JPH0196354A - Steel for high strength bolt having excellent delayed fracture resistance characteristic - Google Patents

Steel for high strength bolt having excellent delayed fracture resistance characteristic

Info

Publication number
JPH0196354A
JPH0196354A JP25168187A JP25168187A JPH0196354A JP H0196354 A JPH0196354 A JP H0196354A JP 25168187 A JP25168187 A JP 25168187A JP 25168187 A JP25168187 A JP 25168187A JP H0196354 A JPH0196354 A JP H0196354A
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
fracture resistance
hydrogen
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25168187A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
信一 鈴木
Toshio Miyagawa
敏夫 宮川
Hiroaki Harada
宏明 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25168187A priority Critical patent/JPH0196354A/en
Publication of JPH0196354A publication Critical patent/JPH0196354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PURPOSE:To obtain the title steel by specifying its compsn. consisting of C, Si, Mn, Cr, Mo, V and Fe. CONSTITUTION:The steel contains, by weight, 0.18-0.35% C, >0.50-1.50% Si, 0.20-0.60% Mn, >1.50-3.50% Cr, 0.10-0.50% Mo and 0.05-0.20% V, furthermore contains at need, one or both of 0.005-0.030% Nb and Ti and the balance comprising Fe with impurities. The steel is suitable for the title bolt having about 140-160kgf/mm<2> tensile strength; and in which, Si and Cr are particularly increased to promote the increase of diffusive hydrogen in the limit where delayed fracture does not occur.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、140〜160 kg f /malの引張
強さを有する耐遅れ破壊特性の優れた高強度ボルトに適
用する鋼である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a steel applicable to high-strength bolts having a tensile strength of 140 to 160 kg f /mal and excellent delayed fracture resistance.

[従来の技術] 高強度ボルト(以下、ボルトという)は、機械、自動車
、橋、建物に多く使用されている。ボルトの強度が12
5 kg f / malを越えると遅れ破壊の危険性
が高まることはよく知られており、現在使用されている
ボルトの強度は90kg f / a+4あるいは11
0kg f /−級のものが主体となっている。
[Prior Art] High-strength bolts (hereinafter referred to as bolts) are often used in machines, automobiles, bridges, and buildings. Bolt strength is 12
It is well known that the risk of delayed fracture increases when the strength exceeds 5 kg f/mal, and the strength of the bolts currently used is 90 kg f/a+4 or 11
The main type is 0 kg f/- class.

[発明が解決しようとする問題点] しかしながら近年の構造物はますます大型化の傾向にあ
り、継手効率を高めるためあるいは軽量化の目的から、
ボルトをより高強度にしたい要求が強い。そこで、強度
が125)cgf/−を越えるボルトの遅れ破壊の問題
を解決させなければならない。
[Problems to be solved by the invention] However, in recent years, structures have become increasingly larger, and in order to increase joint efficiency or reduce weight,
There is a strong demand for higher strength bolts. Therefore, it is necessary to solve the problem of delayed fracture of bolts whose strength exceeds 125) cgf/-.

ボルトの遅れ破壊は、ボルト中の水素が原因していると
言われている。遅れ破壊に関わる水素は、鋼中組織間を
常温で容易に動きうる格子間隙または転位、あるいは結
晶粒界等に存在するいわゆる拡散性水素(以下、拡散性
水素という)である。
The delayed fracture of bolts is said to be caused by hydrogen in the bolts. Hydrogen involved in delayed fracture is so-called diffusible hydrogen (hereinafter referred to as diffusible hydrogen) that exists in lattice gaps, dislocations, grain boundaries, etc. that can easily move between structures in steel at room temperature.

より高強度のボルトを使用する場合、水素特に拡散性水
素に対する抵抗力のある鋼でなければならない。
If higher strength bolts are used, the steel must be resistant to hydrogen, especially diffusible hydrogen.

[問題点を解決するための手段、作用コ本発明者らは、
鋼の化学成分の調整、特にSl。
[Means and effects for solving the problem] The inventors have
Adjustment of chemical composition of steel, especially Sl.

C「を高めることにより、遅れ破壊に至らない限界の拡
散性水素(以下、限界拡散性水素という)が増加できる
ことが可能であるとの知見を得て、上記問題点を解決す
ることができたのである。
We were able to solve the above problem by obtaining the knowledge that it is possible to increase the limit diffusible hydrogen that does not lead to delayed fracture (hereinafter referred to as "limit diffusible hydrogen") by increasing C. It is.

本発明は、以上の知見にもとづいてなされたものであり
、熱処理を施すことにより、140kgf/−〜160
kgf/−の高強度において、従来鋼より高い限界拡散
性水素を示すことを特徴とする耐遅れ破壊特性の優れた
高強度ボルト用鋼に関わるものである。
The present invention was made based on the above knowledge, and by applying heat treatment, it is possible to
The present invention relates to a steel for high-strength bolts with excellent delayed fracture resistance, which is characterized by exhibiting a higher limit diffusivity of hydrogen than conventional steels at a high strength of kgf/-.

