JPH0196302A - Powder metallurgical method - Google Patents

Powder metallurgical method

Info

Publication number
JPH0196302A
JPH0196302A JP25137687A JP25137687A JPH0196302A JP H0196302 A JPH0196302 A JP H0196302A JP 25137687 A JP25137687 A JP 25137687A JP 25137687 A JP25137687 A JP 25137687A JP H0196302 A JPH0196302 A JP H0196302A
Authority
JP
Japan
Prior art keywords
container
powder
cylinder
metal
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25137687A
Other languages
Japanese (ja)
Other versions
JPH0377841B2 (en
Inventor
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP25137687A priority Critical patent/JPH0196302A/en
Publication of JPH0196302A publication Critical patent/JPH0196302A/en
Publication of JPH0377841B2 publication Critical patent/JPH0377841B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce a large-diameter material by sealing powder into a malleable container, heating the powder and inserting said container into a cylinder so as to provide a spacing between the container and the inside wall of the cylinder, then compressing the powder. CONSTITUTION:The metal powder or powder mixture 7 composed of a metal and nonmetal is packed into the cylindrical container 6 made of, for example, a mild steel and the container is sealed after the inside thereof is evacuated to a prescribed vacuum degree. This container is compressed by a cold isostatic press and thereafter, the container 6 is inserted into the cylinder 1 by providing the spacing 8 between the inside wall of the cylinder and the outside wall of the container. A stem 4 is then advanced to compress the container 6. The container 6 is thereby brought into tight contact with the inside surface of the cylinder 1 and the powder 7 is compressed. The pressing pressure of the stem 4 is further increased to annihilate the grain boundaries of the powder. A solid metal 9 is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、粉末冶金法により金属材または金属と非金
属との複合材料を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for obtaining a metal material or a composite material of metal and nonmetal by a powder metallurgy method.

〔従来の技術〕[Conventional technology]

最も一般的な金属製造加工技術は、溶解−鋳造一圧延一
製品加工(切削、鍛造、等による部品加工)であるが、
このような手段によっては製造ができない材料、あるい
は、このような手段によっては目的とする高品質が得ら
れない材料等の場合は、これら材料の粉末を製造し、こ
れを各種の処理により1部品、製品に加工する粉末冶金
技術が用いられる。本発明も粉末冶金技術に関し1本発
明に最も近い公知技術としては、粉末をシリンダ型プレ
スに入れて高温で圧縮し円柱形製品又は中間加工品を得
るいわゆるホットプレス法、あるいは、粉末を金属のカ
プセルに封入し、加熱して熱間押出プレスで押し出して
棒材または管材を得る方法がある。
The most common metal manufacturing processing technology is melting-casting-rolling-product processing (parts processing by cutting, forging, etc.).
In the case of materials that cannot be manufactured by such means, or materials for which the desired high quality cannot be obtained by such means, powders of these materials are manufactured and this is processed into one part by various processes. , powder metallurgy technology is used to process into products. The present invention also relates to powder metallurgy technology.1 The known technology closest to the present invention is the so-called hot press method in which powder is placed in a cylinder press and compressed at high temperature to produce cylindrical products or intermediate products, or the powder metallurgy is There is a method of encapsulating it in a capsule, heating it, and extruding it with a hot extrusion press to obtain a bar or tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のシリンダによる熱間プレス方法は、シリンダ内に
粉末を直接充填して圧縮するのであるが、シリンダ壁と
粉末との摩擦によって特に中心部には十分な圧力が加わ
らないために、空隙が残り易い。この中心部の空隙は、
後から鍛造、圧延などの一般的に行われている方法で加
工を加えても、特に中心部に生ずる引張応力のために、
空隙は消失することなく残存し1品質に悪影響を及ぼす
In the conventional hot pressing method using a cylinder, the powder is directly filled into the cylinder and compressed, but due to the friction between the cylinder wall and the powder, sufficient pressure is not applied particularly to the center, leaving voids. easy. This central void is
Even if it is processed later using commonly used methods such as forging and rolling, the tensile stress that occurs especially in the center
The voids remain without disappearing and have an adverse effect on quality.

