JPH0196022A - Production of ceramics - Google Patents

Production of ceramics

Info

Publication number
JPH0196022A
JPH0196022A JP62253961A JP25396187A JPH0196022A JP H0196022 A JPH0196022 A JP H0196022A JP 62253961 A JP62253961 A JP 62253961A JP 25396187 A JP25396187 A JP 25396187A JP H0196022 A JPH0196022 A JP H0196022A
Authority
JP
Japan
Prior art keywords
gel
metal
ceramics
cracks
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62253961A
Other languages
Japanese (ja)
Other versions
JP2523693B2 (en
Inventor
Tsugio Kaneko
金古 次雄
Tsuneo Kimura
木村 恒夫
Fumiya Ishikawa
石川 文矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62253961A priority Critical patent/JP2523693B2/en
Publication of JPH0196022A publication Critical patent/JPH0196022A/en
Application granted granted Critical
Publication of JP2523693B2 publication Critical patent/JP2523693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent cracking in a dry gel producing stage and to efficiently obtain large-sized ceramics by converting the hydrolyzate of a metal alkoxide into gel and dehydrating the gel under pressure. CONSTITUTION:An alkoxide of a metal, e.g., a group III, IV or V element of the periodic table is hydrolyzed. The resulting hydrolyzate is converted into gel and this gel is dehydrated, e.g., under 10-10000kg/cm<2> pressure for 10sec-1 hr. The dehydrated gel is dried and sintered to obtain ceramics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックスの製造方法に関するものであり、
詳しくは金属アルコキシドを原料としてゾルゲル法によ
りセラミックスを製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing ceramics,
Specifically, the present invention relates to a method for producing ceramics using a sol-gel method using metal alkoxide as a raw material.

〔従来技術〕[Prior art]

金属アルコキシドを加水分解し、得られたゲルを乾燥、
焼結することにより純度の高いセラミックス、例えばガ
ラス、焼結体を作製する、所謂ゾルゲル法が知られ利用
されている。このゾルゲル法に於いては加水分解液を直
接所定の形状の容器内でゲル化させそれを乾燥すること
により乾燥ゲルとする。そして、それを電気炉等で焼成
することによりガラスを得る製造法が、特に石英ガラス
の分野で行われている。
Hydrolyze the metal alkoxide, dry the resulting gel,
A so-called sol-gel method is known and used to produce highly pure ceramics, such as glass, and sintered bodies by sintering. In this sol-gel method, a hydrolyzed solution is directly gelled in a container of a predetermined shape and then dried to form a dry gel. A method of producing glass by firing it in an electric furnace or the like is particularly practiced in the field of quartz glass.

しかし、上記ゲルは、加水分解による水及びアルコール
を多量に含むため、乾燥に0j−2ケ月という長時間を
必要とするばかりでなく、体積の縮小につれ、割れやク
ラックが生じ易いという欠点を有していた。このため、
微粉末シリカを金属アルコキシドに対してモル比で0.
2〜j倍当量添加することにより、ゲルの構造を多孔性
にして、乾燥焼成時の割れやクラックを生じにくくする
ことが提案されている。
However, since the gel contains a large amount of water and alcohol due to hydrolysis, it not only requires a long time of 0-2 months to dry, but also has the disadvantage that it is prone to cracking as the volume decreases. Was. For this reason,
The molar ratio of finely powdered silica to metal alkoxide is 0.
It has been proposed that by adding 2 to j times the equivalent amount, the gel structure becomes porous, making it difficult to generate cracks or cracks during drying and firing.