本発明者らは、耐遅れ破壊特性に及ぼす合金元素の影響
を調べたところ、従来のボルト用鋼に採用されているも
のと比べて、SiHの増加、特に、Crの増加が有効で
あることを見い出した。
The present inventors investigated the influence of alloying elements on delayed fracture resistance and found that an increase in SiH, especially an increase in Cr, is effective compared to those used in conventional steel for bolts. I found out.

即ち、本発明のボルト用鋼の合金成分の範囲は、・次の
理由で決定した。
That is, the range of alloy components of the steel for bolts of the present invention was determined for the following reasons.

Cは、焼入れ一焼戻しにより高強度を得るためには、0
.18%以上必要とし、一方、0,35%を超えるとじ
ん性および耐遅れ破壊特性が低下し、高強度ボルトの特
性を満足しえないことから、0,18〜0.35%とし
た。
C should be 0 in order to obtain high strength through quenching and tempering.
.. On the other hand, if it exceeds 0.35%, the toughness and delayed fracture resistance will deteriorate and the characteristics of a high-strength bolt cannot be satisfied, so it is set at 0.18 to 0.35%.

Siは、元来脱酸に必要であるが、ここでは特に鋼の耐
遅れ破壊特性を向上させる。しかし、その効果を十分に
発揮せしめるには、0.50%超必要であるが、一方こ
の増加による鋼のしん性の低下にもとづいて上限1.5
0%とした。
Si is originally necessary for deoxidation, but here it particularly improves the delayed fracture resistance of steel. However, in order to fully demonstrate its effect, it is necessary to exceed 0.50%, but on the other hand, based on the decrease in the toughness of steel due to this increase, the upper limit is 1.5%.
It was set to 0%.

Mnは、脱酸及び脱硫に必要であり、焼入性の確保のた
めにも0.20%以上必要であるが、0.60%を超え
ると遅れ破壊特性が低下するため、0.20〜0.60
%とした。
Mn is necessary for deoxidation and desulfurization, and 0.20% or more is also required to ensure hardenability, but if it exceeds 0.60%, delayed fracture properties will deteriorate, so 0.60
%.

Crは、前述のとおり、かつ焼入性の確保のために1.
50%超必要とした。また、140kgf/−以上の強
度を得るための焼戻温度を高める働きが有り、一般に、
遅れ破壊特性は、焼戻温度が高い方が優れている。しか
し、多量に添加しても効果が飽和するので上限を3.5
0%とした。
As mentioned above, Cr is added in 1. to ensure hardenability.
More than 50% was required. It also has the function of increasing the tempering temperature to obtain a strength of 140 kgf/- or more, and generally,
The higher the tempering temperature, the better the delayed fracture characteristics. However, even if a large amount is added, the effect will be saturated, so the upper limit is set at 3.5
It was set to 0%.

Moは、鋼の強じん性を高めるに非常に有効な元素であ
って、この場合の必要量は0.10%以上である。しか
し、高価な元素であるため、その有効性を勘案して上限
を0.50%とした。
Mo is a very effective element for increasing the toughness of steel, and the required amount in this case is 0.10% or more. However, since it is an expensive element, the upper limit was set at 0.50% in consideration of its effectiveness.

■は、その炭窒化物の析出硬化により、鋼の強度を高め
るに有効な元素であって、その活用に0.05%以上を
必要とする。しかし、その量が多くなるとじん性が低下
するので、0.20%を上限とした。
(2) is an element effective in increasing the strength of steel through precipitation hardening of its carbonitrides, and requires 0.05% or more for its utilization. However, as the amount increases, the toughness decreases, so the upper limit was set at 0.20%.

上述の基本成分の材料に対して、更に、鋼の高強度化お
よび細粒化のために0.005〜0.030%のNb或
は”INを一種以上添加することができる。
In order to increase the strength of the steel and make the grains finer, one or more types of Nb or "IN" can be added in an amount of 0.005 to 0.030% to the above-mentioned basic component material.

これらは、添加効果が飽和する量で上限とした。The upper limit was determined by the amount at which the added effect was saturated.

[実 施 例] 共試鋼の化学成分を表1に示す。(A) 、 (I3)
 、 (C) 。
[Example] The chemical composition of the joint test steel is shown in Table 1. (A), (I3)
, (C).

(D)、(E)および(F)は本発明のボルト用鋼に従
ったものであり、(G) 、 (H) 、および(1)
は比較のために用意した既存の鋼であり、これらのφ2
01II+1の棒鋼を用イテ、引張強さが140kgr
/ mff1〜160kgf/ maiを目標に熱処理
(焼入れ一焼戻し)を行った。この時の熱処理条件およ
び引張性質を表2に示す。
(D), (E) and (F) are according to the bolt steel of the present invention, (G), (H) and (1)
are existing steels prepared for comparison, and these φ2
Uses 01II+1 steel bar, tensile strength is 140kgr
Heat treatment (quenching and tempering) was performed with the goal of / mff1 to 160 kgf/mai. Table 2 shows the heat treatment conditions and tensile properties at this time.

これらの鋼が、遅れ破壊に対し、どれだけの拡散性水素
を許容しうるかを調べる。すなわち各欄の限界水素ユを
求める。
We will investigate how much diffusible hydrogen these steels can tolerate against delayed fracture. In other words, find the limit hydrogen for each column.

次に限界水素量を求める方法について述べる。Next, we will discuss how to determine the limit amount of hydrogen.

第1図に示したMIOボルトで軸部に2mmVの円周ノ
ツチを設けた試験片を作り、2本を組にして、水素を富
化するために、20%HC1溶液に20分間浸漬した後
大気中に放置し、その放置時間を種々変えることにより
、試験片中の水素量を変化させる。
A test piece with a circumferential notch of 2 mmV on the shaft part was made using the MIO bolt shown in Figure 1, and two pieces were put together and immersed in a 20% HC1 solution for 20 minutes to enrich hydrogen. The amount of hydrogen in the test piece is varied by leaving it in the atmosphere and varying the length of time it is left in the atmosphere.

こうしてそのうちの1本は、熱的分析法により水素を測
定し、もう1本は、第2図に示した試験機で遅れ破壊を
行う。図において1は試験片、2はバランスウェイト、
3は支点を示す。
In this way, one of the tubes measures hydrogen using a thermal analysis method, and the other tube undergoes delayed destruction using the testing machine shown in FIG. In the figure, 1 is a test piece, 2 is a balance weight,
3 indicates the fulcrum.

なお、試験片を20%HCΩ溶液に20分間浸漬しても
水素侵入量が少ない場合は、浸漬時間およびHCil溶
液の濃度によって水素量を調整している。
Note that if the amount of hydrogen penetrating is small even after immersing the test piece in a 20% HCΩ solution for 20 minutes, the amount of hydrogen is adjusted by the immersion time and the concentration of the HCil solution.

また、遅れ破壊試験における試験荷重は、HC,9溶液
に浸漬する前の各試験片の破断荷重の70%と一定にし
た。
Further, the test load in the delayed fracture test was kept constant at 70% of the fracture load of each test piece before being immersed in the HC,9 solution.

そして、浸漬時間および放置時間を種々変えた時の拡散
性水素量と、遅れ破壊試験における破断時間との関係を
表3に示す。
Table 3 shows the relationship between the amount of diffusible hydrogen and the rupture time in the delayed fracture test when the immersion time and standing time were varied.

同表から、各欄の遅れ破壊を起こさない上限の拡散性水
素量、すなわち、限界拡散性水素量を推定すると表4の
ようになる。
From the same table, the upper limit diffusible hydrogen amount that does not cause delayed fracture in each column, that is, the limit diffusible hydrogen amount, is estimated as shown in Table 4.

これより、本発明の範囲にある(A) 、 (B) 、
 (C) 。
From this, (A), (B), which are within the scope of the present invention,
(C).

(D) 、 (E) 、および(P)は、比較材である
(G) 、 (+1) 、および(1)に比べて限界水
素量が高く、遅れ破壊しにくいことを示している。
(D), (E), and (P) have a higher limit hydrogen content than the comparative materials (G), (+1), and (1), indicating that they are less susceptible to delayed fracture.

表     4 [発明の効果] 本発明によって、140 kg f / m+a〜16
0kgf/mjの強度を有する耐遅れ破壊特性の優れた
ボルトが期待できる。これによって、ボルトの継手効率
を高めることができ、自動車等の軽量化に寄与し、工業
的効果は大きい。
Table 4 [Effect of the invention] According to the present invention, 140 kg f / m + a ~ 16
A bolt with a strength of 0 kgf/mj and excellent delayed fracture resistance can be expected. As a result, the efficiency of bolt joints can be increased, contributing to weight reduction of automobiles, etc., and the industrial effect is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験片の形状の説明図、第2図は遅れ破壊試験
装置の説明図である。
FIG. 1 is an explanatory diagram of the shape of a test piece, and FIG. 2 is an explanatory diagram of a delayed fracture test device.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で C:0.18〜0.35%、 Si:0.50超1.50%、 Mn:0.20〜0.60%、 Cr:1.50超3.50%、 Mo:0.10〜0.50%、 V:0.05〜0.20%、 残Fe及び不純物からなることを特徴とする耐遅れ破壊
特性の優れた高強度ボルト用鋼。(2)重量%で C:0.18〜0.35%、 Si:0.50超1.50%、 Mn:0.20〜0.60%、 Cr:1.50超3.50%、 Mo:0.10〜0.50%、 V:0.10〜0.20%を含みかつ0.005〜0.
030%のNbあるいはTiを一種以上含有し、残Fe
及び不純物からなることを特徴とする耐遅れ破壊特性の
優れた高強度ボルト用鋼。
(1) C: 0.18 to 0.35% by weight, Si: 1.50% over 0.50, Mn: 0.20 to 0.60%, Cr: 3.50% over 1.50, A high-strength steel for bolts with excellent delayed fracture resistance, characterized by comprising Mo: 0.10-0.50%, V: 0.05-0.20%, remaining Fe and impurities. (2) C: 0.18 to 0.35% by weight, Si: 1.50% over 0.50, Mn: 0.20 to 0.60%, Cr: 3.50% over 1.50, Contains Mo: 0.10-0.50%, V: 0.10-0.20%, and 0.005-0.
Contains at least 30% of Nb or Ti, with the remainder of Fe
A high-strength steel for bolts with excellent delayed fracture resistance, which is characterized by being composed of and impurities.
JP25168187A 1987-10-07 1987-10-07 Steel for high strength bolt having excellent delayed fracture resistance characteristic Pending JPH0196354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25168187A JPH0196354A (en) 1987-10-07 1987-10-07 Steel for high strength bolt having excellent delayed fracture resistance characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25168187A JPH0196354A (en) 1987-10-07 1987-10-07 Steel for high strength bolt having excellent delayed fracture resistance characteristic

Publications (1)

Publication Number Publication Date
JPH0196354A true JPH0196354A (en) 1989-04-14

Family

ID=17226427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25168187A Pending JPH0196354A (en) 1987-10-07 1987-10-07 Steel for high strength bolt having excellent delayed fracture resistance characteristic

Country Status (1)

Country Link
JP (1) JPH0196354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173245A (en) * 2008-01-28 2009-08-06 Nishikawa Rubber Co Ltd Opening trim

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594463A (en) * 1979-01-12 1980-07-17 Nippon Steel Corp Petrochemical plant or high tensile bolt steel having hydrogen penetration preventing effect
JPS57161050A (en) * 1981-03-31 1982-10-04 Daido Steel Co Ltd High-strength bolt steel
JPS58117856A (en) * 1982-01-06 1983-07-13 Daido Steel Co Ltd High-strength bolt steel
JPS596358A (en) * 1982-06-30 1984-01-13 Daido Steel Co Ltd High strength bolt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594463A (en) * 1979-01-12 1980-07-17 Nippon Steel Corp Petrochemical plant or high tensile bolt steel having hydrogen penetration preventing effect
JPS57161050A (en) * 1981-03-31 1982-10-04 Daido Steel Co Ltd High-strength bolt steel
JPS58117856A (en) * 1982-01-06 1983-07-13 Daido Steel Co Ltd High-strength bolt steel
JPS596358A (en) * 1982-06-30 1984-01-13 Daido Steel Co Ltd High strength bolt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173245A (en) * 2008-01-28 2009-08-06 Nishikawa Rubber Co Ltd Opening trim

Similar Documents

Publication Publication Date Title
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPH0196354A (en) Steel for high strength bolt having excellent delayed fracture resistance characteristic
JPS647138B2 (en)
JPH02267243A (en) High strength bolt steel having excellent delayed fracture characteristics
JP2002327235A (en) Steel for machine structure superior in hydrogen fatigue fracture resistance, and manufacturing method therefor
JP2974846B2 (en) Low temperature structural steel
JP4261760B2 (en) High strength spring steel excellent in hydrogen fatigue fracture resistance and manufacturing method thereof
JPH07278672A (en) Manufacture of high strength bolt excellent in delayed crack resistance
JP3217589B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP2007023328A (en) Method for manufacturing steel sheet with low yield ratio, high strength and high toughness
JPH06185513A (en) High strength bolt excellent in delay destruction resistance characteristic and manufacture thereof
JP4081234B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JP2990963B2 (en) High strength bolt steel with excellent delayed fracture resistance
JPH10280102A (en) Seamless pipe made of ferritic stainless steel for bellows and bellows using the same
JPH021902B2 (en)
JPS6341974B2 (en)
JP2001348649A (en) Welded joint
JPH09316597A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS62284043A (en) Steel excellent in sulfid stress corrosion cracking resistance in weld zone and its production
JPH0741900A (en) High strength pc rod wire excellent in delayed fracture resistance
JPH04329849A (en) Steel for high strength bolt excellent in delayed fracture resistance
JPS6014096B2 (en) High tensile strength steel with excellent delayed fracture resistance
JPH0625803A (en) Stainless steel material suitable for friction grip joint by high strength bolt