熱間押出しは、真密度の材料を得る方法として優れてい
るが、押出された材料と押出し前のビレットとの断面積
比が2乃至3以上でなければならないために、大径の材
料を得るのに不便である。
Hot extrusion is an excellent method for obtaining a material with true density, but because the cross-sectional area ratio of the extruded material and the billet before extrusion must be 2 to 3 or more, it is difficult to obtain a material with a large diameter. It's inconvenient though.

〔問題点を解決するための手段〕 この発明は、金属粉末または金属と非・金属との混合粉
末を可鍛性容器内に封入した上で、これを加熱し、シリ
ンダ内で加圧して圧縮し、製品または中間加工品を得る
ものである。中間加工品は。
[Means for Solving the Problems] This invention involves sealing a metal powder or a mixed powder of metal and non-metal in a malleable container, heating it, and compressing it by pressurizing it in a cylinder. and obtain products or intermediate products. Intermediate processed products.

必要に応じて更に鍛造または圧延する。この発明は、特
に上記容器をシリンダに挿入する際にシリンダ内壁と容
器との間に十分な大きさの間隙が存在する点に特徴があ
る。
Further forging or rolling is performed as necessary. This invention is particularly characterized in that, when the container is inserted into the cylinder, a sufficiently large gap exists between the inner wall of the cylinder and the container.

この隙間は、容器をシリンダ内に円滑に挿入するために
設けた隙間や、容器の寸法公差に基いて成る場合に顕著
に現われる隙間に較べて、十分大きいのが特徴である。
This gap is characterized by being sufficiently large compared to a gap provided to smoothly insert the container into the cylinder or a gap that appears significantly when the container is formed based on dimensional tolerances of the container.

即ち、上述のような通常の隙間は、如何なる場合にもシ
リンダ内径の5%を越えることは起らないが、この発明
における隙間は、シリンダ内径の6%以上に選ばれる。
That is, although the usual gap as described above does not exceed 5% of the cylinder inner diameter in any case, the gap in the present invention is selected to be 6% or more of the cylinder inner diameter.

この隙間の上限値は捉えていないが、容器の材質や肉厚
を適切に選べば、シリンダ内径の50%に達する場合で
も、圧縮工程の実施が可能である。しかし。
Although the upper limit value of this gap is not known, if the material and wall thickness of the container are appropriately selected, it is possible to carry out the compression process even when the gap reaches 50% of the cylinder inner diameter. but.

このように不必要に隙間を大きく選ぶことは1作業能率
の面で好ましいことではない。
Choosing an unnecessarily large gap like this is not desirable in terms of work efficiency.

粉末を封入した容器は、加熱及び圧縮に先立って可及的
に圧縮しておくのが、熱伝導その他の面で好ましく、そ
の手段としては、冷間静水圧プレスが良好な形状を維持
できるために有利である。
It is preferable to compress the container containing the powder as much as possible before heating and compressing it, from the viewpoint of heat conduction and other aspects, and cold isostatic pressing is a method for this because it can maintain a good shape. It is advantageous for

容器に封入された粉末を熱間圧縮するためのシリンダ装
置としては、熱間押出機を利用し、その押出口を閉塞し
て使用することもできる。
As a cylinder device for hot-compressing the powder sealed in a container, a hot extruder may be used, and the extrusion port thereof may be closed.