しかし、この方法によっても、未乾燥ゲルを室温中に裸
で放置すると急激に表面乾燥が起こり、ゲルに割れやク
ラックが生ずるという欠点を有していた。そのため、ゲ
ルを乾燥する場合容器に開孔率の小さいフタをして徐々
に乾燥させる方法がとられていた。(特開昭10−/3
/133)〔発明が解決しようとする問題点〕 本発明は乾燥ゲルの製造時間(通常2週間〜コケ月程度
)の短縮化及び寸法精度向上を図かる為、予め未乾燥ゲ
ルを加圧脱水することにより、クラックや割れも無いゾ
ルゲル法によるセラミックスの製造方法を提供すること
にある。
However, this method also has the disadvantage that if the undried gel is left naked at room temperature, the surface will rapidly dry, resulting in cracks and cracks in the gel. Therefore, when drying the gel, a method has been used in which the container is covered with a lid with a small porosity and the gel is gradually dried. (Unexamined Japanese Patent Publication No. 1983-/3
/133) [Problems to be solved by the invention] In order to shorten the production time of dry gel (usually about 2 weeks to 1 month) and improve dimensional accuracy, the present invention dehydrates the undried gel under pressure in advance. By doing so, it is an object of the present invention to provide a method for manufacturing ceramics by a sol-gel method that is free from cracks and cracks.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、出発原料の少なくとも1つを金属アルコキシ
ドとしてセラミックスを製造する方法に於いて、金属ア
ルコキシドの加水分解液をゲル化させ、ゲル化直後の未
乾燥ゲルを加圧脱水することを特徴とするセラミックス
の製造方法により、上記の目的を達成する。
The present invention is a method for producing ceramics using a metal alkoxide as at least one of the starting materials, which is characterized in that a hydrolyzed solution of the metal alkoxide is gelled, and the undried gel immediately after gelling is dehydrated under pressure. The above object is achieved by a method of manufacturing ceramics.

本発明の原料である金属アルコキシドとしては、周期律
表第■〜■族の元素、例えば、A1、B1Si、Ti、
 P、 Ge、 Zr%Sb%Y、  希土類金M等の
アルコキシドが挙げられる。
The metal alkoxide that is the raw material of the present invention includes elements of groups ① to ② of the periodic table, such as A1, B1Si, Ti,
Examples include alkoxides such as P, Ge, Zr%Sb%Y, and rare earth gold M.

これら金属アルコキシドのアルコキシ基としては、メト
キシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙
げられ、その数は2個以上であることが望ましい。
Examples of the alkoxy groups of these metal alkoxides include methoxy groups, ethoxy groups, propoxy groups, butoxy groups, and the number thereof is preferably two or more.

このような金属アルコキシドの具体例としてハ、トリメ
トキシアルミニウム、ジェトキシアルミニウムクロリド
、テトラメトキシシラン、トリメトキシクロルシラン、
ジメトキシジメチルシラン、テトラエトキシシラン、テ
トラプロポキシチタン等が挙げられる。
Specific examples of such metal alkoxides include trimethoxyaluminum, jetoxyaluminum chloride, tetramethoxysilane, trimethoxychlorosilane,
Examples include dimethoxydimethylsilane, tetraethoxysilane, and tetrapropoxytitanium.

本発明の加水分解においては、上記金属アルコキシドの
1種または2種以上を用いるが、必要に応じて上記周期
律表第■〜■族の元素の酸化物粉末、金属塩もしくは金
属錯体、または周期律表第■〜■族以外の化合物を存在
させることもできる。
In the hydrolysis of the present invention, one or more of the above-mentioned metal alkoxides are used, but if necessary, oxide powders, metal salts or metal complexes of the elements of Groups 1 to 2 of the periodic table, or periodic Compounds other than Groups 1 to 2 of the Table of Contents may also be present.

