JPH0197092A - Projection liquid crystal display device - Google Patents

Projection liquid crystal display device

Info

Publication number
JPH0197092A
JPH0197092A JP62255397A JP25539787A JPH0197092A JP H0197092 A JPH0197092 A JP H0197092A JP 62255397 A JP62255397 A JP 62255397A JP 25539787 A JP25539787 A JP 25539787A JP H0197092 A JPH0197092 A JP H0197092A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
angle
type liquid
crystal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62255397A
Other languages
Japanese (ja)
Other versions
JP2870747B2 (en
Inventor
Kazuo Yokoyama
和夫 横山
Junichi Asada
潤一 麻田
Hiroshi Watabe
宏 渡部
Shoichi Ishihara
石原 将市
Sadakichi Hotta
定吉 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62255397A priority Critical patent/JP2870747B2/en
Priority to US07/254,244 priority patent/US4989954A/en
Priority to EP88116683A priority patent/EP0311116B1/en
Priority to KR1019880013105A priority patent/KR920000144B1/en
Priority to DE3850838T priority patent/DE3850838T2/en
Publication of JPH0197092A publication Critical patent/JPH0197092A/en
Application granted granted Critical
Publication of JP2870747B2 publication Critical patent/JP2870747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To optimize the characteristics of transmission factors of RGB by altering the crossing angles of deflection axes of polarizers and analyzers in each RGB of TN type liquid crystal panels in a projection liquid crystal display device having an optical system where three color lights of R, G and B are transmitted through three TN type liquid crystal panels and the images of the TN type liquid crystal panels are image-formed on a same screen. CONSTITUTION:It is assumed that a case for shifting the deflection axes in the direction where rotatory polarization angles of linear deflection is reduced to be positive, the crossing angle thetaR of the deflection axis of the liquid crystal panel for R light beams to 0--20 deg., and the crossing angle thetaB of the deflection axis in the liquid crystal panel for B light beams to 0-+20 deg.. The crossing angle thetaG of the deflection axis in the liquid crystal panel for G light beams is assumed to be thetaG=0 or thetaR<thetaG<thetaB. The totally equal liquid crystal panels can be used for the liquid crystal panels for R, G and B except for the arrangement angles of deflecting plates according to said means and constitution. A multiple number of liquid crystal panels of same specification are manufactured and a system can be constituted by using the liquid crystal panels of mean performance. Since three liquid crystal panels for R, G and B have same gap lengths, the responsibility of liquid crystal are the same.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、フルラー表示用の・投写型液晶表示装置、特
にこれに使用するTN型液晶パネルの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a projection type liquid crystal display device for full-color display, and particularly to the structure of a TN type liquid crystal panel used therein.

従来の技術 フルカラー画像表示が可能な液晶表示パネルとしては多
数の画素をマトリックヌ配置したTN型液晶パネルを光
シャッタとして、これに画素ごとにRGBの3色フィル
タを配置した液晶パネルが実用化されている。CRT並
みのフルカラーTV画像の表示を可能とするためには画
像の信号線と走査線によJ100’%デユーティで光シ
ャッタのオン、オフを制御する必要から、各画素にスイ
ッチング用の薄膜トランジスタやダイオードを作り付け
たアクティブマトリックス型液晶表示パネルが有利であ
る。しかしこれらのアクティブマトリックス型液晶表示
パネルの製造は、製膜、フォトファブリケーションによ
るいわゆる半導体プロセスによるため大型化が一般に難
かしい。これに対してこれをライトパルプとしてスクリ
ーン上に投影する投写型液晶表示装置ではこの大型化が
容易に実現できる。
Conventional technology As a liquid crystal display panel capable of displaying full-color images, a liquid crystal panel has been put into practical use that uses a TN-type liquid crystal panel with a large number of pixels arranged in a matrix as an optical shutter, and a three-color filter of RGB arranged for each pixel. There is. In order to display a full-color TV image comparable to that of a CRT, it is necessary to control the on and off of the optical shutter with a J100'% duty using the image signal line and scanning line, so a thin film transistor or diode for switching is required for each pixel. An active matrix type liquid crystal display panel with built-in is advantageous. However, since these active matrix liquid crystal display panels are manufactured using a so-called semiconductor process using film formation and photofabrication, it is generally difficult to increase their size. On the other hand, in a projection type liquid crystal display device that projects this onto a screen as a light pulp, this increase in size can be easily realized.

RGEの3色光を3枚のTN型液晶パネルに透過させて
このTN型液晶パネルの画像を同一スクリーン上に結像
する場合、TN型液晶パネルの入射光の波長によシ出射
光の偏光状態が異なるため、これらのRGBごとに別々
に最適な光学設計されたTN型液晶パネルを使用する必
要がある。ノーマリブラックのTNセルの透過率特性は
Gooch。
When RGE three-color light is transmitted through three TN-type liquid crystal panels and the images of these TN-type liquid crystal panels are formed on the same screen, the polarization state of the output light changes depending on the wavelength of the incident light on the TN-type liquid crystal panel. Therefore, it is necessary to use a TN type liquid crystal panel with an optimal optical design for each of these RGB colors. The transmittance characteristics of the normally black TN cell are Gooch.

Tarryが文献J、Phys、、D8,1575(1
975)に理論的に説明°しておシ、9007Nセルの
場合の透過率Tは T=s’+n2−(1+u ) /(1+ u )で表
わせる。ここでパラメータUは u = 2Δnd/λ で定義され、Δnは液晶の屈折率異方性、dは液晶層の
ギャップ長、λは波長を示す。透過率Tの最小値は波長
によシ異なり、RGBの各中心波長をそれぞれ450n
m、545nm、610nmとし、Δn=0.098と
した時のギャップ長dに対する透過率Tの計算値を第2
図すに示す。第2図すで曲線1はR光を透過させた場合
の透J率を示しており、ギャップ長5.4μmで透過率
が最小値をとる。同じく曲線2および3はそれぞれG光
Tarry published the document J, Phys, D8, 1575 (1
975), the transmittance T in the case of a 9007N cell can be expressed as T=s'+n2-(1+u)/(1+u). Here, the parameter U is defined as u=2Δnd/λ, where Δn is the refractive index anisotropy of the liquid crystal, d is the gap length of the liquid crystal layer, and λ is the wavelength. The minimum value of the transmittance T varies depending on the wavelength, and the center wavelength of each RGB is 450n.
The calculated value of the transmittance T for the gap length d when m, 545 nm, and 610 nm and Δn = 0.098 is the second
It is shown in the figure. Curve 1 in FIG. 2 shows the transmittance when R light is transmitted, and the transmittance takes a minimum value at a gap length of 5.4 μm. Similarly, curves 2 and 3 are for G light.

B光の透過率を示し、ギヤツブ長ハ4.8μm 。It shows the transmittance of B light, and the gear lug length is 4.8 μm.

4.0μmで透過率の最小値をとる。したがってRGB
用の液晶パネルにΔn値の同じ同一の液晶を使う場合に
は各液晶パネルのギャップ長を上記の値に合せれば透過
率特性を最適化できる。またRGBごとにΔ!1値の異
なる液晶を使用して透過率特性を最適化することも考え
られるが、液晶材料に要求される実用上の緒特性たとえ
ば応答性に関わる粘度、電圧−透過率特性に関わる誘電
率異方性2弾性率等も満足して上記特性を最適化するこ
とは難かしく現実的でない。
The minimum value of transmittance is taken at 4.0 μm. Therefore RGB
When using the same liquid crystals with the same Δn value as liquid crystal panels for use with other devices, transmittance characteristics can be optimized by adjusting the gap length of each liquid crystal panel to the above value. Also, Δ for each RGB! It is possible to optimize the transmittance characteristics by using liquid crystals with different values, but the practical characteristics required for liquid crystal materials, such as viscosity related to response, and dielectric constant difference related to voltage-transmittance characteristics, are considered. It is difficult and impractical to optimize the above-mentioned properties while also satisfying the ditropic elastic modulus and the like.

本発明が解決しようとする問題点 従来例に示したRGBごとに液晶パネルのギャップ長を
変えて透過率特性を最適化する方法では、高いコントラ
ストで色再現性の良い画像表示装置を実現するにはサブ
ミクロンの高精度のギャップ長を持った液晶表示パネル
が必要であシ、RGBごとにギャップ長の異なった液晶
パネルで構成することは製作技術上および製造管理上不
利がある。
Problems to be Solved by the Invention The conventional method of optimizing the transmittance characteristics by changing the gap length of the liquid crystal panel for each RGB cannot realize an image display device with high contrast and good color reproducibility. requires a liquid crystal display panel with a highly accurate gap length of submicrons, and constructing liquid crystal panels with different gap lengths for each RGB is disadvantageous in terms of manufacturing technology and manufacturing control.

たとえば液晶パネルの液晶層のギャップはグラスファイ
バーやビーズをスペーサとして保持するがこのギャップ
間隔はこれらのヌペーサ材の径、材質、さらに分散密度
に依存してお9、さらに液晶パネルを構成する基板ガラ
スのそりや、これを矯正してシール封止する押圧力や温
度条件が関係し、要求きれるサブミクロン梢度のギャッ
プ長を実現することは容易でない。さらにTN型液晶パ
ネルのギャップ長が異なった場合、光学特性のみならず
応答特性や電圧−i過率特性も変わシ、不利である。
For example, the gap in the liquid crystal layer of a liquid crystal panel is maintained using glass fibers or beads as spacers, but this gap distance depends on the diameter, material, and dispersion density of these Nupaca materials. It is not easy to achieve the required gap length of submicron diameter because of the warping, pressing force and temperature conditions for correcting the warping and sealing. Furthermore, if the gap length of the TN type liquid crystal panel is different, not only the optical characteristics but also the response characteristics and voltage-i pass rate characteristics will change, which is disadvantageous.

問題点を解決するための手段 本発明は上記問題点を解決するため、RGBの3色光を
3枚のTN型液晶パネルに透過させてこのTN型液晶パ
ネルの画像を同一スクリーン上に結像する光学系を有す
る投写型液晶表示装置にあってRGB毎にTN型液晶パ
ネルの偏光子と検光子の偏光軸の交角を変えることによ
シ、RGB毎の透過率特性を最適化したことを特徴とす
るものである。
Means for Solving the Problems In order to solve the above problems, the present invention transmits RGB three-color light through three TN-type liquid crystal panels and forms images on the TN-type liquid crystal panels on the same screen. A projection type liquid crystal display device having an optical system, which is characterized by optimizing the transmittance characteristics for each RGB by changing the intersection angle of the polarization axes of the polarizer of the TN type liquid crystal panel and the analyzer for each RGB. That is.

特にTN型液晶パネルの配向方向が略直交し、偏光子お
よび検光子の透過軸あるいは吸収軸が一方の配向方向に
略一致するよう平行ニコルに近い方向に配置されたノー
マリブラックの表示形式であって、直線偏光の旋光角が
減少する方向に偏光軸をずらす場合を正として、R光用
の液晶パネルの偏光軸の交角θRを0−−200 、B
光用の液晶パネルの偏光軸の交角θBを0〜+20゜、
G光用の液晶パネルの偏光軸の交角θGをθG=oまた
はaRくθGくθBとする構成とすれば好都合である。
In particular, a normally black display format in which the alignment directions of the TN type liquid crystal panel are approximately orthogonal, and the polarizer and analyzer are arranged in a direction close to parallel Nicols so that the transmission axis or absorption axis of the polarizer and analyzer approximately coincide with one of the alignment directions. The intersection angle θR of the polarization axis of the liquid crystal panel for R light is 0--200, B
The intersection angle θB of the polarization axis of the liquid crystal panel for light is 0 to +20°,
It is convenient to set the intersection angle θG of the polarization axes of the liquid crystal panel for G light to θG=o or aR x θG x θB.

作  用 本発明の手段、構成によればRGB用の液晶パネルは偏
光板の配置角度を除いて全く同じ液晶パネルを使用でき
るから構成がシンプルであり、液晶パネルの製作上有利
である。同一仕様の液晶パネルを多数個製造し、性能の
均一な液晶パネルを使用してシステムを構成することが
できる。またRGB用の3枚の液晶パネルは同じギャッ
プ長であるから液晶の応答特性も同じであシ、電圧−透
過率特性も近い。
Effects According to the means and structure of the present invention, the liquid crystal panels for RGB can use exactly the same liquid crystal panels except for the arrangement angle of the polarizing plates, so the structure is simple and advantageous in manufacturing the liquid crystal panel. It is possible to manufacture a large number of liquid crystal panels with the same specifications and configure a system using liquid crystal panels with uniform performance. Furthermore, since the three liquid crystal panels for RGB have the same gap length, the response characteristics of the liquid crystals are also the same, and the voltage-transmittance characteristics are also similar.

本発明は3板式の投写型液晶表示装置として液晶パネル
の偏光軸の配置角度を工夫するのみの簡単な構成で上記
利点が得られることに着眼法もので、下記の通り液晶パ
ネルの透過率特性を最適化することができる。
The present invention focuses on the fact that the above advantages can be obtained with a simple configuration of a three-panel projection liquid crystal display device by simply adjusting the arrangement angle of the polarization axis of the liquid crystal panel, and the transmittance characteristics of the liquid crystal panel are as follows. can be optimized.

1、Appl、Phys、、48.(4)、P1427
(1977)に論じておシ、入射直線偏光が900TN
セルを透過して直線偏光として出射する条件として下記
の条件式を理論的に導いている。
1, Appl, Phys, 48. (4), P1427
(1977), the incident linearly polarized light is 900TN.
The following conditional expression is theoretically derived as a condition for transmitting through the cell and emitting as linearly polarized light.

(1+u2)T ここでパラメータU、は前述と同じく u = 2Δnd/λ で定義され、αは配向方向に対する偏光軸の角度を表わ
し、入射側の配向方向に対してTNセルの直線偏光の旋
光する方向に入射側の偏光軸をずらし、出射側で直線偏
光の旋光角が減少する方向に偏光軸をずらす場合を角度
の正と定義しており、上記の出射光が直線偏光となる条
件は入射側の偏光軸と出射側の偏光軸の交角が2aとな
る場合である。
(1+u2)T Here, the parameter U is defined as u = 2Δnd/λ as above, and α represents the angle of the polarization axis with respect to the orientation direction, and the rotation of the linearly polarized light of the TN cell with respect to the orientation direction on the incident side. The angle is defined as positive when the polarization axis on the input side is shifted in the direction and the polarization axis is shifted in the direction in which the angle of rotation of linearly polarized light decreases on the output side.The above condition for the output light to be linearly polarized is This is a case where the intersection angle between the polarization axis on the side and the polarization axis on the emission side is 2a.

第2図aはこの条件式を満足する偏光軸の角度αとギャ
ップ長dの関係をΔn = 0.098  の場合につ
いてRGBの各中心波長、450am、546am 、
610amについて計算したものである。
Figure 2a shows the relationship between the angle α of the polarization axis and the gap length d that satisfies this conditional expression for the case of Δn = 0.098, with each center wavelength of RGB, 450 am, 546 am,
This is calculated for 610am.

曲線4,5.6はそれぞれRGBの偏光軸の角度aとギ
ャップdの関係を表わす。α=0の場合は前述のGoo
ch、Tarryの式より算〜出される最適ギャップと
一致している。この関係を第2図aと第2図すを関係づ
けて図示した。いまG光用のTNセルの偏光板を平行ニ
コルとすると、すなわち、αG =Oとすると最適ギャ
−ツブ長は4.8μmである。ギャップ長が4.8μm
の時にB光用のTNセルの最適な偏光軸の角度αBは第
2図aにおいて点7で示されておりeLB・=+66°
である。同じくR光用のTNセルの最適な偏光軸の角度
aRは同図の点8で示されており、α8m  40’で
ある。このように同一ギャップの液晶パネルを使用して
偏光軸の角度を変えることでRGBごとに最適の構成を
採ることができる。しかもこの理論式を満足する4合に
は非点燈時のブラック状態の液晶パネルの透過率はRG
Bともに理論的には零であり、TV画像グレードの表示
に重要な優れた黒レベルが実現し、色再現性も高い。さ
らに点燈時のホワイト状態の透過率は、B光用およびR
光用については偏光軸が平行ニコルとは異なるから若干
低下するが、偏光軸の交角はB光用でθB =2αB=
+13.2° R光用でaR= 2 aR= −aO6
であり透過率の低下はそれぞれ5.2%および1.9%
であり実用上支障がなく、コントラストの低下も少ない
。偏光軸の交角を20°以下に限定したのはこれ以上の
交角となると点燈時の透過率が十数%低下し支障−が生
じて来るからである。
Curves 4 and 5.6 represent the relationship between the angle a of the RGB polarization axes and the gap d, respectively. When α=0, the above Goo
This corresponds to the optimum gap calculated from the formula of ch and Tarry. This relationship is illustrated in FIG. 2A and FIG. 2S in relation to each other. Assuming that the polarizing plate of the TN cell for G light is parallel Nicol, that is, αG = O, the optimum gear length is 4.8 μm. Gap length is 4.8μm
The optimal angle αB of the polarization axis of the TN cell for B light when
It is. Similarly, the optimum angle aR of the polarization axis of the TN cell for R light is indicated by point 8 in the figure, and is α8m 40'. In this way, by using liquid crystal panels with the same gap and changing the angles of the polarization axes, an optimal configuration can be achieved for each RGB. Moreover, in the 4th case that satisfies this theoretical formula, the transmittance of the liquid crystal panel in the black state when not lit is RG.
Both B are theoretically zero, and an excellent black level, which is important for TV image grade display, is achieved, and color reproducibility is also high. Furthermore, the transmittance in the white state when the light is turned on is for B light and R
For light, the polarization axis is different from parallel Nicols, so it is slightly lower, but the intersection angle of the polarization axes for B light is θB = 2αB =
+13.2° For R light aR= 2 aR= -aO6
and the decrease in transmittance is 5.2% and 1.9%, respectively.
Therefore, there is no problem in practical use, and there is little decrease in contrast. The reason why the intersecting angle of the polarization axes is limited to 20° or less is because if the intersecting angle is larger than this, the transmittance during lighting will decrease by more than ten percent, which will cause problems.

実施例 第1図は本発明の第1の実施例として特許請求の範囲第
3項の構成に対応した実施例を示してい゛る。この構成
は偏光軸の配置を上述した理論通りに配した例であり、
TNセル10の入射光側の配向方向11(点線の矢印で
図示)と出射側の配向方向12の間の角度ΩはΩ=90
°の旋回方向が右まわりのTNセルであり、RGB光用
の3枚のTNセルともその液晶層の ゛ギヤツブ長dは
共通であり、G光に対してギャップ長を最適化しである
。すなわち前述したGooch、Torry。
Embodiment FIG. 1 shows an embodiment corresponding to the structure of claim 3 as a first embodiment of the present invention. This configuration is an example of arranging the polarization axes according to the theory described above.
The angle Ω between the alignment direction 11 (indicated by a dotted arrow) on the incident light side of the TN cell 10 and the alignment direction 12 on the output side is Ω=90.
This is a TN cell in which the rotating direction of the angle is clockwise, and the three TN cells for RGB light have the same gear length d of their liquid crystal layers, and the gap length is optimized for G light. Namely, the aforementioned Gooch and Torry.

式で非点燈時の透過率が零となる第1ピークの条件はと
なる。波長λをG光の0.545 pm 、Δn=0.
098とすると上式はd=48μmとなる。
In the formula, the conditions for the first peak where the transmittance at the time of non-lighting is zero are as follows. The wavelength λ is 0.545 pm of G light, Δn=0.
098, the above equation becomes d=48 μm.

G光用のTNセルの偏光軸は入射側の配向方向と同一方
向でかつ出射側の偏光軸を平行としており、いわゆるt
aoo TNセルの平行ニコル形式のノーマリ−ブラッ
ク表示形式のセルを形成している。これに対してR光用
のTNセルは偏光軸の角度を、入射側については配向方
向11に対してaRだけ変えた13の方向とし、出射側
の偏光軸は入射側の配向方向と直交する方位より、入射
側と反対方向に(Zuだけずらした14の方向としてい
る。
The polarization axis of the TN cell for G light is in the same direction as the alignment direction on the input side, and the polarization axis on the output side is parallel, so-called t.
aoo Forms a parallel Nicol normally black display type cell of the TN cell. On the other hand, in the TN cell for R light, the angle of the polarization axis is set in the direction 13, which is changed by aR from the orientation direction 11 on the input side, and the polarization axis on the output side is perpendicular to the orientation direction on the input side. From the azimuth, the direction is 14, which is shifted by Zu in the opposite direction to the incident side.

R光に対するTNセルの非点燈時の透過率を零とするに
は前述のGos c i ansk iの式からd =
 4.8 μm。
In order to make the transmittance of the TN cell for R light zero when it is not lit, from the above-mentioned formula of Gosc i ansk i, d =
4.8 μm.

λ=o、e1o、Δn=0.098 とするとαpt 
=  4.00となる。ここで角度の正負は直線偏光の
旋光角が減少する方向に偏光板をずらす場合を正として
おり、(lRは負であるからR光の場合には入射直線偏
光は90’−2α□=98.0’だけ旋回した角度で直
線偏光として出射するから、これと直交する方向に出射
側の偏光軸を合せることにより非点燈時の透過率を零と
することができる。同様にB光に対してもd = 4.
8 pm 、λ=0.450μm 。
If λ=o, e1o, Δn=0.098, αpt
= 4.00. Here, the sign of the angle is positive when the polarizing plate is shifted in the direction in which the angle of rotation of linearly polarized light decreases. Since it is emitted as linearly polarized light at an angle rotated by .0', by aligning the polarization axis on the emitting side in a direction perpendicular to this, the transmittance when the light is not turned on can be made zero.Similarly, for B light Even for d = 4.
8 pm, λ=0.450 μm.

Δn=o・098 として偏光板角度を最適化するとα
B=+6.6° となり、図のととくB光の場合はR光
の場合と反対方向に入射側の偏光軸15を配向11に対
してα8だけ、出射側の偏光軸16を、入射側の配向方
向と直交する方位よりα3だけずらせばよい。なお図で
は投写光学系の図示は省略した。
When optimizing the polarizing plate angle by setting Δn=o・098, α
B = +6.6°, and in the case of B light shown in the figure, the polarization axis 15 on the incident side is set in the opposite direction to the case of R light, and the polarization axis 16 on the output side is set by α8 with respect to the orientation 11. It is only necessary to shift it by α3 from the direction perpendicular to the orientation direction of . Note that illustration of the projection optical system is omitted in the figure.

このように偏光板の配置方向を最適化したTNセルのR
GB毎のギャップ長に対する透過率の特性の理論値を第
3図に示す。曲線21,22.23はそれぞれR光、G
光、B光用のTNセルの透過率を示す。ここで一定ギャ
ップ長(4,8μm)でRGB光とも透過率が零となり
非点燈時の黒レベルが最適化される。実証実験として上
記に説明したΔn = 0.098 、 d = 4.
8pmのTNセルを作成し、RGBの誘電体多層膜干渉
フィルタを使用して非点燈時の偏光板の最適配置角度を
探ったところ、R光用のパネルについては偏光板交角が
一8° 。
The R of the TN cell with the polarizer arrangement direction optimized in this way
FIG. 3 shows the theoretical values of the transmittance characteristics with respect to the gap length for each GB. Curves 21, 22, and 23 are R light and G light, respectively.
The transmittance of the TN cell for light and B light is shown. Here, at a constant gap length (4.8 μm), the transmittance of both RGB light becomes zero, and the black level when the light is not turned on is optimized. As a demonstration experiment, Δn = 0.098, d = 4.
When we created an 8pm TN cell and used an RGB dielectric multilayer interference filter to find the optimal placement angle of the polarizer when the lights were not on, we found that for the R light panel, the polarizer intersection angle was 18°. .

B光用のパネルについては偏光板交角が+13゜で非点
燈時のパネルの輝度が最小を示し、理論計算値と良好な
一致を示しだ。また上記の説明ではΔnは定数として扱
ったが若干の波長依存性および比較的大きな温度依存性
を持っており、これらを考慮した計算を行なうことによ
り精度を上げることができる。また実際に作成したパネ
ルの透過率は第3図に示すごとく、その最適点で透過率
は零にはならず若干の残留透過があった。さらにRGB
用のフィルタとして上述の誘電体多層膜干渉フィルタを
使用する場合はフィルタ特性の波長域における幅が比較
的狭いため上述の通り数長を一定とした理論計算式で実
験事実とよく合致しているが、透過光量を重視して各R
GHに波長幅を持たせたフィルタを使用する場合には透
過率を最小とする偏光板交角の実験値は上記計算値から
ずれた。しかしこのずれは波長幅内におけるTNセ 。
For the B-light panel, when the polarizer intersection angle was +13°, the panel brightness when not lit was at its minimum, showing good agreement with the theoretically calculated value. Further, in the above explanation, Δn was treated as a constant, but it has slight wavelength dependence and relatively large temperature dependence, and accuracy can be improved by performing calculations that take these into account. Furthermore, as shown in FIG. 3, the transmittance of the actually produced panel did not reach zero at its optimum point, but there was some residual transmittance. Furthermore, RGB
When using the above-mentioned dielectric multilayer interference filter as a filter, the width of the filter characteristic in the wavelength range is relatively narrow, so the theoretical calculation formula with a fixed number length as described above agrees well with the experimental facts. However, with emphasis on the amount of transmitted light, each R
When using a filter in which the GH has a wavelength width, the experimental value of the polarizing plate intersection angle that minimizes the transmittance deviates from the above calculated value. However, this deviation is within the wavelength width.

ルの旋光分散現象が主要な原因と考えられ、偏光板交角
を考慮したTNセルの透過率を光源およびフィルタの波
長幅に渡って積分することにより解析することができ、
設計計算値の精度をさらに上げることができる。このよ
うな透過率の残留成分と偏光板交角の理論値からのずれ
は特にB光用のパネルで顕著であった。これはB光用の
パネルでは狭ギヤツプ領域において上述の旋光分散現象
が特に大きいことが一因でありさらに液晶配向のブリテ
プルト角の影響も考えられる。さらにB光用のパネルを
従来通りギャップ長を最適化してd=4・0μmの液晶
パネルを製作したところ狭ギャップであるためにパネル
内のギャップ均一性が見立ったり、顕著な残留透過があ
りコントラストが悪かった。この点からは本特許によれ
ば相対的に大きなギャップを持った液晶パネルを使用し
てB光用に透過率特性を最適化することができ有利であ
る。
The main cause is thought to be the optical rotary dispersion phenomenon of the light source, and it can be analyzed by integrating the transmittance of the TN cell over the wavelength width of the light source and filter, taking into account the polarizing plate intersection angle.
The accuracy of design calculation values can be further improved. Such deviations of the residual component of transmittance and the polarizing plate intersection angle from the theoretical values were particularly noticeable in panels for B light. One reason for this is that in the B-light panel, the above-mentioned optical rotational dispersion phenomenon is particularly large in the narrow gap region, and it is also thought to be influenced by the Britepult angle of liquid crystal alignment. Furthermore, when we fabricated a liquid crystal panel for B light with d = 4.0 μm by optimizing the gap length as before, due to the narrow gap, the uniformity of the gap within the panel was noticeable and there was significant residual transmission. The contrast was poor. From this point of view, the present patent is advantageous in that it is possible to optimize the transmittance characteristics for B light by using a liquid crystal panel with a relatively large gap.

RGB用のパネルは同一ギャップであるため応答特性も
ほぼそろっており、電圧印加時の電圧−透過率特性もR
GBで実用上支障のある差はなかった。
Since RGB panels have the same gap, their response characteristics are almost the same, and the voltage-transmittance characteristics when voltage is applied are also R.
There was no difference in GB that would pose a practical problem.

第4図は本発明の他の実施例を示しておりaは第1の実
施例と同じく特許請求の範囲第3項の構成に対応した実
施例、bおよびCは第4項の構成に対応した実施例を示
している。上記の実証実験で偏光板交角θを保って、第
4図すまたはCの如く両振りの角度配分ではなく入射側
または出射側の偏光軸を一定方向に固定して偏光板交角
を変えても第4図aと同じ効果が得られることが明らか
になった。
FIG. 4 shows another embodiment of the present invention, in which a corresponds to the structure of claim 3, as in the first embodiment, and b and C correspond to the structure of claim 4. An example is shown below. In the above demonstration experiment, we maintained the polarizing plate intersection angle θ and changed the polarizing plate intersection angle by fixing the polarization axis on the incident side or the output side in a fixed direction instead of distributing the angle in both directions as shown in Figures 4 and 4. It has become clear that the same effect as in FIG. 4a can be obtained.

G光用のパネルはいずれも平行ニコルで最適化したギャ
ップ長を持っておシ、B光用およびR光用のパネルにつ
いては同じギャップ長で偏光軸の交角を最適化しである
。入射側の配向方向例Oc)と出射側の配向方向32(
y)は90’ に近い交角Ωで交わっており矢印方向に
配向の分子軸のダイレクタを持ち右まわりのTNセルを
構成している。
The panels for G light all have a gap length optimized with parallel Nicols, and the panels for B light and R light have the same gap length and the intersection angles of the polarization axes are optimized. Orientation direction example Oc) on the incident side and orientation direction 32 (Oc) on the output side
y) intersect at an intersection angle Ω close to 90', and have a molecular axis director oriented in the direction of the arrow, forming a clockwise TN cell.

なおここで図は全て出射側から見るものとする。Note that all the figures here are viewed from the emission side.

第4図aのB光用のパネルでは入射側の偏光軸33(P
i)は入射側の配向方向31(x)に対して旋光方向に
IZBだけ角度を持った方向に配置されており、この方
向に入射した直線偏光はπ−2αBだけ右まわシに旋回
した後34の旋回方向(Po’)で直線偏光として出射
する。これと直交する方向36(Po)に出射側の偏光
軸を合せてやれば非点燈時の透過率は最小となる。従っ
て入射側偏光軸と出射側偏光軸の交角θBはθB = 
2 (IBである。
In the panel for B light shown in Fig. 4a, the polarization axis 33 (P
i) is arranged in a direction with an angle of IZB in the optical rotation direction with respect to the orientation direction 31(x) on the incident side, and the linearly polarized light incident in this direction rotates clockwise by π-2αB and then The light is emitted as linearly polarized light in the rotation direction (Po') of 34. If the polarization axis on the output side is aligned with the direction 36 (Po) perpendicular to this, the transmittance during non-lighting will be minimized. Therefore, the intersection angle θB between the polarization axis on the input side and the polarization axis on the output side is θB =
2 (IB.

R光用のパネルについても同様であるがB光用の旋光角
(PiとPoのなす角度)が鋭角であるのに対しR光用
では鈍角であり、入射側と出射側の偏光軸の配置関係が
相互に逆になる。
The same is true for the panel for R light, but while the angle of rotation for B light (the angle formed by Pi and Po) is an acute angle, for R light it is an obtuse angle, and the arrangement of the polarization axes on the incident side and output side The relationship is mutually inverse.

第4図すおよびCはそれぞれ入射側の偏光軸を配向方向
に一致させた場合と出射側の偏光軸を配向方向に一致さ
せた場合を示している。この場合も第4図dの構成の場
合とほぼ同じく偏光板交角を適当に選ぶことにより透過
率を最適化することができる。第1次近似的には前述の
Goscianskiの式より偏光板交角θはθ=2α
で求めることが出来る。このような構成では一方の偏光
軸が各RGBパネルに対して共通であるため構成が簡単
、であり投写型液晶表示装置の製造上も有利である。
FIGS. 4A and 4C show the case where the polarization axis on the incident side is made to coincide with the orientation direction, and the case where the polarization axis on the output side is made to coincide with the orientation direction, respectively. In this case as well, the transmittance can be optimized by appropriately selecting the intersection angle of the polarizing plates, similar to the case of the configuration shown in FIG. 4(d). In the first approximation, from the aforementioned Goscianski equation, the polarizing plate intersection angle θ is θ=2α
It can be found by In such a configuration, since one polarization axis is common to each RGB panel, the configuration is simple and it is also advantageous in manufacturing a projection type liquid crystal display device.

たとえば共通側の偏光軸として液晶パネルに直接偏光板
を貼υ付け、交角調整側の偏光板をその反対面側に配置
する。
For example, a polarizing plate is attached directly to the liquid crystal panel as the polarizing axis on the common side, and a polarizing plate on the side for adjusting the intersection angle is placed on the opposite side.

第4図すの如く入射側の偏光軸の角度を共通とする構成
例は照明光を偏光ビームスプリッタに透過させ、得られ
た直線偏光をRGB光に分光して液晶パネルに入射せし
める場合等に有利である。
An example of a configuration in which the angle of the polarization axis on the incident side is the same as shown in Figure 4 is used when illumination light is transmitted through a polarization beam splitter, and the resulting linearly polarized light is split into RGB light and incident on a liquid crystal panel. It's advantageous.

すなわちこの場合入射側の偏光軸の方向を任意の方向に
選ぶことが難かしいから入射側の偏光軸が共通であると
好都合である。
That is, in this case, it is difficult to select the direction of the polarization axis on the incident side in an arbitrary direction, so it is convenient if the polarization axis on the incident side is common.

第4図Cの如く出射側の偏光軸の角度を共通とする構成
例は入射側を交角調整機構の付いた偏光板を液晶パネル
から離して配置し、出射側は偏光板を液晶パネルに直接
貼付ける構成とする場合等に有利である。この場合特に
入射側の偏光板は光源の輻射熱を受けて熱をよく吸収し
て発熱するが、このような配置構成によりこの発熱が液
晶パネルに伝達されるのを防ぐことが出来、液晶パネル
温度上昇を少くすることができる。
An example of a configuration in which the angle of the polarization axes on the output side is the same as shown in Figure 4C is to place a polarizing plate with an angle adjustment mechanism on the input side away from the liquid crystal panel, and on the output side, place the polarizing plate directly on the liquid crystal panel. This is advantageous when the structure is pasted. In this case, the polarizing plate on the incident side in particular absorbs the radiant heat from the light source and generates heat, but this arrangement prevents this heat from being transmitted to the liquid crystal panel, thereby reducing the liquid crystal panel temperature. increase can be reduced.

図示はしていないが偏光軸を配向方向に厳密に合致させ
なくとも数度の範囲で相対角度が一定であれば実用上支
障がない。またツイスト角Ωも90°に対して、液晶の
逆まわりのドメイン(逆ドメイン)を防止する目的で9
0°より数度小さくする構成をよく用いるが実証実験で
はこの目的でツイスト角88°に選んだ。
Although not shown, there is no problem in practice even if the polarization axis does not exactly match the orientation direction as long as the relative angle is constant within a range of several degrees. In addition, the twist angle Ω is also 90° in order to prevent the domain from rotating in the opposite direction of the liquid crystal (reverse domain).
Although a configuration in which the twist angle is several degrees smaller than 0° is often used, in the demonstration experiment, a twist angle of 88° was selected for this purpose.

第6図はさらに他の実施例を示すもので第4図a’−c
が入射側の配向方向と偏光板の偏光軸(透過軸)を合せ
るいわゆる透過軸合せのケースであるのに対し、これを
入射側の配向方向に対して偏光板の吸収軸(透過軸と直
交する方向)を合せるいわゆる吸収軸合せのケースを示
している。この場合も第4図a −Cに順じた配置にお
いて同様の効果を得ることができる。
Fig. 6 shows still another embodiment, and Fig. 4 a'-c
is a case of so-called transmission axis alignment, in which the orientation direction on the incident side is aligned with the polarization axis (transmission axis) of the polarizing plate. The figure shows a case of so-called absorption axis alignment, in which the two directions are aligned. In this case as well, similar effects can be obtained with the arrangement according to FIGS. 4a-C.

第6図はさらにこれまでの実施例がG光用のパネルをベ
ストギャップに選びR用およびB用にこれと同一のギャ
ップ長のパネルを使用しているのに対し、G光波長から
ずれた波長でベストギャップとなるTNセルを用いた場
合を例示しており、(この例ではG光波長よりやや短波
長側の波長でベストとなる。)G光用のパネルについて
も偏光板交角を調整することにより非点燈時の透過率特
性を最適化することができる。
FIG. 6 further shows that, whereas in the previous embodiments, the G light panel was selected as the best gap and panels with the same gap length were used for R and B, the G light wavelength was shifted from the G light wavelength. This example shows the case of using a TN cell that has the best gap at wavelength (in this example, the best gap is at a wavelength slightly shorter than the G light wavelength). Adjust the polarizing plate intersection angle for the G light panel as well. By doing so, it is possible to optimize the transmittance characteristics when the light is not lit.

また、以上の実施例ではRGB用パネルとも同一ギャッ
プの場合について述べた。この場合に本発明の構成が簡
単である特長が最大限生きるが、従来の最適化手法であ
るギャップ長を変えたり、屈折率異方性を変えたりする
手法との折衷でシステムを構成してもよい。
Furthermore, in the above embodiments, the case where the gap is the same for both the RGB panels has been described. In this case, the advantage of the simple configuration of the present invention is maximized, but the system can be configured as a compromise with the conventional optimization method of changing the gap length or changing the refractive index anisotropy. Good too.

発明の詳細 な説明したように本発明によれば比較的簡単な構成でR
GB毎の透過率特性を最適化することができ、すなわち
フルカラーTV画像品質に重要な黒レベル、その色特性
、さらにコントラスト、色再現性等の優れた投写型液晶
表示装置を提供することができ、工業的価値の大きなも
のである。
As described in detail, according to the present invention, R can be achieved with a relatively simple configuration.
It is possible to optimize the transmittance characteristics for each GB, and in other words, it is possible to provide a projection type liquid crystal display device with excellent black level, color characteristics, contrast, and color reproducibility, which are important for full-color TV image quality. , is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す液晶パネルの偏光
軸の配置を示す斜視図、第2図aは本発明に係わる偏光
軸角度の理論計算値を示すグラフ、第2図すは第2図a
に対比させて示しだ従来例の液晶パネルのギャップ長と
透過率の関係を示すグラフ、第3図は本発明の液晶パネ
ルのギャップ長と透過率の関係を示すグラフ、第4図a
は本発明の第1の実施例の場合の配向方向と偏光軸の配
置関係を示す平面図、第4図す、cさらに第5図。 第6図は本発明の他の実施例を示す配向方向と偏光軸の
配置関係を示す平面図である。 1o・・・・・・TNセル、11.12・・・・・・配
向方向、13.14・・・・・・偏光軸(R光用)、1
5.16・・・・・・偏光軸(B光用)、31・・・・
・・入射側の配向方向、32・・・・・・出射側の配向
方向、33・・・・・・入射側の偏光軸、34・・・・
・・直線偏光の出射方向、35・・・・・・出射側の偏
光軸。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
 2  図                   (
a)(b) 4vツブ長 第3図 ギャップ長 <b) 第5図 第 6 図
FIG. 1 is a perspective view showing the arrangement of polarization axes of a liquid crystal panel according to a first embodiment of the present invention, FIG. is Figure 2a
FIG. 3 is a graph showing the relationship between the gap length and transmittance of a conventional liquid crystal panel in comparison with FIG.
FIG. 4 is a plan view showing the arrangement relationship between the orientation direction and the polarization axis in the case of the first embodiment of the present invention; FIGS. FIG. 6 is a plan view showing the arrangement relationship between the orientation direction and the polarization axis, showing another embodiment of the present invention. 1o...TN cell, 11.12...Orientation direction, 13.14...Polarization axis (for R light), 1
5.16...Polarization axis (for B light), 31...
...Alignment direction on the incident side, 32...Alignment direction on the output side, 33...Polarization axis on the incident side, 34...
...Emission direction of linearly polarized light, 35...Polarization axis on the emission side. Name of agent: Patent attorney Toshio Nakao and 1 other person
Figure 2 (
a) (b) 4v knob length Fig. 3 Gap length <b) Fig. 5 Fig. 6

Claims (4)

【特許請求の範囲】[Claims] (1)RGBの3色光を3枚のTN型液晶パネルに透過
させてこのTN型液晶パネルの画像を同一スクリーン上
に結像する光学系を有する投写型液晶表示装置にあって
、RGB毎にTN型液晶パネルの偏光子と検光子の偏光
軸の交角を変えることにより、RGB毎の透過率特性を
最適化したことを特徴とする投写型液晶表示装置。
(1) A projection type liquid crystal display device that has an optical system that transmits RGB three-color light through three TN-type liquid crystal panels and forms images of the TN-type liquid crystal panels on the same screen, A projection type liquid crystal display device characterized in that transmittance characteristics for each RGB are optimized by changing the intersection angle of the polarization axes of a polarizer and an analyzer of a TN type liquid crystal panel.
(2)TN型液晶パネルの配向方向が略直交し、偏光子
および検光子の透過軸あるいは吸収軸が一方の配向方向
に略一致するよう平行ニコルに近い方向に配置されたノ
ーマリブラックの表示形式であって、直線偏光の旋光角
が減少する方向に偏光軸をずらす場合を正として、R光
用の液晶パネルの偏光軸の交角θ_Rを0〜−20゜、
B光用の液晶パネルの偏光軸の交角θ_Bを0〜+20
゜、G光用の液晶パネルの偏光軸の交角θ_Gをθ_G
=0またはθ_R<θ_G<θ_Bとしたことを特徴と
する特許請求の範囲第1項記載の投写型液晶表示装置。
(2) Normally black display in which the orientation directions of the TN-type liquid crystal panels are approximately orthogonal, and the polarizer and analyzer are arranged in a direction close to parallel Nicols so that the transmission or absorption axes of the polarizer and analyzer approximately coincide with one orientation direction. In the format, the case where the polarization axis is shifted in the direction in which the angle of rotation of linearly polarized light decreases is considered positive, and the intersection angle θ_R of the polarization axis of the liquid crystal panel for R light is 0 to -20°,
The intersection angle θ_B of the polarization axis of the liquid crystal panel for B light is 0 to +20.
゜, the intersection angle θ_G of the polarization axis of the liquid crystal panel for G light is θ_G
2. The projection type liquid crystal display device according to claim 1, wherein θ_R<θ_G<θ_B.
(3)R光用の液晶パネルの検光子の透過軸あるいは吸
収軸と入射側の配向方向の間の角度α_Rを0〜−10
゜、偏光軸の交角θ_Rをθ_R=2α_R、B光用の
上記角度α_Bを0〜+10゜、偏光軸の交角θ_Bを
θ_B=2α_Bとしたことを特徴とする特許請求の範
囲第2項記載の投写型液晶表示装置。
(3) The angle α_R between the transmission axis or absorption axis of the analyzer of the liquid crystal panel for R light and the alignment direction on the incident side is 0 to -10.
degree, the angle of intersection θ_R of the polarization axes is θ_R=2α_R, the angle α_B for B light is 0 to +10 degrees, and the angle of intersection θ_B of the polarization axes is θ_B=2α_B. Projection type liquid crystal display device.
(4)入射側あるいは出射側のどちらかの偏光軸の液晶
パネルに対する角度をRGBで共通とし、もう一方の偏
光軸の角度を変えたことを特徴とする特許請求の範囲第
2項記載の投写型液晶表示装置。
(4) Projection according to claim 2, characterized in that the angle of the polarization axis of either the incident side or the output side with respect to the liquid crystal panel is the same for RGB, and the angle of the other polarization axis is changed. type liquid crystal display device.
JP62255397A 1987-10-09 1987-10-09 Projection type liquid crystal display Expired - Lifetime JP2870747B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62255397A JP2870747B2 (en) 1987-10-09 1987-10-09 Projection type liquid crystal display
US07/254,244 US4989954A (en) 1987-10-09 1988-10-06 Projection type liquid cyrstal display device
EP88116683A EP0311116B1 (en) 1987-10-09 1988-10-07 Projection type liquid crystal display device
KR1019880013105A KR920000144B1 (en) 1987-10-09 1988-10-07 Projection type liquid crystal display device
DE3850838T DE3850838T2 (en) 1987-10-09 1988-10-07 Projection liquid crystal display device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255397A JP2870747B2 (en) 1987-10-09 1987-10-09 Projection type liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0197092A true JPH0197092A (en) 1989-04-14
JP2870747B2 JP2870747B2 (en) 1999-03-17

Family

ID=17278193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255397A Expired - Lifetime JP2870747B2 (en) 1987-10-09 1987-10-09 Projection type liquid crystal display

Country Status (1)

Country Link
JP (1) JP2870747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113093A (en) * 2004-10-12 2006-04-27 Seiko Epson Corp Projector
US7362388B2 (en) 2003-09-12 2008-04-22 Sony Corporation Liquid crystal display device, and optical block

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428675A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Color liquid crystal display panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428675A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Color liquid crystal display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362388B2 (en) 2003-09-12 2008-04-22 Sony Corporation Liquid crystal display device, and optical block
JP2006113093A (en) * 2004-10-12 2006-04-27 Seiko Epson Corp Projector
JP4609028B2 (en) * 2004-10-12 2011-01-12 セイコーエプソン株式会社 projector

Also Published As

Publication number Publication date
JP2870747B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
US4989954A (en) Projection type liquid cyrstal display device
US7209205B2 (en) Liquid crystal display device
JP4080245B2 (en) Liquid crystal display
US7440056B2 (en) Homeotropic alignment type liquid crystal display device
KR100239266B1 (en) Optical compensator for liquid crystal display
JP2869511B2 (en) TN type liquid crystal display device
US20030231270A1 (en) Projection type optical display system
US8085369B2 (en) Self-compensating, quasi-homeotropic liquid crystal device with high contrast ratio
JP4714187B2 (en) Liquid crystal display device
JPH1164852A (en) Projection type liquid crystal display device
US7295271B2 (en) Liquid crystal display device and multilayer phase plate
US6836309B2 (en) High contrast reflective light valve
JP3776844B2 (en) Liquid crystal display
JPS60202423A (en) Color liquid crystal display device
JPH0197092A (en) Projection liquid crystal display device
JP4714188B2 (en) Liquid crystal display device
JP2007272252A (en) Liquid crystal display device
JP2007249244A (en) Liquid crystal display device
KR100720919B1 (en) a optical film for liquid crystal display
JPH06235914A (en) Liquid crystal display device
JPH07294910A (en) Color liquid crystal display element
JPH03191326A (en) Liquid crystal display device
JPH0815696A (en) Color liquid crystal display element
JPH01235925A (en) Projection type display device
JP2005062901A (en) Liquid crystal display element and optically anisotropic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term