〔作 用〕[For production]

この発明においては、粉末原料は容器に収容され、かつ
シリンダ内壁と容器との間には十分な隙間が存在してい
る。従ってこれをステムによって押圧すると、内部の粉
末はシリンダ軸に平行な方向に圧縮されながら移動し塑
性変形を起こして真密度に到達する。その間、従来のシ
リンダによる熱間プレスの場合のような、粉末とシリン
ダ内壁との摩擦が無いために、ステムによる圧力は粉末
の中心部にまでほぼ均等に伝わり、内部に空隙を残さな
い。そして、真密度での圧縮状態を暫らく保持すること
により、焼結及び再結晶が進行して。
In this invention, the powder raw material is housed in a container, and there is a sufficient gap between the inner wall of the cylinder and the container. Therefore, when this is pressed by the stem, the powder inside is compressed and moves in a direction parallel to the cylinder axis, causing plastic deformation and reaching true density. During this time, since there is no friction between the powder and the inner wall of the cylinder, unlike in the case of hot pressing using a conventional cylinder, the pressure from the stem is transmitted almost evenly to the center of the powder, leaving no voids inside. Then, by maintaining the compressed state at true density for a while, sintering and recrystallization progress.

初期の粉末粒界は消失する。The initial powder grain boundaries disappear.

このようにして得た圧縮物は、そのまま切削加工用の素
材として用いることができるが、多くの場合は、更に熱
間圧延や熱間鍛造を行って小寸法に加工してから、切削
加工用などに用いる。いずれの場合も、十分な機械的性
質を備えている。
The compressed material obtained in this way can be used as a material for cutting as is, but in many cases, it is further processed into smaller dimensions by hot rolling or hot forging. Used for etc. In either case, it has sufficient mechanical properties.

〔実施例〕〔Example〕

外径155fl、長さ350顛1周壁肉厚1.6關、端
壁肉厚1.0 mgの軟鋼製円筒形容器内に、 5US
304L材のガス・アトマイズ法による粉末(平均粒径
iooμ、最大粒径150μ)を充填し、内部を10−
1トールまで真空排気して封止した。これを、冷間静水
圧プレスにより4000 K9 f/CM?で加圧、1
分間保持することにより、容器寸法は外径が平均145
.5問、長さ約334鱈に縮小し、容器内の充填密度は
真密度の69%から87%に上昇した。
5 US in a mild steel cylindrical container with an outer diameter of 155 fl, a length of 350 mm, a peripheral wall thickness of 1.6 mm, and an end wall thickness of 1.0 mg.
Filled with powder made by gas atomization of 304L material (average particle size iooμ, maximum particle size 150μ), and the inside was filled with 10-
It was evacuated to 1 torr and sealed. This was made into 4000 K9 f/CM by cold isostatic press. Pressurize with 1
By holding for a minute, the container dimensions are reduced to an average outer diameter of 145 mm.
.. 5 questions, the length was reduced to about 334 cods, and the packing density in the container increased from 69% to 87% of the true density.

図は熱間押出装置を示し、1はコンテナ、即ちシリンダ
、2はダイス、3は押出0.4はステムであり、コンテ
ナ1内の押出口端には閉塞板5が挿入されて、押出口3
を閉塞している。コンテナ1の内径は155顛である。
The figure shows a hot extrusion device, in which 1 is a container, that is, a cylinder, 2 is a die, 3 is an extrusion port, and 4 is a stem. 3
is blocked. The inner diameter of the container 1 is 155 mm.

前述の冷間静水圧プレスを行った容器6は、同図(a)
のようにシリンダ1内へ挿入されるが、7は容器内の粉
末、8はコンテナ内壁と容器外壁との間に生ずる隙間で
ある。この時の隙間8の寸法は平均9.5羽で、コンテ
ナ内径の6.1%に相当する。
The container 6 subjected to the cold isostatic pressing described above is shown in FIG.
7 is the powder inside the container, and 8 is the gap created between the inner wall of the container and the outer wall of the container. The size of the gap 8 at this time is 9.5 wings on average, which corresponds to 6.1% of the inner diameter of the container.

次に、ステム4を前進させて容器6を圧縮すると、同図
(b)のように容器6はコンテナlの内面に密着し、か
つ粉末7は圧縮される。更にステム4の押圧力を200
0 t Icまで上げ、10秒間保持すると、同図(c
)のように粉末の粒界が消失して、充実金属9に変化す
る。
Next, when the stem 4 is moved forward and the container 6 is compressed, the container 6 comes into close contact with the inner surface of the container 1, and the powder 7 is compressed, as shown in FIG. 2(b). Furthermore, the pressing force of stem 4 was increased to 200
When raised to 0 t Ic and held for 10 seconds, the same figure (c
), the grain boundaries of the powder disappear and the powder changes to a solid metal 9.

上述の金属9を容器6ごと取出し、機械加工により容器
6を除去したものは、顕微鏡検査により゛完全な充実金
属で、全く空隙が存在しないことが確められた。この金
属9を1150℃で直径30萌の丸棒に鍛伸したものは
、比重が7.901〜7.902 、 引張り強さが6
0.7〜64.6に97屑TM21伸びが53.2〜6
0.0%と1通常の製法による同種の材料と変シが無か
った。
The metal 9 described above was taken out along with the container 6, and the container 6 was removed by machining, and microscopic examination revealed that it was a completely solid metal with no voids at all. This metal 9 is forged at 1150°C into a round bar with a diameter of 30 mm, and has a specific gravity of 7.901 to 7.902 and a tensile strength of 6.
97 scraps TM21 elongation is 0.7-64.6 53.2-6
0.0% and 1 There was no change in the same type of material made by the normal manufacturing method.

また、コンテナ1の内径と隙間8との関係を知るために
1次の試験を行った。
In addition, a first test was conducted to find out the relationship between the inner diameter of the container 1 and the gap 8.

長さ350mm、固壁肉厚1.6囮、端壁肉厚1.0f
fll+で、外径が各種の円筒形容器を軟鋼で作り、こ
れに前述の5US304L材粉末を充填し、同様に内部
を真空排気して封止した後、 4oooKgt7tyr
?で冷間静水圧プレス(CIP)により圧縮した。これ
らを4通りの内径のコンテナ内で2000 tで熱間圧
縮して製品を得、この製品の中心部、中層部及び外層部
の組織を顕微鏡で観察し、空隙の有無を調べた。
Length 350mm, solid wall thickness 1.6mm, end wall thickness 1.0f
Using fll+, cylindrical containers with various outer diameters were made from mild steel, filled with the aforementioned 5US304L material powder, and the insides were evacuated and sealed in the same manner, then 4oooKgt7tyr
? It was compressed by cold isostatic pressing (CIP). These were hot-pressed at 2000 t in containers with four different inner diameters to obtain products, and the structures of the center, middle and outer layers of the products were observed using a microscope to check for the presence of voids.

第1表は内径155Hのコンテナを用いた場合、第2表
は内径175間のコンテナを用いた場合、第3表は内径
190朋のコンテナを用いた場合、第4表は内径215
ffllのコンテナを用いた場合をそれぞれ示す。6表
とも、冷間静水圧プレス(CIP)前後の容器外径平均
値(a)と、コンテナ内径に対する隙間の大きさ(X)
と、製品金部の顕微鏡による検査結果(○印:空隙なし
、×印:空隙あシ)を示す。
Table 1 shows the case when a container with an inside diameter of 155H is used, Table 2 shows the case when a container with an inside diameter of 175H is used, Table 3 shows the case when a container with an inside diameter of 190H is used, and Table 4 shows the case when a container with an inside diameter of 215H is used.
Each case using an ffll container is shown below. Table 6 shows the average container outer diameter (a) before and after cold isostatic pressing (CIP) and the gap size (X) relative to the container inner diameter.
and the results of microscopic examination of the metal part of the product (○ mark: no voids, × mark: voids) are shown.

第1表 コンテナ内径 155 fl 第2表 コンテナ内径 175朋 第3表 コンテナ内径 190m 第4表 コンテナ内径 215闘 上記6表の試験結果から、原料粉末を充填した容器を冷
間静水圧プレスし、これをコンテナ(シリンダ)に挿入
した際に、コンテナ内面と容器との間に生ずる隙間を、
コンテナ内径の6%以上に選べば、熱間圧縮によって得
られた製品が、内部に空隙を包蔵しない完全な充実体に
なることが判明した。
Table 1 Container inner diameter 155fl Table 2 Container inner diameter 175 fl Table 3 Container inner diameter 190 m Table 4 Container inner diameter 215 fl From the test results in Table 6 above, a container filled with raw material powder was cold isostatically pressed. When inserting into a container (cylinder), the gap that occurs between the inner surface of the container and the container,
It has been found that if the inner diameter of the container is selected to be 6% or more, the product obtained by hot compression becomes a completely solid body with no internal voids.

第2図(a)に示すように、冷間静水圧プレス後の容器
6の外径dが、コンテナ内径りに較べて大幅に小さい場
合には、熱間圧縮に際して容器6は第2図(b)に示す
ように変形する。即ち、周壁6aに部分6d%6eで溶
接されている底板6b及び蓋6cは殆ど変形しないが、
周壁6aは断面がコ字形に変形し、これによって容積が
減少する。このように容器6が円滑に変形するために、
隙間8がかなシ大きくても粉末の熱間圧縮は支障なく行
われ、コンテナ内径の50%に近い場合でも良好に圧縮
が行われることも、上記6表の試験結果から判明した。
As shown in FIG. 2(a), if the outer diameter d of the container 6 after cold isostatic pressing is significantly smaller than the inner diameter of the container, the container 6 will be Deform as shown in b). That is, although the bottom plate 6b and the lid 6c, which are welded to the peripheral wall 6a at portions 6d% and 6e, hardly deform,
The peripheral wall 6a is deformed into a U-shape in cross section, thereby reducing its volume. In order for the container 6 to deform smoothly in this way,
It was also found from the test results in Table 6 above that even if the gap 8 is large, hot compression of the powder is performed without any problem, and even when the gap is close to 50% of the inner diameter of the container, compression is performed well.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によるときは1組織が密実な金
属または金属と非金属との複合材料を、従来の熱間静水
圧プレス法よりも能率よく安価に、かつ、従来のシリン
ダによる熱間プレス法のように製品内部に空隙を残すこ
となく製造でき、しかも熱間押出法番こよる製品よりも
大径の製品を容易に製造することができる。
As described above, according to the present invention, metals having a dense structure or composite materials of metals and non-metals can be produced more efficiently and inexpensively than the conventional hot isostatic pressing method, and can be heated using conventional cylinders. Unlike the hot extrusion method, the product can be manufactured without leaving any voids inside the product, and it is also easier to manufacture products with larger diameters than products using the hot extrusion method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例における熱間圧縮工程の動作
過程を示す断面図、第2図は熱間圧縮工程前後の容器の
断面図である。 1・・・シリンダ、4・・・ステム、6・・・容器。 7・・・粉末、8・・・隙間。 特許出願人 山陽特殊製鋼株式会社
FIG. 1 is a sectional view showing the operation process of the hot compression process in an embodiment of the present invention, and FIG. 2 is a sectional view of the container before and after the hot compression process. 1...Cylinder, 4...Stem, 6...Container. 7...Powder, 8...Gap. Patent applicant Sanyo Special Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)金属粉末または金属と非金属との混合粉末を可鍛
性金属容器に充填し封止する工程と、この容器に封入さ
れた粉末を加熱する工程と、この加熱を経た容器をシリ
ンダに挿入しステムにより押圧して圧縮する工程とより
なり、上記のシリンダに容器を挿入した際に上記容器と
上記シリンダ内壁との間に、上記粉末粒子が相互間に空
隙を残さない状態にまで移動するに十分な大きさの隙間
が存在することを特徴とする粉末冶金方法。
(1) A process of filling a malleable metal container with metal powder or a mixed powder of metals and non-metals and sealing it, heating the powder sealed in this container, and converting the heated container into a cylinder. The powder particles are inserted into the cylinder and pressed and compressed by the stem, and when the container is inserted into the cylinder, the powder particles move to a state where no voids are left between the container and the inner wall of the cylinder. A powder metallurgy method characterized by the existence of a gap large enough to
(2)上記の粉末を封入した容器を、加熱に先立つて冷
間静水圧プレスにより理論密度の75%以上に予備圧縮
成形することを特徴とする特許請求の範囲第1項記載の
粉末冶金方法。
(2) The powder metallurgy method according to claim 1, characterized in that, prior to heating, the container containing the powder is pre-compression molded to 75% or more of the theoretical density by cold isostatic pressing. .
(3)上記容器の外径は、これを挿入する上記シリンダ
の内径の94%以下の寸法であることを特徴とする特許
請求の範囲第1項記載の粉末冶金方法。
(3) The powder metallurgy method according to claim 1, wherein the outer diameter of the container is 94% or less of the inner diameter of the cylinder into which it is inserted.
(4)上記シリンダは、押出口を閉塞した熱間押出機の
コンテナであることを特徴とする特許請求の範囲第1項
記載の粉末冶金方法。
(4) The powder metallurgy method according to claim 1, wherein the cylinder is a container of a hot extruder with a closed extrusion port.
JP25137687A 1987-10-05 1987-10-05 Powder metallurgical method Granted JPH0196302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25137687A JPH0196302A (en) 1987-10-05 1987-10-05 Powder metallurgical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25137687A JPH0196302A (en) 1987-10-05 1987-10-05 Powder metallurgical method

Publications (2)

Publication Number Publication Date
JPH0196302A true JPH0196302A (en) 1989-04-14
JPH0377841B2 JPH0377841B2 (en) 1991-12-11

Family

ID=17221915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25137687A Granted JPH0196302A (en) 1987-10-05 1987-10-05 Powder metallurgical method

Country Status (1)

Country Link
JP (1) JPH0196302A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825853A (en) * 1971-08-10 1973-04-04
JPS5510643A (en) * 1978-07-10 1980-01-25 Nippon Telegr & Teleph Corp <Ntt> Chinese character input device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825853A (en) * 1971-08-10 1973-04-04
JPS5510643A (en) * 1978-07-10 1980-01-25 Nippon Telegr & Teleph Corp <Ntt> Chinese character input device

Also Published As

Publication number Publication date
JPH0377841B2 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
US4673549A (en) Method for preparing fully dense, near-net-shaped objects by powder metallurgy
US4050143A (en) Method of producing dense metal tubes or the like
US3922769A (en) Method for making composite wire
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US4521360A (en) Methods of compaction by incremental radial compression and/or low-ratio extrusion
US4069042A (en) Method of pressing and forging metal powder
US4143208A (en) Method of producing tubes or the like and capsule for carrying out the method as well as blanks and tubes according to the method
JPS646241B2 (en)
US5154882A (en) Method for uniaxial hip compaction
JPH0196302A (en) Powder metallurgical method
US5482672A (en) Process for extruding tantalum and/or niobium
JPS61190007A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
US7846378B2 (en) Preparation of a dense, polycrystalline ceramic structure
US3633264A (en) Isostatic forging
US3340055A (en) Method for producing compacted articles having large length to diameter ratios
EP0582882B1 (en) Process for producing billet of powdery alloy
JP3252446B2 (en) Capsule for hot isostatic pressing and method of hot isostatic pressing
JPS61190008A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JPS63118003A (en) Compression molding method for powder
JPS61190006A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JPS6152201B2 (en)
JPS5929082B2 (en) Blanks and their manufacturing methods in steel pipe manufacturing
JP3514104B2 (en) Method for manufacturing a profile for thermoelectric element chip fabrication
JPS63247322A (en) Formation of ti-al intermetallic compound member
JPH05209206A (en) Production of metal extruding member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term