周期律表第■〜■族の元素の酸化物粉末、金属塩もしく
は金属錯体の例としては、例えば、別途金属アルコキシ
ドを湿式で加水分解して製造した金属水酸化物または金
属債化物の粉末、金属アルコキシドや金属ハロゲン化物
を乾式で加水分解または燃焼して製造した金属酸化物粉
末、炭酸塩、塩酸塩、硝酸塩のような金属の無機酸塩、
蓚酸塩のような金属の有機酸塩、エチレンジアミンテト
ラ鉛酸のようなキレート化合物との錯塩、シクロペンタ
ジェニル金属錯体等が挙げられる。
Examples of oxide powders, metal salts, or metal complexes of elements in Groups ■ to ■ of the periodic table include powders of metal hydroxides or metal bonds produced by wet hydrolysis of metal alkoxides; Metal oxide powders produced by dry hydrolysis or combustion of metal alkoxides and metal halides; inorganic acid salts of metals such as carbonates, hydrochlorides, and nitrates;
Examples include organic acid salts of metals such as oxalate, complex salts with chelate compounds such as ethylenediaminetetralead acid, and cyclopentadienyl metal complexes.

また、周期律表第■〜■族以外の化合物としては、例え
ば、ナトリウム、カリウム等のアルカリ金属、マグネシ
ウム、カルシウム、バリウム、等のアルカリ土類金属、
鉄、コバルト、二〇 ッケル、クタム、マンガン等の遷移金属のアルコキシド
、水酸化物、酸化物、無機酸塩、有機酸塩、金属錯体等
が挙げられる。
In addition, examples of compounds other than Groups ■ to ■ of the periodic table include alkali metals such as sodium and potassium, alkaline earth metals such as magnesium, calcium, and barium;
Examples include alkoxides, hydroxides, oxides, inorganic acid salts, organic acid salts, and metal complexes of transition metals such as iron, cobalt, nickel, cutam, and manganese.

本発明方法に於ける金属アルコキシドの加水分解は通常
の方法、即ち水で行ない、更に必要に応じてアルコール
等の有機溶媒を混合しても良く、アルコールとしてはメ
タノール、エタノール、プロパツール、ブタノール等が
用いられる。水や有機溶媒の量には制限はないが、あま
り多量に使用すると、加圧脱水時に除去する液量が多く
なるので好ましくない。
Hydrolysis of the metal alkoxide in the method of the present invention is carried out by a conventional method, that is, with water, and if necessary, an organic solvent such as alcohol may be mixed. Examples of the alcohol include methanol, ethanol, propatool, butanol, etc. is used. There is no limit to the amount of water or organic solvent, but if too large a quantity is used, the amount of liquid removed during pressurized dehydration will increase, which is not preferable.

又、金属アルコキシドの加水分解触媒とじて公知のアン
モニア等のアルカリや塩酸等の酸を加えても良い。
Furthermore, known alkalis such as ammonia or acids such as hydrochloric acid may be added as metal alkoxide hydrolysis catalysts.

加圧脱水の時期は出発原料として上記の金属アルコキシ
ドから加水分解液を作り、それを加圧可能な容器に入れ
ゲル化させ、ゲル化直後の軟弱なゲル状態のうちに加圧
脱水すれば良い。
At the time of pressurized dehydration, it is sufficient to prepare a hydrolyzed solution from the above-mentioned metal alkoxide as a starting material, place it in a container that can be pressurized and gel it, and pressurize dehydrate it while it is in a soft gel state immediately after gelation. .

また加水分解生成物からゲルを得るに際しては、加熱す
れば直ちにゲル化するが常温で放置しても数時間でゲル
化するので、最も簡単にはこの様に加温の程度を調節す
ることによりゲル化時間を適当に調整することができる
。例えば、型に入れる等の作業中はゲル化していない方
が望ましいので、必要な作業を勘案して場合に応じてゲ
ル化時間を選択すれば良い。
In addition, when obtaining a gel from a hydrolysis product, it will gel immediately if heated, but it will gel in a few hours even if left at room temperature, so the easiest way is to adjust the degree of heating in this way. The gelation time can be adjusted appropriately. For example, it is preferable that the product is not gelled during operations such as putting it into a mold, so the gelation time may be selected depending on the situation, taking into consideration the necessary operations.

室温状態に於いて通常、ゲル化後、数時間から数日でゲ
ルは徐々に硬化し、体積収縮も認められる様になる。こ
の様な硬化したゲルに対してプレス脱水操作を行なうと
クラックや割れが発生する。
At room temperature, the gel usually hardens gradually in several hours to several days after gelation, and volumetric shrinkage is also observed. If a press dehydration operation is performed on such a hardened gel, cracks and cracks will occur.

従って、加圧脱水の時期としてはゲルが流動性を殆んど
失りて見掛上ゲル化したと見なせる時点から硬化が進み
体積収縮が現われるまでの期間に該ゲルを加圧脱水すれ
ば良くクラックや割れを生ぜずに目的を達成出来るので
ある。
Therefore, the gel should be dehydrated under pressure during the period from the time when the gel has almost lost its fluidity and can be considered to have become a gel, until the gel has hardened and volumetric shrinkage appears. The purpose can be achieved without creating cracks or cracks.

ゲルの加圧脱水時の圧力は/kf/crd以上j 00
00 AiF / crd以下、好ましくはjH/cd
以上20000 J4/d以下、より好ましくはlO岬
/cd以上10oooH/cm以下である。圧力が/l
=1/ crA以下の場合は脱水効果が小さく、5oo
o。
The pressure during pressurized dehydration of gel is /kf/crd or morej 00
00 AiF/crd or less, preferably jH/cd
It is more than 20,000 J4/d, more preferably more than 1O cape/cd and less than 10oooH/cm. pressure is /l
= 1/ If crA or less, the dehydration effect is small, and 5oo
o.

I4/−以上では工業化装置として極めて高価なものと
なり実用的でない。
If it is I4/- or more, it becomes extremely expensive as an industrial device and is not practical.

加圧時間については、1砂取上io時間以下、好ましく
はj砂取上2時間以下、より好ましくは10秒以上1時
間以下でちる。加圧時間が余りにも短かいとゲルの脱水
が不十分となりやすい。又、必要以上に長時間行っても
脱水効果が飽和するのみならず不経済である。
The pressurization time is 1 io hour or less for sand removal, preferably 2 hours or less for j sand removal, more preferably 10 seconds or more and 1 hour or less. If the pressurization time is too short, the gel tends to be insufficiently dehydrated. Moreover, if the dehydration is carried out for a longer time than necessary, not only will the dehydration effect become saturated, but it will also be uneconomical.

一方、加圧速度も重要であり、加圧速度が太き過ぎる場
合、ゲルの内部に圧力や濃度の分布が生じて割れ、クラ
ック発生の原因となるので加圧速度は出来るだけ小さい
方が好ましいが、通常10kg/mM以上/ 000 
kg/min以下が採用できる。
On the other hand, the pressurization speed is also important; if the pressurization speed is too high, pressure and concentration distribution will occur inside the gel, causing cracks to occur, so it is preferable to keep the pressurization speed as low as possible. But usually more than 10kg/mM/000
kg/min or less can be adopted.

加圧脱水中、ゲルから流出する水、アルコール等はすみ
やかに除去する必要があり、壁面に濾過面を有する構造
の加圧機が好ましく、回分式のプレス機だけでなく連続
式の押出機も利用できる。濾過面の材質には特に制限は
ないが、加圧による強度上の問題から焼結金属又は多孔
板またはこれとp布又はF紙等の戸開の組み合せが好ま
しい。又、印加圧の解除は急激に行うとゲル中の残留溶
媒等が急に膨張し、割れ、ひびの原因となるため減圧速
度は低い方が好ましいが、通常s o o kg/cr
A−rttur以下で十分である。
During pressurized dehydration, it is necessary to quickly remove water, alcohol, etc. that flow out from the gel, so a pressurizer with a structure with a filtration surface on the wall is preferable, and not only a batch-type press machine but also a continuous-type extruder can be used. can. There is no particular restriction on the material of the filter surface, but sintered metal, a perforated plate, or a combination thereof with a door-opening material such as P cloth or F paper is preferable from the viewpoint of strength problems caused by pressurization. In addition, if the applied pressure is released suddenly, the residual solvent in the gel will suddenly expand, causing cracks and cracks, so it is preferable to reduce the pressure at a low speed, but normally the speed is s o o kg/cr.
A value equal to or less than A-rttur is sufficient.

加圧脱水して得られたゲルは、離型後乾燥、焼成を行う
が、回分式の場合、乾燥してから離型を行なっても何ら
さしつかえはない。またゲルの乾燥、焼成については従
来は密閉状態で保ちゲルを収縮させた後開孔率1%位の
入れ物で70℃で2週間乾燥した後焼成する等、乾燥に
大変時間がかかりしかもクラック等が発生しゃば70℃
で2時間、続いて120℃で/−2時間程度乾燥すれば
十分である。又焼成は常法通りで良く、例えばioo℃
/hrで昇温したのちハ200±100℃で数時間空気
雰囲気で焼成する等の方法をとることができる。
The gel obtained by pressurized dehydration is dried and fired after being released from the mold, but in the case of a batch method, there is no problem even if the gel is dried and then released from the mold. In addition, conventional methods for drying and firing gels include keeping the gel in a sealed state, shrinking the gel, drying it in a container with a porosity of about 1% for two weeks at 70°C, and then firing it, which takes a long time and causes cracks. Occurs at 70℃
It is sufficient to dry at 120° C. for 2 hours, followed by drying at 120° C. for about 2 hours. Also, the firing may be carried out in a conventional manner, for example at io0°C.
A method such as raising the temperature at 200±100° C. for several hours in an air atmosphere may be used.

〔実施例〕〔Example〕

以下、実施例により本発明の方法を更に具体的に説明す
るが、本発明はその要旨を超えない限り、以下の実施例
により同等制限されるものではない。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the same extent by the following Examples unless the gist thereof is exceeded.

実施例1 超微粉末シリカ、Aerosil #200 (日本ア
エロジル株式会社製;表面積200m’/l) l0t
f:コθOm/のメタノールに均一に分散し、超音波分
散器上で4時間脱気した後、水パス上で70ゴまで濃縮
を行った。
Example 1 Ultrafine powder silica, Aerosil #200 (manufactured by Nippon Aerosil Co., Ltd.; surface area 200 m'/l) l0t
The mixture was uniformly dispersed in methanol of f: θOm/, degassed for 4 hours on an ultrasonic disperser, and then concentrated to 70% on a water path.

テトラメトキシシランA、7ざ?と蒸留水J、22 t
を30.1ビーカー中で攪拌し、透明な均一相に成った
後、上記超微粉末シリカの分散液と混合した。この混合
ゾル液全量を下部にテ過面(ψOμ扉の焼結金鋼と定性
ヂ紙(tC)を敷いた)を有する正方形のSUS製金型
(j jmmX j tmX u Omm)に高さ26
叫まで注型し、ゲル化させた。ゲル化後直ちにゲル上部
をシリコーン油を含浸させた紙で覆い正方形のピストン
を挿入して電動プレス機にて加圧脱水を行った。
Tetramethoxysilane A, 7? and distilled water J, 22 t
The mixture was stirred in a 30.1 beaker to form a transparent homogeneous phase, and then mixed with the above dispersion of ultrafine powder silica. The entire amount of this mixed sol solution was poured into a square SUS mold (j jmm
I poured it all the way to the point where it turned into a gel. Immediately after gelation, the upper part of the gel was covered with paper impregnated with silicone oil, a square piston was inserted, and pressure dehydration was performed using an electric press.

加圧速度は200 kf/−・順で行い、最高圧力2t
on/c4で約io分間保持した。その後200 kf
/−・−で除圧し脱水ゲルの紙を除去後、その裸の脱水
ゲルを室温で12時間、り0℃で/、1時間、更に72
0℃で1.1時間の乾燥を実施した。
Pressure was applied at a speed of 200 kf/-, with a maximum pressure of 2 tons.
It was held on/c4 for about io minutes. Then 200 kf
After removing the paper of the dehydrated gel by removing the pressure at /-・-, the bare dehydrated gel was heated at room temperature for 12 hours, then at 0°C for 1 hour, and then for another 72 hours.
Drying was carried out at 0° C. for 1.1 hours.

次に乾燥ゲルの焼成条件は室温から100℃までは20
0℃/Hrで昇温させ、100℃以上は2℃/Hで11
70℃まで昇温後/170℃で/、5時間保持した。
Next, the baking conditions for the dry gel are 20°C from room temperature to 100°C.
Raise the temperature at 0℃/Hr, and increase the temperature above 100℃ by 2℃/Hr.
After raising the temperature to 70°C/at 170°C/, it was held for 5 hours.

尚、乾燥後のゲルはψr、A x a♂j X L31
@(で見掛は密度/、009/CrAであり、焼成後の
石英ガラスは37.j X 37.!; X 4’、/
 g、見掛は密度、!、/rt/adの透明石英ガラス
が得られた。
In addition, the gel after drying is ψr, A x a♂j X L31
@(The apparent density is /, 009/CrA, and the quartz glass after firing is 37.j X 37.!; X 4', /
g, the appearance is density,! , /rt/ad transparent quartz glass was obtained.

このテストをio回繰返した結果、寸法誤差は±O8S
%以下であり、いずれもクラックや割れの無い透明石英
ガラスが得られた。
As a result of repeating this test io times, the dimensional error is ±08S
% or less, and transparent quartz glass without any cracks or breaks was obtained.

実施例λ 超微粉末シリカ、Aerosil ox−!0 (西独
デグッサ社製;表面積som2/l)の銘柄及び加圧脱
水条件(最高圧力/ 00 卯/c4で2時間保持した
)を変更した以外は実施例1と同様な方法でゲルの乾燥
及び焼成を実施した結果、見掛は密度2.16の不透明
白色ガラスが得られた。
Example λ Ultrafine powder silica, Aerosil ox-! Gel was dried and dried in the same manner as in Example 1, except for changing the brand of 0 (manufactured by West German Degussa; surface area som2/l) and the pressurized dehydration conditions (maintained at maximum pressure/00 μ/c4 for 2 hours). As a result of the firing, an opaque white glass with an apparent density of 2.16 was obtained.

実施例3 テトラメトキシシラン/!29に蒸留水7コ2を加え激
しく攪拌し加水分解する。そして透明な均一相に成った
後、実施例/で使用したと同一の超微粉末シリカ23?
を加え、超音波分散器で/j分間均一に混合分散を行っ
た。
Example 3 Tetramethoxysilane/! Add 7 parts and 2 parts of distilled water to 29 and stir vigorously to hydrolyze. Then, after forming a transparent homogeneous phase, the same ultrafine powder silica 23 as used in Example/?
was added and uniformly mixed and dispersed for /j minutes using an ultrasonic disperser.

この混合液の一部を用いて実施例1と同様な方法で加圧
脱水、乾燥及び焼成を実施した。
Pressure dehydration, drying, and calcination were carried out in the same manner as in Example 1 using a portion of this mixed liquid.

その結果、見掛は密度、2.7 &の半透明ガラスを得
た。
As a result, a translucent glass with an apparent density of 2.7 mm was obtained.

比較例/ 実施例/と全く同様に混合ゾル液をSue製角型容器に
高さが2j′m及び5間になる様に各々jヶずつ注型し
た。上部開放面をサランラップで覆い密閉して室温で放
置すると約2時間でゲル化し、更に1日放置して、ゲル
を収縮させた。次に、覆いを解き上部を開放した新約1
0分後に7〜3条のクラックがioケの試料全部に発生
した。
Comparative Example/In exactly the same manner as in Example/, the mixed sol solution was cast into square containers made by Sue, each having a height of 2j'm and 5m, respectively. The upper open surface was covered with Saran wrap and sealed and left at room temperature to gel in about 2 hours, and was left to stand for another day to shrink the gel. Next, New Testament 1 with the cover removed and the top open.
After 0 minutes, 7 to 3 cracks were generated in all the IO samples.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、乾燥ゲル製造過程においてクラック、
割れ等発生することなく極めて短時間で乾燥ゲルを得る
ことができ、従って大型のセラミックスを時間的、収率
的に極めて効率良くすることが可能である。
According to the present invention, cracks,
A dried gel can be obtained in an extremely short time without cracking, and therefore, it is possible to manufacture large ceramics extremely efficiently in terms of time and yield.

Claims (1)

【特許請求の範囲】[Claims] (1)金属アルコキシドを加水分解し、加水分解生成物
をゲル化し、得られたゲルを乾燥、焼成してセラミック
スを製造する方法に於いて、ゲルを加圧脱水することを
特徴とするセラミックスの製造方法。
(1) A method for producing ceramics by hydrolyzing a metal alkoxide, gelling the hydrolysis product, drying and firing the resulting gel, which is characterized in that the gel is dehydrated under pressure. Production method.
JP62253961A 1987-10-08 1987-10-08 Ceramics manufacturing method Expired - Lifetime JP2523693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253961A JP2523693B2 (en) 1987-10-08 1987-10-08 Ceramics manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253961A JP2523693B2 (en) 1987-10-08 1987-10-08 Ceramics manufacturing method

Publications (2)

Publication Number Publication Date
JPH0196022A true JPH0196022A (en) 1989-04-14
JP2523693B2 JP2523693B2 (en) 1996-08-14

Family

ID=17258360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253961A Expired - Lifetime JP2523693B2 (en) 1987-10-08 1987-10-08 Ceramics manufacturing method

Country Status (1)

Country Link
JP (1) JP2523693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216930A (en) * 2005-02-05 2006-08-17 Compal Electronics Inc Method of manufacturing microwave substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256538A (en) * 1987-04-15 1988-10-24 Seiko Instr & Electronics Ltd Production of glass
JPS6476922A (en) * 1987-09-17 1989-03-23 Seiko Epson Corp Production of glass molded product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256538A (en) * 1987-04-15 1988-10-24 Seiko Instr & Electronics Ltd Production of glass
JPS6476922A (en) * 1987-09-17 1989-03-23 Seiko Epson Corp Production of glass molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216930A (en) * 2005-02-05 2006-08-17 Compal Electronics Inc Method of manufacturing microwave substrate
JP4615408B2 (en) * 2005-02-05 2011-01-19 コンパル エレクトロニクス インコーポレイテッド Microwave substrate manufacturing method

Also Published As

Publication number Publication date
JP2523693B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
CN106116533A (en) The preparation method of high-porosity alumina base ceramic core
US3870529A (en) Method of producing casting moulds for precision casting
JPH0196022A (en) Production of ceramics
JP3094148B2 (en) Manufacturing method of lightweight refractory
JP2566591B2 (en) Ceramics manufacturing method
US3970462A (en) Self setting molding process
GB1434370A (en) Ceramic sheel mould
US1856613A (en) Process of producing refractory, acid-proof and other ceramically bonded products
US3525631A (en) Manufacture of ceramic bodies
KR970001052B1 (en) Process for preparing cordirite matrix ceramics
JP3074004B2 (en) Manufacturing method of ceramic products
JPS63144127A (en) Production of quartz glass
JPS63256538A (en) Production of glass
JPS63117917A (en) Production of glass
JPS5930668B2 (en) Manufacturing method for alumina-containing ceramic molded product
JPH01257137A (en) Production of ceramic
JPS6369724A (en) Production of glass
JPH01111732A (en) Production of glass
SU437727A1 (en) The method of obtaining refractory silicates
JPH0196032A (en) Production of glass
JPS62230662A (en) Manufacture of ceramic formed body
JPH03174330A (en) Production of glass
CN112264582A (en) Manufacturing method for ceramic mold casting
SU531621A1 (en) Mixture for making molds and cores
JPS6086069A (en) Manufacture of fire-resistant mullite pipe