electrical insulation material Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 3
- 239000003921 oil Substances 0.000 abstract 3
- 229910052710 silicon Inorganic materials 0.000 abstract 3
- 239000010703 silicon Substances 0.000 abstract 3
- -1 H group Chemical group 0.000 abstract 2
- 238000000034 method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 239000000945 filler Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- WHOPEPSOPUIRQQ-UHFFFAOYSA-N oxoaluminum Chemical compound O1[Al]O[Al]1 WHOPEPSOPUIRQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Inorganic Insulating Materials (AREA)
- Organic Insulating Materials (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明はMgOを主成分とする耐吸湿性の優れたマグネ
シアからなる電気絶縁材料に関するもので、特にシース
ヒーターの絶縁充填材として適するものである。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an electrical insulating material made of magnesia, which has MgO as its main component and has excellent moisture absorption resistance, and is particularly suitable as an insulating filler for sheath heaters. be.
[従来の技術]
マグネシアは高周波電気絶縁抵抗および高温下での電気
絶縁抵抗が非常に高い物質であり、絶縁充填材として広
く用いられている。しかし、マグネシアは吸湿し易いと
いう欠点も有する。[Prior Art] Magnesia is a substance that has very high electrical insulation resistance at high frequencies and electrical insulation resistance at high temperatures, and is widely used as an insulating filler. However, magnesia also has the disadvantage that it easily absorbs moisture.
このマグネシアの吸湿あるいは水分の吸着による絶縁抵
抗の劣化や寿命低下が問題であった。Problems include deterioration of insulation resistance and shortened lifespan due to moisture absorption or adsorption of this magnesia.
そのためヒーターの端末部にシリコーンゴムやエポキシ
樹脂を封入したり、充填材であるマグネシア粉にシリコ
ーンレジンを添加したり、さらにはマグネシア粉にシリ
コーン樹脂を塗布する等の方法が実施されている。Therefore, methods such as sealing silicone rubber or epoxy resin in the end portion of the heater, adding silicone resin to magnesia powder as a filler, and even coating silicone resin on magnesia powder have been implemented.
[発明が解決しようとする問題点]
ヒーターの端末部にシリコーンゴムやエボキン樹脂を封
入する方法は従来から最も用いられている方法であるか
、耐湿性が十分ではなかった。またシリコーン樹脂を塗
布したり、混合、加熱処理したりしたもの(特公昭53
−4932)も、耐湿性の向上は見られるものの、耐熱
性において十分満足し得るものでなかった。[Problems to be Solved by the Invention] The method of enclosing silicone rubber or Evokin resin in the end portion of the heater is the most conventional method, or has insufficient moisture resistance. Also, products coated with silicone resin, mixed, and heat treated (Special Publications Publication No. 53
-4932) also showed improvement in moisture resistance, but was not fully satisfactory in heat resistance.
また、無機物を利用する方法(特公昭55−49397
)もあるが、高い温度で加熱処理する必要があり、製造
が困難であった。さらに、マグネシア粉にシリコンオイ
ルとシリカ粉をコーティングする方法(特公昭59−4
7870)もある。しかし、耐湿性は秀れているものの
、耐熱性が不十分であった。In addition, methods using inorganic substances (Special Publication No. 55-49397
), but it required heat treatment at high temperatures and was difficult to manufacture. Furthermore, a method of coating magnesia powder with silicone oil and silica powder (Special Publication Publication No. 59-4
7870) is also available. However, although the moisture resistance was excellent, the heat resistance was insufficient.
[問題点を解決するための手段]
上記問題点を解決するだめの本発明の柘成は耐熱性、耐
吸湿性に優れた電気絶縁材料であり、マグネシア粉の表
面を、側鎖に反応性官能基を杓′するシリコーンオイル
を媒体として、撥水性を有するシリカ粉が被覆している
耐熱・耐吸湿性電気絶縁材料である。[Means for Solving the Problems] In order to solve the above problems, the present invention is an electrical insulating material with excellent heat resistance and moisture absorption resistance. It is a heat-resistant and moisture-resistant electrical insulating material that is coated with water-repellent silica powder using silicone oil as a medium that contains functional groups.
本発明に用いるシリコーンオイルの作用はたとえばメチ
ルハイドロポリシロキサンのように5i−Hの結合を持
ち、それが空気中の酸素の作用により下に示す反応が起
こり、
いわゆる架橋反応により、三次元構造化し、マグネシア
粉の表面を覆うと推察される。The silicone oil used in the present invention has a 5i-H bond, for example, like methylhydropolysiloxane, and the reaction shown below occurs due to the action of oxygen in the air, resulting in a three-dimensional structure due to a so-called crosslinking reaction. , is presumed to cover the surface of the magnesia powder.
本発明に用いたシリカ粉は粒子径10〜40nmで表面
にメチル基を持った超微粒子で撥水性を有するものをい
う。また、シリコーンオイルは側鎖に反応性官能基を有
しており、その反応性官能基としてC0OH基、CO基
、H基、OH基、アルコキシ基のうち何れか一種以上を
有するシリコーンオイルが、特に秀れた特性を有し、好
ましくは、H基、OH基、OCH3基を有するもので本
発明でいう効果を有する。The silica powder used in the present invention is ultrafine particles with a particle size of 10 to 40 nm and a methyl group on the surface, and has water repellency. In addition, silicone oil has a reactive functional group in its side chain, and silicone oil having one or more of C0OH group, CO group, H group, OH group, and alkoxy group as the reactive functional group, It has particularly excellent properties, and preferably has an H group, an OH group, or an OCH3 group, and has the effects referred to in the present invention.
本発明のマグネシア粉はその表面を内層がシリコーンオ
イル、外層をシリカ粉が被覆しているものである。The surface of the magnesia powder of the present invention is coated with silicone oil as an inner layer and silica powder as an outer layer.
マグネシア粉の表面を被覆するシリコーンオイルは0.
1〜0.5 wt%、かつシリカ粉は0.2〜2、0w
t%が適当である。シリコーンオイルが0.1w1%未
満では耐吸湿性か発揮されず、0.5W[%を越えると
マグネシア粉の流動性を220sec/400g以下に
することができない。また、シリカ粉が0.2νt%未
満では耐熱性が悪< 2.Owi%を越えるとシリカ
粉の嵩比重が極めて低いために充填性が著しく悪化する
。The silicone oil that coats the surface of the magnesia powder is 0.
1 to 0.5 wt%, and silica powder is 0.2 to 2,0w
t% is appropriate. If the silicone oil is less than 0.1w%, moisture absorption resistance will not be exhibited, and if it exceeds 0.5w%, the fluidity of the magnesia powder cannot be reduced to 220sec/400g or less. Furthermore, if the silica powder content is less than 0.2 νt%, the heat resistance is poor. If it exceeds Owi%, the bulk specific gravity of the silica powder will be extremely low, and the filling properties will deteriorate significantly.
また充填物の流動性(see〕+、oog)はシースヒ
一夕一に粉体を充填する際の製造上、特に作業効率上、
重要な要素であり、上記粉体で流動性は220sec/
100g以下であることが必要である。In addition, the fluidity (see〕+, oog) of the filling material is important for manufacturing purposes, especially for work efficiency, when filling powder in a single step.
This is an important factor, and the fluidity of the above powder is 220 sec/
It is necessary that the weight is 100g or less.
さらに充填性(g/cm3)の低い粉体を用いるとヒー
ターに充填したのち圧縮減径して充填性を良くしなけれ
ばならない。さらににその工程でひびが入ったり歪みか
生じるために後工程として熱処理が必要であり、充填性
が高い方か製造コスト上も好ましい。本発明のマグネシ
ア粉は2.30g/m1以上の充填性を有する。Furthermore, if a powder with low filling properties (g/cm3) is used, it is necessary to compress and reduce the diameter after filling the heater to improve the filling properties. Furthermore, since cracks or distortions occur during this process, heat treatment is required as a post-process, and higher filling properties are preferable from the viewpoint of manufacturing costs. The magnesia powder of the present invention has a filling property of 2.30 g/m1 or more.
本発明の上記マグネシア粉は例えば次の様にして製造す
ることができる。The magnesia powder of the present invention can be produced, for example, as follows.
焼結マグネシア粉 100kgをコンクリート用ミキサ
ーの如きミキサーに入れ、それにシリコーンオイルを0
.2wt%加え、約30分撹拌・混合する。次に0.5
wt%のシリカ粉を投入し、同しく約30分撹拌・混合
する。Put 100kg of sintered magnesia powder into a mixer such as a concrete mixer, and add 0% silicone oil to it.
.. Add 2 wt% and stir and mix for about 30 minutes. then 0.5
Add wt% of silica powder and stir and mix for about 30 minutes.
本発明の電気絶縁材料の耐熱性は肉径10+n+nのバ
イブと外径5■mの芯極との間にこの絶縁制料(マグネ
シア粉)を25mmの長さに1.5 T/cm’の=
6 −
圧力で圧縮充填したものを各温度に保持した電気炉内に
1時間保持しておく。このセルを直ちに温度40℃、相
対湿度90%の恒温恒温槽内へ入れ、15時間保持した
のち、絶縁計(東亜電波製S1シー5型、測定範囲0.
2〜2X107 MΩ・cm)を用いて抵抗を測定した
。The heat resistance of the electrical insulating material of the present invention is determined by applying this insulating material (magnesia powder) to a length of 25 mm at a rate of 1.5 T/cm' between a vibrator with a wall diameter of 10 + n + n and a core pole with an outer diameter of 5 m. =
6 - The compressed and filled material is kept in an electric furnace maintained at each temperature for 1 hour. This cell was immediately placed in a constant temperature bath at a temperature of 40°C and a relative humidity of 90%, and after being maintained for 15 hours, the cell was placed with an insulation meter (Toa Denpa Model S1 Sea 5, measuring range 0.
The resistance was measured using 2 to 2×10 7 MΩ·cm).
本発明における耐吸湿性は50m1のビーカーに水50
m1を入れ、フェノールフタレインを2〜3滴滴下した
溶液の中へ、マグネシア粉を約1gを入れて真赤になる
までの時間を調べ、耐吸湿性の目安とした。The moisture absorption resistance in this invention is 50ml of water in a 50ml beaker.
About 1 g of magnesia powder was added into the solution in which 2 to 3 drops of phenolphthalein were added, and the time required for the powder to turn bright red was measured to determine the moisture absorption resistance.
また粉体のフロータイム及び密度はASTMstand
ard D 2755に規定されている方法によりアメ
リカのBoeh Tool and Die Comp
any製の装置を用いて測定した。In addition, the powder flow time and density are determined according to ASTM stand.
Boeh Tool and Die Comp of the United States by the method specified in ard D 2755.
It was measured using a device manufactured by Any.
粒度分布はJIS標準篩を用いて篩分して求めた。The particle size distribution was determined by sieving using a JIS standard sieve.
本発明における実施例の化学組成のMgO。MgO having a chemical composition of an example in the present invention.
Cab、5i02、Fe2O3、Al2O2、B203
はマグネシア粉体を塩酸水溶液で熱溶解したのち、冷却
し、本ジャーレルアッシュ製の575−II型のI C
APを用いて測定した。Cab, 5i02, Fe2O3, Al2O2, B203
After hotly dissolving magnesia powder in an aqueous hydrochloric acid solution, cooling it and melting it into a 575-II type IC made by Jarrell Ash.
Measured using AP.
[実施例コ 以下、実施例によって本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to Examples.
実施例1
0−タリキルンにより、2000℃の温度で焼成した0
、42mm以下のマグネシア粉100kgをコンクリー
トミキサーに入れシリコーンオイルとして表わされるも
のを0.2wt%加えてさらに約15分間撹拌した。さ
らにシリカ粉として日本アエロジル社製、商品名R97
2を0.5vt%加えて、約15分間撹拌混合した。い
ずれの撹拌時間とも15分以上でも支障はないが15分
以下では混合が不十分てあった。コンクリートミキサー
から上記の処理をしたマグネシア粉を取り出し、0.4
2mmで篩分しアンダー品を以下の試験の試料とした。Example 1 O
, 100 kg of magnesia powder of 42 mm or less was placed in a concrete mixer, 0.2 wt % of silicone oil was added, and the mixture was further stirred for about 15 minutes. In addition, as silica powder, manufactured by Nippon Aerosil Co., Ltd., product name R97.
2 was added in an amount of 0.5vt%, and the mixture was stirred and mixed for about 15 minutes. There was no problem with any stirring time of 15 minutes or more, but mixing was insufficient when it was less than 15 minutes. Take out the above-treated magnesia powder from the concrete mixer and mix it with 0.4
The under-sized product was sieved through a 2 mm sieve and was used as a sample for the following test.
下記第1表は処理前後におけるマグネシア粉の化学組成
、粒度分布、耐熱性、耐吸湿性、充填性、流動性(以下
全ての測定値という。)を示した。I gloss
(灼熱減量)はマグネシア粉10gを正確に秤量し、白
金ルツボに入れ、 1000℃の電気炉の中に1時間保
持したのちの原料を重量%で表わした。Table 1 below shows the chemical composition, particle size distribution, heat resistance, moisture absorption resistance, filling property, and fluidity (hereinafter referred to as all measured values) of the magnesia powder before and after treatment. I gloss
(Loss on ignition) is expressed as a raw material in weight % after accurately weighing 10 g of magnesia powder, placing it in a platinum crucible, and holding it in an electric furnace at 1000° C. for 1 hour.
比較例1
実施例1に用いたマグネシア粉にシリコーンオイルとし
て本発明以外のオイル(例えばトーレシリコンのS R
2402)を用い、以下実施例1と同じ処理を施し全て
の測定値を第1表に示した。Comparative Example 1 An oil other than the present invention (for example, Toray Silicone's S R
2402), the same treatment as in Example 1 was performed, and all measured values are shown in Table 1.
第1表
第1表
また、第2表に耐熱性について本発明のマグネシア粉と
比較例1のマグネシア粉とを比較して示した。Table 1 Table 1 Table 2 also shows a comparison of the heat resistance of the magnesia powder of the present invention and the magnesia powder of Comparative Example 1.
第2表
本発明のマグネシア粉が耐熱性に優れているのが明らか
である。Table 2 It is clear that the magnesia powder of the present invention has excellent heat resistance.
実施例2
実施例1に用いたマグネシア粉、シリコーンオイル、シ
リカ粉を第3表で示すような混合量で同じ処理を施した
。Example 2 The same treatment was performed using the magnesia powder, silicone oil, and silica powder used in Example 1 in the mixed amounts shown in Table 3.
そのマグネシウム粉の耐熱性と耐吸湿性を第3表に示し
た。Table 3 shows the heat resistance and moisture absorption resistance of the magnesium powder.
第3表
[発明の効果]
以上説明したように、本発明の電気絶縁祠料は従来から
絶縁充填材として用いられていた電気絶縁ヰ4料に比較
して耐熱性、耐吸湿性が向上している。Table 3 [Effects of the Invention] As explained above, the electrical insulating material of the present invention has improved heat resistance and moisture absorption resistance compared to the four electrical insulating materials conventionally used as insulating fillers. ing.
特許出願人 新日本化学工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭 宏Patent applicant Shin Nippon Chemical Industry Co., Ltd. Agent Patent Attorney Hidetake Komatsu Agent Patent Attorney Hiroshi Asahi
Claims (5)
するシリコーンオイルを媒体として、撥水性を有するシ
リカ粉が被覆していることを特徴とする耐熱・耐吸湿性
電気絶縁材料。(1) A heat-resistant and moisture-absorbing electrical insulating material characterized in that the surface of magnesia powder is coated with water-repellent silica powder using silicone oil having a reactive functional group in its side chain as a medium.
有する特許請求の範囲(1)記載の耐熱・耐吸湿性電気
絶縁材料。(2) The heat-resistant and moisture absorption-resistant electrical insulating material according to claim (1), wherein the reactive functional group has an H group, an OH group, and an OCH_3 group.
カ粉を0.2〜2.0wt%含有する上記特許請求の範
囲(1)ないし(3)の何れかに記載の耐熱・耐吸湿性
電気絶縁材料。(3) Heat-resistant and moisture-absorption resistant according to any one of claims (1) to (3) above, containing 0.1 to 0.5 wt% of silicone oil and 0.2 to 2.0 wt% of silica powder. electrical insulation material.
範囲(1)ないし(3)の何れかに記載の耐熱・耐吸湿
性電気絶縁材料。(4) The heat-resistant and moisture absorption-resistant electrical insulating material according to any one of claims (1) to (3), wherein the magnesia powder is sintered magnesia.
2.30g/cm^3以上である特許請求の範囲 (1
)ないし(4)の何れかに記載の耐熱・耐吸湿性電気絶
縁材料。(5) Claims that the fluidity is 220 sec/100g or less and the filling property is 2.30g/cm^3 or more (1
) to (4), the heat-resistant and moisture absorption-resistant electrical insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62253834A JP2651826B2 (en) | 1987-10-09 | 1987-10-09 | Heat- and moisture-resistant electrical insulation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62253834A JP2651826B2 (en) | 1987-10-09 | 1987-10-09 | Heat- and moisture-resistant electrical insulation material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0197303A true JPH0197303A (en) | 1989-04-14 |
JP2651826B2 JP2651826B2 (en) | 1997-09-10 |
Family
ID=17256783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62253834A Expired - Fee Related JP2651826B2 (en) | 1987-10-09 | 1987-10-09 | Heat- and moisture-resistant electrical insulation material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2651826B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8348520B2 (en) | 2008-01-29 | 2013-01-08 | Mitsubishi Cable Industries, Ltd. | Optical connector structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102179643B (en) * | 2011-04-20 | 2013-03-20 | 大石桥市美尔镁制品有限公司 | Preparation method of magnesium oxide powder for welding electrode coating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595505A (en) * | 1982-06-30 | 1984-01-12 | 日本電熱株式会社 | Method of producing insulating powder for heat generator |
-
1987
- 1987-10-09 JP JP62253834A patent/JP2651826B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595505A (en) * | 1982-06-30 | 1984-01-12 | 日本電熱株式会社 | Method of producing insulating powder for heat generator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8348520B2 (en) | 2008-01-29 | 2013-01-08 | Mitsubishi Cable Industries, Ltd. | Optical connector structure |
Also Published As
Publication number | Publication date |
---|---|
JP2651826B2 (en) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0133315B1 (en) | Composition and method for forming a protective coating on carbon-carbon substrates | |
JPS61502603A (en) | Cementitious composite material with metal aggregate | |
CN106699227A (en) | Nanowire self-reinforced porous silicon nitride ceramic and preparation method thereof | |
JPS62207771A (en) | Heat insulative composition and manufacture of formed body therefrom | |
CN102181128B (en) | Epoxy resin premix and preparation technology of the epoxy resin premix | |
JPH0350287A (en) | Technique for forming sealing material composed mainly of organopolysiloxane | |
JP2005170771A (en) | Slightly basic silica powder, method for producing the same, and resin composition | |
JPH0197303A (en) | Electric insulating material having heat resistance and moisture absorption resistance | |
JPH1143320A (en) | Production of silica filler, composition for filler and its production | |
JPH0826812A (en) | Inorganic composition | |
RU2098379C1 (en) | Heat-insulation formulation | |
EP0496598A2 (en) | Silicone rubber compositions | |
JPH078981B2 (en) | Powder fluidity improver | |
JP2660383B2 (en) | Fine ceramics sintered body having fine voids and method for producing the same | |
JP7407278B2 (en) | Modified metal oxide particle material and manufacturing method thereof | |
JPS6177684A (en) | Manufacture of inorganic foamed moldings | |
SU1608012A1 (en) | Sand for making cores and moulds in heated tooling | |
GB2040295A (en) | Molding sand mixture for the manufacture of molds and cores | |
JPH06305723A (en) | Siliceous composite particles and their use | |
RU2028280C1 (en) | Raw material mix for producing refractory articles | |
JPH04206801A (en) | Incombustible cement for electronic parts | |
JP2879378B2 (en) | Composition for inorganic molding | |
RU1771863C (en) | Suspension for preparation of ceramic envelope forms | |
CN112920647A (en) | Waterproof and anti-oxidation coating for electronic device and preparation method thereof | |
SU1024443A1 (en) | Refractory composition for coating graphite-containing materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |