JPH0196580A - Range finder using light wave - Google Patents

Range finder using light wave

Info

Publication number
JPH0196580A
JPH0196580A JP62254308A JP25430887A JPH0196580A JP H0196580 A JPH0196580 A JP H0196580A JP 62254308 A JP62254308 A JP 62254308A JP 25430887 A JP25430887 A JP 25430887A JP H0196580 A JPH0196580 A JP H0196580A
Authority
JP
Japan
Prior art keywords
light
signal
distance
code
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62254308A
Other languages
Japanese (ja)
Other versions
JP2537375B2 (en
Inventor
Kikuo Shimura
志村 菊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkisha Co Ltd
Original Assignee
Sokkisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkisha Co Ltd filed Critical Sokkisha Co Ltd
Priority to JP62254308A priority Critical patent/JP2537375B2/en
Publication of JPH0196580A publication Critical patent/JPH0196580A/en
Application granted granted Critical
Publication of JP2537375B2 publication Critical patent/JP2537375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To take a measurement even when the S/N is inferior, to maintain accuracy and to measure a longer distance by employing a spectrum spread system for intensity modulation on sent light and the demodulation of a signal from received light. CONSTITUTION:Light is sent out which is intensity-modulated with a signal (spectrum spread signal) spread over a wide frequency range obtained by imposing PSK modulation (phase shift modulation) upon a signal (carrier) of constant frequency with PN codes (pseudo noise code). Then synchronization with a received signal and the demodulation of the carrier signal are performed with the received signal by utilizing the autocorrelation characteristics of the PN codes again. Then respective carriers, the PN codes and the phase difference of a PN code generation clock at the time of modulation and demodulation are measured to calculate a distance. Further, signals other than distance measurement light (or reference light) are inputted, they are not correlated and spread over a wide frequency range and only the distance measurement light (or reference light) is demodulated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2地点間の直線距離を光電的に測定する光波距
離計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a light wave distance meter that photoelectrically measures the straight distance between two points.

(従来の技術) 従来、一定周波数で光を強度変調して送出し、目標で反
射された光(以下、測距光という)を受光し、該測距光
と送出光または参照用光路を通過して受光させた光(以
下、参照光という)との強度変調の位相差から距離を測
定する光波距離計が実用化されている。測距光と送出光
から距離を測定した場合には検出回路のドリフト等が測
定誤差となってあられれるので、測距光と送出光との位
相差と、参照光と送出光との位相差を求め、両位相差を
減算して測距光と参照光から正確な距離測定を行うこと
が一般である。
(Prior art) Conventionally, light is intensity-modulated at a constant frequency and sent out, the light reflected by the target (hereinafter referred to as distance measurement light) is received, and the distance measurement light and the transmitted light or reference optical path are passed through. A light wave distance meter has been put into practical use that measures distance from the phase difference of intensity modulation with the light received by the light (hereinafter referred to as reference light). When measuring the distance from the distance measuring light and the transmitted light, measurement errors may occur due to drift in the detection circuit, so the phase difference between the ranging light and the transmitted light and the phase difference between the reference light and the transmitted light are Generally, accurate distance measurement is performed from the distance measuring light and the reference light by subtracting the phase difference between the two.

これは距離に応じて該位相差が変化することを利用した
もので、位相差をΔφ、距離をD1変調周波数をf、光
速をCとすれば、位相差ΔφはΔφ−4πfD/Cと表
わされ、距離りは位相差Δφを測定することにより求め
ることができる。実際には2つ以上の大きさの異なる周
波数での変調光がそれぞれ測定に使用され、それぞれの
分解能に応じて距離値の各桁が決定されるようになって
いる。第7図に従来方式のブロック図を示す。
This takes advantage of the fact that the phase difference changes depending on the distance.If the phase difference is Δφ, the distance is the D1 modulation frequency f, and the speed of light is C, the phase difference Δφ can be expressed as Δφ−4πfD/C. The distance can be determined by measuring the phase difference Δφ. In reality, two or more modulated lights at different frequencies are used for measurement, and each digit of the distance value is determined according to the respective resolutions. FIG. 7 shows a block diagram of the conventional system.

(発明が解決しようとする問題点) 従来の光波距離計では一定の周波数で変調を行うため、
受信光に含まれる信号と雑音との分離の際に狭帯域フィ
ルタを使用しなければならず、S/Nが悪い場合、例え
ば、遠距離の場合や見通しの悪い時などには受信光の信
号だけを抜き出すことが難しい。そのためS/Nを良く
するため反射鏡の反射面積を大きくするなどして反射効
率を上げる必要がある。しかし、例えこのようにしても
1llJ定不能か測定値に誤差を持つことが多かった。
(Problem to be solved by the invention) Conventional light wave distance meters perform modulation at a constant frequency, so
A narrowband filter must be used to separate the signal and noise contained in the received light, and if the S/N is poor, for example, at a long distance or when visibility is poor, the signal of the received light may be It is difficult to extract only one. Therefore, in order to improve the S/N ratio, it is necessary to increase the reflection efficiency by, for example, increasing the reflection area of the reflection mirror. However, even with this method, it was often impossible to determine 1llJ or the measured value had an error.

また、測距誤差の大きな原因となっている距離計内部(
光学素子表面など)での反射光によるニセの信号を測距
のための信号と分離することが難しく、反射防止処理な
どの対策が必要となっていた。
In addition, the interior of the rangefinder (
It is difficult to separate false signals caused by light reflected from the surface of an optical element (such as the surface of an optical element) from signals for distance measurement, and countermeasures such as anti-reflection treatment are required.

また、最長測定距離は発光素子の出力や受光素子感度、
使用電力、寸法などに実用上の制限がありほぼ限界に到
達しているのが現状であり、より長距離の測定が可能で
かつ精度が高く、しかもコンパクト、かつ安価な距離計
の開発が測量、測地などの分野において切望される。
In addition, the longest measurement distance depends on the output of the light emitting element and the sensitivity of the light receiving element.
At present, there are practical limits on power usage, dimensions, etc., and the limits have almost been reached.The development of a distance meter that is compact, inexpensive, and capable of measuring longer distances with high precision is now an important issue for surveyors. , is highly desired in fields such as geodesy.

本発明は上述のような従来の光波距離計にみられる問題
点を解決するためになされたものであり、S/Nが悪い
場合にも測定ができ精度が保たれ、より長距離の測定も
可能とする光波距離計を提供することを目的としている
The present invention was made in order to solve the problems seen in the conventional light wave distance meter as described above, and it can perform measurements even when the S/N is poor, maintains accuracy, and can also measure longer distances. The aim is to provide a light wave distance meter that makes it possible to

(問題点を解決するための手段) 送出光と測距光の位相差、あるいは測距光と参照光との
位相差から目標点までの距離を算出する光波距離計にお
いて、送出光の強度変調および受信光からの信号の復調
にスペクトラム拡散方式を用いるようにしたもので、一
定周波数の信号(搬送波)をPNコード(擬似雑音符号
)によりPSK変調(位相偏位変調)して得られる広い
周波数帯域に拡散された信号(スペクトラム拡散信号)
によって強度変調した光を送出し、受信した光より再び
PNコードによる自己相関特性を利用して受信信号への
同期と搬送波信号の復調を行ない、変復調の際の各搬送
波、PNコード、PNコード発生クロックの位相差を測
定することによって距離を算出するようにしている。
(Means for solving the problem) In a light wave distance meter that calculates the distance to a target point from the phase difference between the transmitted light and the ranging light, or the phase difference between the ranging light and the reference light, intensity modulation of the transmitted light is used. A spread spectrum method is used to demodulate the signal from the received light, and a wide frequency range obtained by PSK modulating (phase shift keying) a constant frequency signal (carrier wave) using a PN code (pseudo-noise code). Signal spread over a band (spread spectrum signal)
The received light is then synchronized with the received signal and the carrier signal is demodulated using the autocorrelation characteristics of the PN code, and each carrier wave, PN code, and PN code are generated during modulation and demodulation. The distance is calculated by measuring the phase difference between the clocks.

(作 用) 測距光(又は参照光)以外の信号が入力されるとこれら
は相関がとれず広い周波数範囲に拡散され、測距光(又
は参照光)だけが復調される。
(Function) When signals other than the ranging light (or reference light) are input, these signals are not correlated and are spread over a wide frequency range, and only the ranging light (or reference light) is demodulated.

(実施例) 第1図を参照して説明する。基準発振器1の出力(基準
搬送波信号31)は帯域フィルタ2と分周器3に入力さ
れる。帯域フィルタ2の出力は正弦波となりPSK変調
器5で分周器3の出力(基準PNコードクロック32)
によりPNコード発生器4で発生されたPNコードによ
りPSに変調される。このようにして得られたスペクト
ラム拡散信号は駆動回路6、発光素子7を経て光信号4
1となり、対物レンズLLを経て送出される。PNコー
ド発生器4からはPNコードの一周期ごとに基準エポッ
クパルス33が出力される。目標の反射鏡44などによ
り反射され戻された測距光42は受光素子11で光電変
換され広帯域の増幅器12a及びフィルタ12bを経て
相関器13a Sb 、 cに入力される。発光素子7
、受光素子11と対物レンズLLとの間には連動する反
射ミラーM1、M2が配置されており、外部からの操作
によって光路上にミラーML M2を移動させたときに
は発光素子7から出た光信号41はミラー旧、M2で反
射され、符号43で示す参照用光路を経て受光素子11
に入る。相関器13a、b、cではそれぞれ復調側のP
Nコード発生器19よりP(同期) E (Pに対して
172ビット進み)、L(Pに対して1/2ビット遅れ
)の、PNコード発生器4で発生されるものと同じ符号
系列のPNコードが入力され、受信されたスペクトラム
拡散信号側のPNコードとの自己相関゛がとられる。P
Nコードの自己相関関数は第2図(a)に示すような特
性があり、相関がとられる2つのPNコードの位相差が
±1ビット以内であると相関器の出力には搬送波が復調
され、位相差0のとき(第2図(a)のピーク位置)に
出力が最大となる。
(Example) This will be explained with reference to FIG. The output of the reference oscillator 1 (reference carrier signal 31) is input to a bandpass filter 2 and a frequency divider 3. The output of the bandpass filter 2 becomes a sine wave, which is output from the frequency divider 3 by the PSK modulator 5 (reference PN code clock 32).
The signal is modulated into PS by the PN code generated by the PN code generator 4. The spread spectrum signal obtained in this way passes through the drive circuit 6 and the light emitting element 7, and is then sent to the optical signal 4.
1 and is sent out through the objective lens LL. The PN code generator 4 outputs a reference epoch pulse 33 for each period of the PN code. The distance measuring light 42 reflected and returned by the target reflecting mirror 44 is photoelectrically converted by the light receiving element 11, and is input to the correlators 13a Sb, c through the broadband amplifier 12a and filter 12b. Light emitting element 7
Interlocking reflecting mirrors M1 and M2 are arranged between the light receiving element 11 and the objective lens LL, and when the mirror ML M2 is moved onto the optical path by external operation, the optical signal output from the light emitting element 7 is Reference numeral 41 indicates the old mirror, which is reflected by M2 and passes through the reference optical path indicated by reference numeral 43 to the light receiving element 11.
to go into. In the correlators 13a, b, and c, P on the demodulation side is
The N code generator 19 generates P (synchronous), E (172 bits ahead of P), L (1/2 bit behind P) of the same code sequence as that generated by the PN code generator 4. A PN code is input, and an autocorrelation with the PN code of the received spread spectrum signal is taken. P
The autocorrelation function of the N code has the characteristics shown in Figure 2 (a), and if the phase difference between the two PN codes to be correlated is within ±1 bit, the carrier wave will be demodulated in the output of the correlator. , the output reaches its maximum when the phase difference is 0 (the peak position in FIG. 2(a)).

しかし、位相差が±1ビット以上であると出力は最少と
なり搬送波は復調されない。もし測距光以外の信号(参
照光の場合には参照光以外の信号)、たとえば雑音等の
非希望信号が人力された場合は相関がとれず、非希望信
号成分はPNコードにより広い周波数範囲に拡散されて
しまい相関器出力側に漏れる量は非常に小さくなってし
まうので、送出信号と非希望信号が混ざって入力されて
も相関器出力にはS/Nの良い搬送波だけが復調される
。このようにPNコードの自己相関を利用すると希望す
る信号だけを取り出す効率の良いフィルタを実現するこ
とができる。以上述べた搬送波の復調は相関器13aに
よって行なわれ、増幅器14a 、帯域フィルタ14b
を経て位相差測定器20に出力される。測距に使用する
搬送波復調のためには測距光(または参照光)と復調側
の両方のPNコードの位相差が0になるように同期させ
ておかなければならず、そのため相関器13b 、 c
がPNコードの位相同期、受信信号追跡用として使用さ
れる。この相関器tab ScでもE及びLのPNコー
ドと受信信号のPNコードでの自己相関がとられ、それ
らの相関関数は第2図(b)、(C)に示すようにPの
それに対してそれぞれ±1/2ビットだけシフトしてい
る。相関器13b s eの出力振巾は振巾検出器15
b Sc SA/Dコンバータ16を経て中央処理器1
7へ入力され、スレッシホールド電圧と比較される。中
央処理器17は両者ともスレッシホールド電圧以上とな
るようにPNココ−発生器19より発生されるPNコー
ドの位相をシフトさせる。その結果PのPNコードは受
信信号のPNコードに対して第2図に示した範囲R1即
ち完全同期に対して±1/21/2ビツト位相になる。
However, if the phase difference is ±1 bit or more, the output becomes minimum and the carrier wave is not demodulated. If a signal other than the ranging light (in the case of a reference light, a signal other than the reference light), for example, an undesired signal such as noise, is manually generated, the correlation will not be established, and the undesired signal component will have a wide frequency range due to the PN code. Since the amount leaking to the correlator output side becomes very small, even if a mixture of the sending signal and the undesired signal is input, only the carrier wave with a good S/N will be demodulated to the correlator output. . By utilizing the autocorrelation of the PN code in this way, it is possible to realize an efficient filter that extracts only the desired signal. The carrier wave demodulation described above is performed by a correlator 13a, an amplifier 14a, and a bandpass filter 14b.
The signal is then output to the phase difference measuring device 20. In order to demodulate the carrier wave used for distance measurement, it is necessary to synchronize the distance measurement light (or reference light) and the PN code on both the demodulation side so that the phase difference becomes 0. Therefore, the correlator 13b, c.
is used for phase synchronization of the PN code and tracking of received signals. This correlator tab Sc also takes the autocorrelation between the PN codes of E and L and the PN code of the received signal, and their correlation function is compared to that of P as shown in Figure 2 (b) and (C). Each is shifted by ±1/2 bits. The output amplitude of the correlator 13b s e is determined by the amplitude detector 15
b Sc SA/D converter 16 to central processor 1
7 and is compared with a threshold voltage. The central processor 17 shifts the phase of the PN code generated by the PN code generator 19 so that both codes are equal to or higher than the threshold voltage. As a result, the PN code of P is in phase with respect to the PN code of the received signal in the range R1 shown in FIG. 2, ie, ±1/21/2 bits relative to perfect synchronization.

次に、完全同期させるため中央処理器17は相関器13
b 、 13cの出力振巾の差(第2図(d)Vp−t
 )を求め、その値が5(0)になるように数値制御発
振器18を制御する。
Next, in order to achieve complete synchronization, the central processor 17
Difference in output amplitude between b and 13c (Fig. 2(d) Vp-t
), and the numerically controlled oscillator 18 is controlled so that the value becomes 5 (0).

以上のようにして完全な同期が得られるとPNココ−発
生器19からは受信信号のPNコードに同期したPNN
コードが得られ、それに応じて復調PHコードクロック
35、復調エポックパルス3Bが得られ、また帯域フィ
ルタ14bからは復調搬送波信号34が得られる。そし
て、基準信号31.32.33に対するこれらの復調信
号34.35.36の位相差が位相差測定器20によっ
て測定され中央処理器17に入力されて距離が算出され
る。復調信号34.35.3Bは基準信号81.32.
33とそれぞれ同じ周波数re、  rpNS1’EP
であるが、位相は光路長に応じて変化している。参照光
信号と基準信号の位相差をそれぞれφC1φPNsφE
P%測距光信号と基準信号の位相差をそれぞれφ°C1
φ PNsφ゛I!、とすると各位相差の差Δφe=φ
°C−φeSΔφPN″φ PN−φPNSΔφEP−
φ BP−φgpより目標までの距離りが求まる。
When complete synchronization is obtained as described above, the PN code generator 19 generates a PNN synchronized with the PN code of the received signal.
A code is obtained, and a demodulated PH code clock 35 and a demodulated epoch pulse 3B are obtained accordingly, and a demodulated carrier signal 34 is obtained from the bandpass filter 14b. Then, the phase difference between these demodulated signals 34, 35, and 36 with respect to the reference signal 31, 32, and 33 is measured by the phase difference measuring device 20, and is input to the central processor 17 to calculate the distance. The demodulated signal 34.35.3B is the reference signal 81.32.
33 and the same frequency re, rpNS1'EP, respectively.
However, the phase changes depending on the optical path length. The phase difference between the reference optical signal and the standard signal is φC1φPNsφE, respectively.
The phase difference between the P% ranging optical signal and the reference signal is φ°C1, respectively.
φPNsφ゛I! , then the difference between each phase difference Δφe=φ
°C−φeSΔφPN″φ PN−φPNSΔφEP−
The distance to the target is determined from φBP-φgp.

即ちDc=ΔφcC/4πfc、DPN−ΔφPNC/
 4 πrpHSDap−AφgpC/ 4 yr  
fgps ココで基準搬送波信号31、基準PNコード
クロック32、基準エポックパルス33の各周波数はf
’c>  rpN>fgp、DC≦C/ Fc  S 
DPN≦C/  f’pNs  Dgp≦C/ fgp
テあルノテ、fcStpNs  f’gpを適当に選べ
ば、D e SD PNSD EPよりそれぞれDの下
位、中位、上位の桁を決めることができ、分解能によっ
てはDCSDPN% DEPのうち1ケまたは2ケだけ
で決めることも可能であり、距離の測定が行なえる。
That is, Dc=ΔφcC/4πfc, DPN−ΔφPNC/
4 πrpHSDap-AφgpC/ 4 yr
fgps Here, each frequency of the reference carrier signal 31, reference PN code clock 32, and reference epoch pulse 33 is f
'c>rpN>fgp, DC≦C/Fc S
DPN≦C/ f'pNs Dgp≦C/ fgp
If you select fcStpNs f'gp appropriately, you can determine the lower, middle, and upper digits of D from D e SD PNSD EP, and depending on the resolution, one or two digits of DCSDPN% DEP can be determined. It is also possible to determine the distance by itself, and the distance can be measured.

このように測距光と送出光との位相差から目標点までの
測距を行なうことができる。また、ミラーM1、M2を
光路上に移動させて参照用光路43を通過させた参照光
と送出光との位相差を求め、前記測距光と送出光との位
相差との差から目標点までの測距を行なうことができ、
この場合には信号伝播回路内での誤差がなくなるので正
確な値を得ることができる。また、前記した遅延ロック
ループを使った同期追跡システムの他にタウデイザロッ
クループを使った同期追跡システムがある。しかし、こ
の場合はS/Nがやや低下する。
In this way, the distance to the target point can be measured based on the phase difference between the distance measuring light and the transmitted light. Further, by moving the mirrors M1 and M2 onto the optical path, the phase difference between the reference light and the transmitted light that has passed through the reference optical path 43 is determined, and the target point is determined from the difference between the phase difference between the ranging light and the transmitted light. It is possible to measure distances up to
In this case, since errors within the signal propagation circuit are eliminated, accurate values can be obtained. In addition to the synchronization tracking system using the delay lock loop described above, there is also a synchronization tracking system using a delay lock loop. However, in this case, the S/N is slightly reduced.

第3図は本発明の別の実施例を示す同期追跡の制御を行
なう部分のブロック図である。
FIG. 3 is a block diagram of a portion for controlling synchronization tracking, showing another embodiment of the present invention.

前記第1の実施例では搬送波をPNコードによりPSK
変調して得られたスペクトラム拡散信号によって強度変
調された光を送出し、その光を受光して得た信号にPN
コードの自己相関の特性を利用することによって復調用
のPNコードを同期させるとともにS/Hの良い搬送波
信号を復調させ、同期後の各信号31〜3Bの位相を調
べることによって距離測定が行なえるように構成してい
るもので、同期に関する制御を中央処理器17でデジタ
ル的に行なうようになっているが、本実施例ではアナロ
グ的に行なうようにしたものである。
In the first embodiment, the carrier wave is PSK based on the PN code.
Send out light whose intensity is modulated by the modulated spread spectrum signal, and apply PN to the signal obtained by receiving the light.
Distance measurement can be performed by synchronizing the PN code for demodulation and demodulating the carrier signal with good S/H by using the autocorrelation characteristic of the code, and checking the phase of each signal 31 to 3B after synchronization. In this configuration, synchronization-related control is performed digitally by the central processor 17, but in this embodiment, it is performed analogously.

第3図において、振巾検出器15b Scの出力はスレ
ッシホールド検出回路51b s cによりスレッシホ
ールド電圧と比較され、それぞれの出力は同期判別回路
52に入力され、範囲R(第2図)内に入ったかどうか
の信号が出される。所定の範囲R内に入っていなければ
同期判別回路52が出力して電圧制御発振器53、PN
ココ−発生器19を制御してP、E、Lの各PNコード
の位相をシフトさせる。
In FIG. 3, the output of the amplitude detector 15b Sc is compared with a threshold voltage by a threshold detection circuit 51b Sc, and each output is input to the synchronization determination circuit 52, and the range R (FIG. 2) A signal is sent out to indicate whether or not someone has entered the room. If it is not within the predetermined range R, the synchronization determination circuit 52 outputs an output from the voltage controlled oscillator 53, PN
The phase of each PN code of P, E, and L is shifted by controlling the coco generator 19.

そして範囲R内に入ると振巾検出器15b Scの出力
は減算回路53aによって減算(VE−L )された後
、電圧制御発振器53に入力され、減算値が第2図(d
)に示す8点になるようにPNコードの位相が制御され
る。このようにして完全な同期が得られ前述のように距
離が求まる。
Once within the range R, the output of the amplitude detector 15b Sc is subtracted (VE-L) by the subtraction circuit 53a and then input to the voltage controlled oscillator 53, and the subtracted value is shown in FIG.
) The phase of the PN code is controlled so that it becomes the eight points shown in ). In this way, perfect synchronization is obtained and the distance can be determined as described above.

第4図は本発明の別の実施例の同期判別信号取得の方法
である。相関器13aで復調された搬送波信号の振巾を
検出し、スレッシホールド電圧と比較して範囲R内に入
ったかどうかを判別して制御を行なう方法である。制御
はアナログ、デジタルのどちらでも行なうことができる
FIG. 4 shows a method for acquiring a synchronization determination signal according to another embodiment of the present invention. In this method, the amplitude of the carrier wave signal demodulated by the correlator 13a is detected and compared with a threshold voltage to determine whether it falls within the range R and perform control. Control can be done either analog or digitally.

この方法は前記2例に比ベスレッシホールド電圧を高く
することができる。前2例では第2図の範囲R内に入っ
たかどうかの判定にv8、V、の電圧を検出して行なう
ため、スレッシホールド電圧は■。に近い値にしなけれ
ばならないが、この例では振巾検出器15aの出力、す
なわちV、の電圧を検出して行なうため、スレッシホー
ルド電圧はv1/2で良い。こうすると範囲Rの両端付
近での判別が正しく行なえるという利点がある。
This method can increase the threshold voltage compared to the above two examples. In the previous two examples, the threshold voltage is ■ because the voltages v8 and V are detected to determine whether the voltage is within the range R shown in FIG. However, in this example, since the output of the amplitude detector 15a, that is, the voltage of V, is detected, the threshold voltage may be v1/2. This has the advantage that the determination near both ends of the range R can be performed correctly.

第5図は本発明の別の実施例の相関器部分を示すブロッ
ク図ある。この例での相関器はヘテロダイン型と呼ばれ
2段の相関器で構成され、第1の相関器13°a113
°b、 11°Cで一定周波数fc+faの信号とP、
E、LのPNコードとの積が作られ、それぞれ第2の相
関器13a s 13b 513cに入力される。こう
することによって相関器13a 、 13b s 13
cの入力と出力で中心周波数がrcから f、に変換さ
れる。また距離測定のためには基準発振器1より周波数
変換器61にてrイの基準信号B2を作り復調されたf
、の信号63との位相差を求めることによって行なう。
FIG. 5 is a block diagram showing the correlator portion of another embodiment of the present invention. The correlator in this example is called a heterodyne type and consists of a two-stage correlator, with the first correlator 13°a113
°b, a signal of constant frequency fc+fa at 11°C and P,
A product of E and L with the PN code is created and input to the second correlator 13a s 13b 513c, respectively. By doing this, the correlators 13a, 13b s 13
The center frequency is converted from rc to f at the input and output of c. In addition, for distance measurement, a frequency converter 61 generates a reference signal B2 from the reference oscillator 1 and demodulates f.
This is done by determining the phase difference between the signal 63 and the signal 63.

通常はra>  f+とするので信号の周波数は低くな
り相関器以降の回路設計が簡単になる。
Since ra>f+ is usually satisfied, the signal frequency is low and the circuit design after the correlator is simplified.

第6図は本発明の別の実施例の復調搬送波信号34を得
る部分を示すブロック図である。二の例では発振器■8
又は58で周波数「6の出力を得、その出力を分周器3
に入力して復調PNコードクロック35を得ている。受
信信号に完全に同期した場合には発振器18又は53の
出力は復調搬送波信号34となり、距離測定のための信
号として使うことができる。
FIG. 6 is a block diagram showing a portion for obtaining a demodulated carrier signal 34 in another embodiment of the present invention. In the second example, the oscillator ■8
Or get an output of frequency ``6'' at 58, and send that output to frequency divider 3.
A demodulated PN code clock 35 is obtained. When completely synchronized with the received signal, the output of the oscillator 18 or 53 becomes the demodulated carrier signal 34, which can be used as a signal for distance measurement.

(発明の効果) 以上述べたように本発明によれば、搬送波信号をPNコ
ードによりPSK変調して得られるスペクトラム拡散信
号によって送出光の強度変調を行ない、PNコードの自
己相関の特性を利用した、受信信号に対しての同期及び
搬送波信号の復調を行なうため、信号が雑音の中に埋も
れているような場合でもS/Hの非常に良い信号を復調
することができる。そのため遠距離や見通しの悪い条件
でも距離測定を可能とし精度を保つことができると同時
に最長測定距離も伸ばすことができるので一般の測量や
特に地震予知などのための長距離の測地測量などに利用
することができる。     ・ また、参照光と測距光の選択は機械的に光路を切り換え
ることによって行なっているのが現状であるが、スペク
トラム拡散方式の特性(同期した信号以外は相関器を通
過できないという性質)上、同期信号の位相差より参照
光か測距光かあるいは内部反射光かを判別させ、即ち、
予め参照光、内部反射光(必要ならば)と基準信号との
位相差(幾何学的に決まるのである一定値となる)を測
定して求めておき、同期した信号の位相差と予め求めて
おいた位相差とを比較することによって同期した信号が
参照光か内部反射光か、あるいは測距光かの判別がつく
ので、希望する信号が得られるように同期をずらせてや
れば参照光、測距光の選択が行なえるのである。すなわ
ち、光路切換機構を使用せず、参照光、内部反射光、測
距光が常時受光されている状態でも希望する信号が得ら
れることであり希望する信号に同期するように制御をか
けるようにすれば、光路切換機構といった機械部品が不
要となり、また特別な反射防止処理などの対策も不要と
なるのでコストの面でも非常に有利となる。
(Effects of the Invention) As described above, according to the present invention, the intensity of the transmitted light is modulated by the spread spectrum signal obtained by PSK modulating the carrier signal with the PN code, and the autocorrelation characteristic of the PN code is utilized. Since synchronization with the received signal and demodulation of the carrier signal are performed, even when the signal is buried in noise, it is possible to demodulate a signal with very good S/H. This makes it possible to measure distances even at long distances or in poor visibility conditions, maintaining accuracy, and at the same time extending the maximum measurement distance, making it useful for general surveying and long-distance geodetic surveying, especially for earthquake prediction. can do.・Also, currently the selection of the reference light and ranging light is done by mechanically switching the optical path, but due to the characteristics of the spread spectrum method (the property that only synchronized signals cannot pass through the correlator) , to determine whether it is a reference light, ranging light, or internally reflected light based on the phase difference of the synchronization signal, that is,
Measure and find the phase difference between the reference light, internally reflected light (if necessary), and the reference signal (determined geometrically, so it will be a certain value) in advance, and then calculate the phase difference between the synchronized signal and the phase difference between the reference signal and the reference signal. By comparing the phase difference, it is possible to determine whether the synchronized signal is the reference light, internally reflected light, or ranging light, so if you shift the synchronization to obtain the desired signal, the reference light, This allows you to select the distance measuring light. In other words, the desired signal can be obtained even when the reference light, internally reflected light, and ranging light are constantly being received without using an optical path switching mechanism. This eliminates the need for mechanical parts such as an optical path switching mechanism, and also eliminates the need for special antireflection treatment, which is extremely advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
遅延ロックループのPNコード自己相関関数図、第3図
はアナログ的に同期追跡する場合の実施例のブロック図
、第4図は同期判別の別の方法を示すブロック図、第5
図はヘテロダイン相関器を示すブロック図、第6図は本
発明の別の実施例の復調搬送波信号を得る部分を示すブ
ロック図、第7図は従来方式のブロック図である。 1・・・基準発振器    2・・・帯域フィルタ3・
・・分周器    4.19・・・PNココ−発生器5
・・・PSK変調器    6・・・発光素子駆動回路
7・・・発光素子     1■・・・受光素子12・
・・広帯域増幅器及びフィルタ 13a s b Sc −・・相関器 14・・・増巾器及び帯域フィルタ 15a s b Sc・・・振巾検出器1B・・・A/
Dコンバータ 17・・・中央処理器18・・・数値制
御発振器  20・・・位相差測定器21・・・表示器
      31・・・基準搬送波信号32・・・基準
PNコードクロック 33・・・基準エポックパルス 34・・・復調搬送波信号 35・・・tLliPNコードクロツタ3B・・・復調
エポックパルス 41・・・送出光      42・・・測距光43・
・・参照用光路    44・・・目標の反射鏡51b
 s c・・・スレッシホールド検出回路52・・・同
期判別回路   53・・・電圧制御発振器61、B4
・・・周波数変換器 62・・・f、基準信号   63・・・r6復調信号
64・・・周波数選別器 手続争重圧書 (方式) 1.事件の表示 昭和62年特許願第254308号 2、発明の名称 光波距離計 3、補正をする者 事件との関係  特許出願人 昭和63年 1月26日 5、補正の対象 図面
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a PN code autocorrelation function diagram of a delay-locked loop, FIG. 3 is a block diagram of an embodiment for analog synchronization tracking, and FIG. The figure is a block diagram showing another method for determining synchronization.
FIG. 6 is a block diagram showing a heterodyne correlator, FIG. 6 is a block diagram showing a part for obtaining a demodulated carrier signal according to another embodiment of the present invention, and FIG. 7 is a block diagram of a conventional system. 1... Reference oscillator 2... Bandpass filter 3.
...Frequency divider 4.19...PN coco generator 5
...PSK modulator 6...Light emitting element drive circuit 7...Light emitting element 1 ■... Light receiving element 12.
... Wideband amplifier and filter 13a s b Sc - ... Correlator 14 ... Amplifier and bandpass filter 15a s b Sc ... Amplitude detector 1B ... A/
D converter 17...Central processor 18...Numerically controlled oscillator 20...Phase difference measuring device 21...Display device 31...Reference carrier wave signal 32...Reference PN code clock 33...Reference Epoch pulse 34... Demodulated carrier wave signal 35... tLliPN code blocker 3B... Demodulated epoch pulse 41... Sending light 42... Ranging light 43...
...Reference optical path 44...Target reflector 51b
s c...Threshold detection circuit 52...Synchronization determination circuit 53...Voltage controlled oscillator 61, B4
...Frequency converter 62...f, reference signal 63...r6 demodulated signal 64...Frequency selector procedure dispute report (method) 1. Indication of the case Patent Application No. 254308, filed in 1988 2, Name of the invention Optical distance meter 3, Person making the amendment Relationship to the case Patent applicant January 26, 1988 5, Drawing subject to the amendment

Claims (1)

【特許請求の範囲】 1、光を強度変調し目標点に向って送出する手段と、目
標点での反射光を受光し復調する手段と、前記送出光と
反射光との位相差から目標点までの距離を算出する手段
とを備え、送出光の強度変調および受信光からの信号の
復調にスペクトラム拡散方式を用いたことを特徴とする
光波距離計。 2、前記光送出手段と光受光復調手段との間には参照用
光路が設けられ、反射光と参照用光路通過光との位相差
から目標点までの距離を算出するようになっていること
を特徴とする特許請求の範囲第1項記載の光波距離計。
[Claims] 1. Means for intensity modulating light and sending it toward a target point, means for receiving and demodulating the reflected light at the target point, and detecting the target point from the phase difference between the transmitted light and the reflected light. 1. A light wave distance meter characterized in that a spread spectrum method is used for intensity modulation of transmitted light and demodulation of a signal from received light. 2. A reference optical path is provided between the light sending means and the light receiving and demodulating means, and the distance to the target point is calculated from the phase difference between the reflected light and the light passing through the reference optical path. A light wave distance meter according to claim 1, characterized in that:
JP62254308A 1987-10-08 1987-10-08 Lightwave rangefinder Expired - Fee Related JP2537375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254308A JP2537375B2 (en) 1987-10-08 1987-10-08 Lightwave rangefinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254308A JP2537375B2 (en) 1987-10-08 1987-10-08 Lightwave rangefinder

Publications (2)

Publication Number Publication Date
JPH0196580A true JPH0196580A (en) 1989-04-14
JP2537375B2 JP2537375B2 (en) 1996-09-25

Family

ID=17263188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254308A Expired - Fee Related JP2537375B2 (en) 1987-10-08 1987-10-08 Lightwave rangefinder

Country Status (1)

Country Link
JP (1) JP2537375B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275298A (en) * 1989-04-17 1990-11-09 Mitsubishi Precision Co Ltd Proximity fuse device
JPH102963A (en) * 1996-06-17 1998-01-06 Mitsubishi Electric Corp Spectrum diffusion distance-measuring apparatus
JP2002055158A (en) * 2000-08-10 2002-02-20 B-Core Inc Range finder, and method of finding range
JP2003518802A (en) * 1999-12-22 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Digital Receiver Sensitivity Extension Method Using Analog Correlation
CN116819509A (en) * 2023-08-28 2023-09-29 烟台初心航空科技有限公司 Radar positioning and ranging method based on spread spectrum time domain reflection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275888A (en) * 2005-03-30 2006-10-12 Sokkia Co Ltd Light wave range finder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890554A (en) * 1972-03-01 1973-11-26
JPS58166281A (en) * 1982-03-27 1983-10-01 Kokuritsu Kogai Kenkyusho Continuous output rider for pseudo random modulation
JPS61205882A (en) * 1985-03-11 1986-09-12 Mitsubishi Electric Corp Radar equipment
JPS6254189A (en) * 1985-09-03 1987-03-09 Nissan Motor Co Ltd On-vehicle random modulation radar equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890554A (en) * 1972-03-01 1973-11-26
JPS58166281A (en) * 1982-03-27 1983-10-01 Kokuritsu Kogai Kenkyusho Continuous output rider for pseudo random modulation
JPS61205882A (en) * 1985-03-11 1986-09-12 Mitsubishi Electric Corp Radar equipment
JPS6254189A (en) * 1985-09-03 1987-03-09 Nissan Motor Co Ltd On-vehicle random modulation radar equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275298A (en) * 1989-04-17 1990-11-09 Mitsubishi Precision Co Ltd Proximity fuse device
JPH102963A (en) * 1996-06-17 1998-01-06 Mitsubishi Electric Corp Spectrum diffusion distance-measuring apparatus
JP2003518802A (en) * 1999-12-22 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Digital Receiver Sensitivity Extension Method Using Analog Correlation
JP4900754B2 (en) * 1999-12-22 2012-03-21 エスティー‐エリクソン、ソシエテ、アノニム Digital receiver sensitivity expansion method using analog correlation
JP2002055158A (en) * 2000-08-10 2002-02-20 B-Core Inc Range finder, and method of finding range
CN116819509A (en) * 2023-08-28 2023-09-29 烟台初心航空科技有限公司 Radar positioning and ranging method based on spread spectrum time domain reflection
CN116819509B (en) * 2023-08-28 2023-11-07 烟台初心航空科技有限公司 Radar positioning and ranging method based on spread spectrum time domain reflection

Also Published As

Publication number Publication date
JP2537375B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
US4403857A (en) Distance measuring device and method
US6031601A (en) Code-space optical electronic distance meter
US5082364A (en) Rf modulated optical beam distance measuring system and method
RU2182385C2 (en) Method and device determining information on amplitude and phase of electromagnetic wave
US5162862A (en) Lightspeed-related measurement apparatus
EP0640846B1 (en) Optical measuring apparatus
US4916324A (en) Method and apparatus for electro-optical distance measurement
US5125736A (en) Optical range finder
JP2584506B2 (en) FM-CW Doppler radar navigation system
JP2909742B2 (en) Delay time measuring device
US4812035A (en) AM-FM laser radar
US20100208231A1 (en) Light wave distance measuring system and distance measuring device
EP1405096A2 (en) Optical sensor for distance measurement
US4862178A (en) Digital system for codeless phase measurement
JPH0196580A (en) Range finder using light wave
RU2290658C1 (en) Phase mode of direction finding and phase direction finder for its execution
JPH06174844A (en) Laser distance measuring apparatus
JPH0242374A (en) Determination of pseudo range from earth orbit satellite
US11486982B2 (en) Optical phase detector using electrical pulse that corresponds to a phase error between electrical pulses and optical pulses, and sensing system including the same
US5841522A (en) Phase detector
JPH0682552A (en) Electrooptical distance measurement
RU2042145C1 (en) Direction finder
RU2165628C1 (en) Phase direction finder
RU2071067C1 (en) Phasemeter
SU596041A1 (en) Method for registering phase difference in light range finder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees