JPH0195122A - Epoxy resin and its praparation - Google Patents

Epoxy resin and its praparation

Info

Publication number
JPH0195122A
JPH0195122A JP25066387A JP25066387A JPH0195122A JP H0195122 A JPH0195122 A JP H0195122A JP 25066387 A JP25066387 A JP 25066387A JP 25066387 A JP25066387 A JP 25066387A JP H0195122 A JPH0195122 A JP H0195122A
Authority
JP
Japan
Prior art keywords
resin
alkylphenol
formula
reaction
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25066387A
Other languages
Japanese (ja)
Other versions
JPH0780991B2 (en
Inventor
Yoshimitsu Tanabe
良満 田辺
Keisaburo Yamaguchi
桂三郎 山口
Tatsunobu Uragami
達宣 浦上
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62250663A priority Critical patent/JPH0780991B2/en
Publication of JPH0195122A publication Critical patent/JPH0195122A/en
Publication of JPH0780991B2 publication Critical patent/JPH0780991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an epoxy resin having excellent compatibility with a hardener, being capable of giving a cured product having excellent impact resistance, mechanical characteristics, water resistance, oxidation resistance and heat resistance, by reacting a specified alkylphenol aralkyl resin and an epihalohydrin in the presence of a hydrogen halide acceptor. CONSTITUTION:An alkylphenol aralkyl resin of formula III (wherein n is 0-5) is obtd. by reaching an alpha,alpha'-dialcoxy-p-xylene of formula I (wherein R<3> is 4C or lower alkyl) and an alkylphenol of formula II (wherein R<1> is H or R<2>; R<2> is 1-9 alkyl) with the molar ratio of 4 or higher in the presence of 0.01-5wt.% acidic catalyst such as hydrochloric acid, p-toluenesulfonic acid, etc., at 110 deg.C or higher for 1-20hr and separating unreacted alkylphenol. Then, 2-3 equivalent excess of epihalohydrin is mixed therein and heated at 40-120 deg.C to obtain a mixture, whereto a hydrogen halide acceptor such as NaOH is added in such a way that the pH of the reaction mixture is kept at 6.5-10 and the reaction is carried out in the presence of the acceptor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な低分子量エポキシ樹脂、およびその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel low molecular weight epoxy resin and a method for producing the same.

このエポキシ樹脂は、耐熱性、機械的特性、作業性に優
れ、注形用、積層用、塗料用、半導体封止用等の多方面
に利用可能である。
This epoxy resin has excellent heat resistance, mechanical properties, and workability, and can be used for many purposes such as casting, lamination, coating, and semiconductor sealing.

(従来の技術) 従来、エポキシ樹脂の耐熱性複合材用マトリックス樹脂
や耐熱性接着剤等への利用は多種多様である。これらの
エポキシ樹脂は、典形的には、ビスフェノールA、ビス
フェノールスルホン等のフェノール骨格を有するものや
4.4′−ジアミノジフェニルメタン、 3.3°−ジ
アミノジフェニルスルホン等の芳香族アミン骨格を有す
るものがある。
(Prior Art) Conventionally, epoxy resins have been used in a wide variety of applications, such as matrix resins for heat-resistant composite materials and heat-resistant adhesives. These epoxy resins typically have a phenol skeleton such as bisphenol A or bisphenol sulfone, or have an aromatic amine skeleton such as 4,4'-diaminodiphenylmethane or 3.3°-diaminodiphenylsulfone. There is.

これらはビスフェノール類や芳香族ジアミン類をエビへ
ロヒドリンと反応させて得ることができる。このエポキ
シ樹脂は一般的には適当な硬化剤と混合しそのエポキシ
基と硬化剤の官能基とを反応させることによって、先に
述べたような各種用途に使用される。
These can be obtained by reacting bisphenols and aromatic diamines with shrimp helohydrin. This epoxy resin is generally mixed with a suitable curing agent and used for the various applications mentioned above by reacting the epoxy groups with the functional groups of the curing agent.

また、特殊なものとしては、フェノールノホラック樹脂
のエポキシ化物やフェノール−キシレン結合樹脂のエポ
キシ化物(特公昭47−13782)等が知られており
、同様の方法で使用される。
Further, as special products, epoxidized products of phenol nophorac resin and epoxidized products of phenol-xylene bonded resin (Japanese Patent Publication No. 47-13782) are known, and are used in the same manner.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の典形的なエポキシ樹脂の硬化物としての性能は、
電気的性質、寸法安定性、耐薬品性の点ですぐれた性能
を有しているが、まだ耐熱性の点で不十分である。
The performance of the typical epoxy resin as a cured product is as follows:
Although it has excellent performance in terms of electrical properties, dimensional stability, and chemical resistance, it is still insufficient in terms of heat resistance.

一般的に耐熱性を向上させようとすれば架橋密度を上げ
る手法がとられるが、反面、樹脂が硬くてもろくなるこ
とが避けられない。また、耐熱性を向上させる他の手法
として、エポキシ樹脂骨格中にスルホン結合やアミン結
合等を導入すると、硬化樹脂の吸湿性が増し、耐水性の
点で好ましくない。
Generally, in order to improve heat resistance, a method is taken to increase the crosslinking density, but on the other hand, this inevitably results in the resin becoming hard and brittle. Furthermore, as another method for improving heat resistance, introducing sulfone bonds, amine bonds, etc. into the epoxy resin skeleton increases the hygroscopicity of the cured resin, which is undesirable in terms of water resistance.

近年、これらのエポキシ樹脂に、より高度な性能を付加
させることが要求されるようになった。
In recent years, it has become necessary to add more advanced performance to these epoxy resins.

例えば、複合材用、接着剤用等は外部応力、とくに応力
集中等の瞬間的な衝撃に耐えることが要求されている。
For example, materials for composite materials, adhesives, etc. are required to withstand external stress, especially instantaneous impact such as stress concentration.

このため、理想的にはゴムのように弾性変形することが
重要な要素として注目されている。このような弾性変形
を判断する基準としては、特にマトリックス樹脂の破断
時の伸びが重要である。マトリックス樹脂の伸びが大き
い程、複合材等で要求されるガラス繊維やカーボン繊維
等の補強剤の欠点を補うことかできる。すなわち、複合
材全体として強度向上になる。
For this reason, ideally, elastic deformation like rubber is attracting attention as an important element. As a criterion for determining such elastic deformation, elongation of the matrix resin at break is especially important. The greater the elongation of the matrix resin, the more it can compensate for the drawbacks of reinforcing agents such as glass fiber and carbon fiber required for composite materials. In other words, the strength of the composite material as a whole is improved.

また、このような複合材や接着剤は湿式で含浸成形され
ることが一般的であり、エポキシ樹脂が常温で液状もし
くは低融点をもつものであれば、本来不要な有機溶剤の
使用や高温加熱溶融状態での作業が必要でなく、この結
果使用量の減少や作業性の向上になる。
In addition, such composite materials and adhesives are generally wet-impregnated and molded, and if the epoxy resin is liquid at room temperature or has a low melting point, unnecessary organic solvents or high-temperature heating may be used. It is not necessary to work in a molten state, resulting in a reduction in the amount used and improved workability.

更に、これらマトリックス樹脂においては長期間の保存
安定性も重要であり、空気中の酸素による劣化が小さい
ことも要求されている。この耐酸化性は主に樹脂の構造
に由来するもので、フェノールノボラック樹脂構造では
この問題は解決し得ない。
Furthermore, long-term storage stability is also important for these matrix resins, and they are also required to be less susceptible to deterioration due to oxygen in the air. This oxidation resistance is mainly derived from the structure of the resin, and this problem cannot be solved with a phenol novolac resin structure.

求められているこれら要素のうち、耐熱性とともに耐酸
化性を改良したフェノール−キシレン結合樹脂のエポキ
シ化物か提案されている(特公昭47−1:1782、
特開昭60−112813)。
Among these required elements, an epoxidized phenol-xylene bonded resin with improved heat resistance and oxidation resistance has been proposed (Japanese Patent Publication No. 47-1: 1782,
JP-A-60-112813).

しかしながら、これらのエポキシ樹脂は、いずれもフェ
ノールとアラルキルエーテルを実質的に未反応物が残ら
ないように縮合反応させた組成物から成る。このため、
2官能のアラルキルエーテル1モルに対して用いられる
フェノールの一叶は1.3〜3モルの範囲に限定されて
いるか、この範囲で得られる樹脂は分子量が大きく、流
動性や性能の点で不満足である。したがって、作業性の
面で非能率的であるばかりでなく、固有の機械的特性、
特に破断時の伸び率では複合材等で要求されるような水
準に達していない。
However, all of these epoxy resins are composed of a composition in which phenol and aralkyl ether are subjected to a condensation reaction so that substantially no unreacted materials remain. For this reason,
The amount of phenol used per mole of bifunctional aralkyl ether is limited to 1.3 to 3 moles, or the resins obtained within this range have large molecular weights and are unsatisfactory in terms of fluidity and performance. It is. Therefore, it is not only inefficient in terms of workability, but also has inherent mechanical properties,
In particular, the elongation rate at break does not reach the level required for composite materials.

以上説明したような問題を十分に解決し得るエポキシ樹
脂およびその製造方法は、未だ知られていない。ただし
、本発明者らは、ある種の低分子のエポキシ樹脂を用い
ることによって、その問題を解決できることを見い出し
、その発明を先に出願した(特願昭62−070281
)。
Epoxy resins and methods for producing the same that can sufficiently solve the problems described above are not yet known. However, the present inventors found that this problem could be solved by using a certain kind of low-molecular epoxy resin, and filed an application for the invention (Japanese Patent Application No. 62-070281
).

本発明は上記問題点に鑑み成されたものであり、その目
的は耐熱性、耐水性、耐酸化性において十分な性能を示
し、耐衝撃性などの機械的特性、作業性に優れ、更には
十分な耐熱性を示す耐熱性複合材用マトリックス樹脂、
耐熱性接着剤等に供するエポキシ樹脂およびその製造方
法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to exhibit sufficient performance in heat resistance, water resistance, and oxidation resistance, and to have excellent mechanical properties such as impact resistance and workability. Matrix resin for heat-resistant composite materials that exhibits sufficient heat resistance,
An object of the present invention is to provide an epoxy resin for use in heat-resistant adhesives, etc., and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

木発明者らは上記目的を達成するために鋭意検討した結
果、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the inventors have completed the present invention.

すなわち本発明は、−数式(a) く但し、式中のR1は水素または炭素数が1〜9のアル
キル基を示し、R2は炭素数が1〜9のアルキル基を示
し、nは0〜5の整数を示す。)で表わされるアルキル
フェノールアラルキル樹脂とエピハロヒドリンとをハロ
ゲン化水素アクセプターの存在下に反応させて得られる
エポキシ樹脂、および、 一般式(b) (但し、式中のR3は炭素数が4以下の低級アルキル基
を示す。) で表わされるα、α゛−ジアルコキシーp−キシレンに
一般式(C) (但し、式中のR1は水素または炭素数が1〜9のアル
キル基を示し、R2は炭素数が1〜9のアルキル基を示
す。) で表わされるアルキルフェノールを4モル比以上で酸触
媒の存在下で反応させ、未反応のアルキルフェノールを
分離して得られる一般式(a)で表わされるアルキルフ
ェノールアラルキル樹脂を主成分とする反応生成物と、
エピハロヒドリンとをハロゲン化水素アクセプターの存
在下に反応させることを特徴とするエポキシ樹脂の製造
方法である。
That is, the present invention is based on the formula (a), where R1 represents hydrogen or an alkyl group having 1 to 9 carbon atoms, R2 represents an alkyl group having 1 to 9 carbon atoms, and n represents 0 to 9 carbon atoms. Indicates an integer of 5. ) and an epoxy resin obtained by reacting an alkylphenol aralkyl resin represented by the formula (b) with epihalohydrin in the presence of a hydrogen halide acceptor; α, α゛-dialkoxy p-xylene represented by the general formula (C) (wherein R1 represents hydrogen or an alkyl group having 1 to 9 carbon atoms, and R2 represents a An alkylphenol aralkyl resin represented by general formula (a) obtained by reacting alkylphenols represented by (1 to 9 alkyl groups) in the presence of an acid catalyst at a molar ratio of 4 or more and separating unreacted alkylphenols. A reaction product whose main component is
This is a method for producing an epoxy resin, which is characterized by reacting epihalohydrin with a hydrogen halide acceptor in the presence of a hydrogen halide acceptor.

本発明の方法で得られるアルキルフェノールアラルキル
樹脂のエポキシ化物は、種々の硬化剤と組み合せること
によって良好な硬化物を与える。
The epoxidized product of alkylphenol aralkyl resin obtained by the method of the present invention can be combined with various curing agents to give a good cured product.

例えば、液状ジアミノジフェニルメタン(MDA)(商
品名エピキュアZ、シェル化学製)を硬化剤として組み
合せた場合、ビスフェノールAを骨格とするエポキシ樹
脂(商品名エピコート828)に対し、曲げ強度、曲げ
弾性率、引張強度、伸び率など特性が向上する。更に、
本発明のエポキシ樹脂は、主鎖のベンゼン環にアルキル
置換基を有するので、特願昭62−070281のエポ
キシ樹脂よりも優れた耐熱性を示す。
For example, when liquid diaminodiphenylmethane (MDA) (trade name Epicure Z, manufactured by Shell Chemical) is combined as a curing agent, the bending strength, bending modulus, Properties such as tensile strength and elongation rate are improved. Furthermore,
Since the epoxy resin of the present invention has an alkyl substituent on the benzene ring of the main chain, it exhibits better heat resistance than the epoxy resin disclosed in Japanese Patent Application No. 62-070281.

更に、本発明のエポキシ樹脂は低分子量であり、常温で
液状もしくは低融点であるため、配合、塗布、含浸等の
操作は極めて良好であり、均質な硬化生成物が得られる
ことも特徴として挙げられる。
Furthermore, the epoxy resin of the present invention has a low molecular weight and is liquid or has a low melting point at room temperature, so operations such as blending, coating, and impregnation are extremely easy, and a homogeneous cured product can be obtained. It will be done.

上述のような効果を得るために、−数式(a)で表わさ
れるアルキルフェノールアラルキル樹脂の繰り返し数n
が5以下のものを、本発明に用いる。ただし、より顕著
な効果を得るためには、n=5のものが15重量%未満
であることが望ましく、あるいはn=0とn=1のもの
の合計が50モル%以上であることが望ましく、更には
n=0とn=1のものの合計が60モル%以上であるこ
とがより望ましい。また、アルキル基の場合のR1およ
びR2は、その炭素数は1〜9である。
In order to obtain the above effects, - the repeating number n of the alkylphenol aralkyl resin represented by the formula (a)
is 5 or less for use in the present invention. However, in order to obtain a more pronounced effect, it is desirable that the amount of n = 5 is less than 15% by weight, or the total of n = 0 and n = 1 is preferably 50 mol% or more, Furthermore, it is more desirable that the total of n=0 and n=1 is 60 mol% or more. Further, in the case of an alkyl group, R1 and R2 have 1 to 9 carbon atoms.

上記のような繰り返し数nの範囲を有する一般式(a)
で表わされるアルキルフェノールアラルキル樹脂を得る
ための方法の具体例を以下で述べる。
General formula (a) having the repeating number n range as described above
A specific example of the method for obtaining the alkylphenol aralkyl resin represented by is described below.

まず、−数式(b)で表わされるα、α゛−ジアルコキ
シーp−キシレン1モルに対して、アルキルフェノール
を4モル以ト、望ましくは5〜20モル、更に好ましく
は6〜15モルの範囲で加え、酸触媒の存在下で攪拌し
ながら昇温して後述の温度で反応させる。反応が進行す
るにつれて生成するアルコールを系外にトラップする。
First, an alkylphenol is added in an amount of 4 moles or more, preferably 5 to 20 moles, more preferably 6 to 15 moles, to 1 mole of α,α゛-dialkoxy p-xylene represented by formula (b). , the temperature is raised while stirring in the presence of an acid catalyst, and the reaction is carried out at the temperature described below. The alcohol produced as the reaction progresses is trapped outside the system.

必要によフては系内に残存する微量のアルコールを窒素
により糸外に除去する。反応終了後、残存する未反応の
アルキルフェノールは真空下あるいは水蒸気蒸留によっ
て留去して得られる残査の樹脂が本発明のアルキルフェ
ノールアラルキル樹脂である。
If necessary, trace amounts of alcohol remaining in the system are removed from the thread using nitrogen. After completion of the reaction, the remaining unreacted alkylphenol is distilled off under vacuum or by steam distillation, and the residual resin obtained is the alkylphenol aralkyl resin of the present invention.

このα、α゛−ジアルコキシーp−キシレンにおいてア
ルキル基R3の炭素原子数が4以下であると反応が早く
、また炭素原子数が4、すなわちブチル基においてte
rt−ブチル基は反応が遅い傾向にある。
In this α, α゛-dialkoxy p-xylene, if the number of carbon atoms in the alkyl group R3 is 4 or less, the reaction is fast;
rt-butyl groups tend to react slowly.

したがって、本発明で用いるものとしては、好ましくは
、α、α°−ジメトキシーp−キシレン、α、α°−ジ
ェトキシーp−キシレン、α、α“−ジ−n−プロポキ
シ−p−キシレン、α、α°−イソプロポキシーp−キ
シレン、α、α゛−ジーn−ブトキシーp−キシレン、
α、α゛−シー5ec−ブトキシーp−キシレン、α、
α°−ジイソブチルーp−キシレン等が挙げられるが、
これらに限定されるものではない。
Therefore, those used in the present invention are preferably α, α°-dimethoxy p-xylene, α, α°-jetoxy p-xylene, α, α“-di-n-propoxy-p-xylene, α, α°-isopropoxy p-xylene, α, α゛-di-n-butoxy p-xylene,
α, α゛-c-5ec-butoxyp-xylene, α,
Examples include α°-diisobutyl-p-xylene,
It is not limited to these.

また、−数式(C)で表わされるアルキルフェノールと
して本発明で用いるものには、例えば0−クレゾール、
m−クレゾール、ρ−クレゾール、0−エチルフェノー
ル、p−エチルフェノール、混合クレゾール、p−n−
プロピルフェノール、0−イソプロピルフェノール、P
−イソプロピルフェノール、混合イソプロピルフェノー
ル、o−5ec−ブチルフェノール、m −tert−
ブチルフェノール、p −tert−ブチルフェノール
、ペンチルフェノール、p−オクチルフェノール、p−
ノニルフェノール、2.3−ジメチルフェノール、2,
4−ジメチルフェノール、2.6−ジメチルフェノール
、3,4−ジメチルフェノール、2.4−ジ−S−ブチ
ルフェノール、3,5−ジメチルフェノール、2,6−
ジーS−ブチルフェノール、2.6−ジーt−ブチルフ
ェノール、3−メチル−4−イソプロピルフェノール、
3−メチル−5−イソプロピルフェノール、3−メチル
−6−イソプロピルフェノール、2−t−ブチル−4−
メチルフェノール、3−メチル−6−t−ブチルフェノ
ール、2−t−ブチル−4−エチルフェノール等を挙げ
ることができる。
Further, examples of the alkylphenol represented by formula (C) used in the present invention include 0-cresol,
m-cresol, ρ-cresol, 0-ethylphenol, p-ethylphenol, mixed cresol, p-n-
Propylphenol, 0-isopropylphenol, P
-isopropylphenol, mixed isopropylphenol, o-5ec-butylphenol, m -tert-
Butylphenol, p-tert-butylphenol, pentylphenol, p-octylphenol, p-
Nonylphenol, 2,3-dimethylphenol, 2,
4-dimethylphenol, 2.6-dimethylphenol, 3,4-dimethylphenol, 2.4-di-S-butylphenol, 3,5-dimethylphenol, 2,6-
Di-S-butylphenol, 2,6-di-t-butylphenol, 3-methyl-4-isopropylphenol,
3-methyl-5-isopropylphenol, 3-methyl-6-isopropylphenol, 2-t-butyl-4-
Examples include methylphenol, 3-methyl-6-t-butylphenol, and 2-t-butyl-4-ethylphenol.

反応温度は 110℃以上の温度であることが必要であ
り、 110℃より低いと反応は極端に遅くなる。また
反応時間をできるだけ短縮するためには約130〜24
0℃の温度範囲が望ましい。反応時間は 1〜20時間
である。
The reaction temperature must be 110°C or higher; if it is lower than 110°C, the reaction will be extremely slow. In addition, in order to shorten the reaction time as much as possible, approximately 130 to 24
A temperature range of 0°C is preferred. Reaction time is 1 to 20 hours.

酸触媒としては無機または有機の酸、特に鉱酸、例えば
塩酸、リン酸、硫酸またはギ酸を、あるいは塩化亜鉛、
塩化アルミニウム、塩化第二錫、塩化第二鉄の様なフリ
ーゾルタラフッ形触媒、メタンスルホン酸またはp−ト
ルエンスルホン酸などの有機スルホン酸を単独で使用す
るかまたは併用してもよい。触媒の使用量は、アルキル
フェノール、α、α°−ジアルコキシーp−キシレンの
合計重量の約0.01〜5重量%である。
Acid catalysts include inorganic or organic acids, in particular mineral acids, such as hydrochloric acid, phosphoric acid, sulfuric acid or formic acid, or zinc chloride,
Free sol fluorocarbon catalysts such as aluminum chloride, stannic chloride, and ferric chloride, and organic sulfonic acids such as methanesulfonic acid or p-toluenesulfonic acid may be used alone or in combination. The amount of catalyst used is about 0.01 to 5% by weight of the total weight of alkylphenol, α, α°-dialkoxy p-xylene.

このようにして得られたアルキルフェノールアラルキル
樹脂を主成分とする反応生成物をエポキシ化する方法は
、公知の方法が適用できる。
A known method can be applied to epoxidize the reaction product containing the alkylphenol aralkyl resin as a main component thus obtained.

すなわち、残査樹脂とエピハロヒドリン、好適にはエピ
クロルヒドリンにより通常40〜120℃の温度範囲内
でハロゲン化水素アクセプターの存在下に行なわれる。
That is, the reaction is carried out using residual resin and epihalohydrin, preferably epichlorohydrin, usually within a temperature range of 40 to 120 DEG C., in the presence of a hydrogen halide acceptor.

本発明のハロゲン化水素アクセプターとして特に適当な
ものは、アルカリ金属水酸化物、例えば水酸化カリウム
、水酸化ナトリウムである。ハロゲン化水素アクセプタ
ーは前記アルキルフェノールアラルキル樹脂とエピハロ
ヒドリンとの加熱された混合物に徐々に添加され、反応
混合物のp)Iを約6,5〜IOに維持するようにする
のが好適である。
Particularly suitable as hydrogen halide acceptors according to the invention are alkali metal hydroxides such as potassium hydroxide, sodium hydroxide. Preferably, the hydrogen halide acceptor is added slowly to the heated mixture of the alkylphenol aralkyl resin and epihalohydrin so as to maintain the p)I of the reaction mixture between about 6.5 and IO.

反応に使用されるエピハロヒドリンの割合は残査樹脂の
水酸基含有量によるが、通常2.0〜30当量、好まし
くは経済性を考慮すれば10当計以下の過剰量のエピハ
ロヒドリンが使用される。反応生成物から過剰のアクセ
プター物質および副生する塩の除去は真空蒸留や水洗等
の手段によって行なわれる。
The proportion of epihalohydrin used in the reaction depends on the hydroxyl group content of the residual resin, but usually 2.0 to 30 equivalents, preferably an excess of 10 equivalents or less in consideration of economic efficiency. Excess acceptor substances and by-product salts are removed from the reaction product by means such as vacuum distillation or washing with water.

また本発明の方法によって製造されたエポキシ樹脂は慣
用の硬化剤で硬化させることができる。
The epoxy resin produced by the method of the invention can also be cured with conventional curing agents.

硬化剤の典型的な例は、エポキシ樹脂のための慣用硬化
剤でビス(4−アミノフェニル)メタン、アニリン/ホ
ルムアルデヒド樹脂、ビス(4−アミノフェニル)スル
ホン、プロパン−1,3−ジアミン、ヘキサメチレンジ
アミン、ジエチレントリアミン、トリエチレンテトラミ
ン、2,2.4−トリメチルへキサミノ−1,6−ジア
ミン、m−キシリレンジアミン、ビス(4−アミノシク
ロヘキシル)メタン、2.2−ビス(4−アミノシクロ
ヘキシル)プロパンおよび3−アミノメチル−3,5,
5−トリメチルシクロヘキシルアミン(イソホロンジア
ミン)のような脂肪族、脂環式、芳香族および複素環式
アミン、脂肪族ポリアミンと三量化または三量化脂肪酸
から得られるようなポリアミノアミド;レゾルシノール
、ヒドロキノン、2.2−ビス(4−ヒドロキシフェニ
ル)プロパンおよびフェノール/アルデヒド樹脂のよう
なポリフェノール; “チオコールズとして市販されて
いるようなポリチオール;例えば無水フタル酸、無水テ
トラヒドロフタル酸、ヘキサヒドロフタル酸無水物、ヘ
キサクロロエンドメチレンテトラヒドロフタル酸無水物
、ピロメリト酸無水物、3,3°、4.4−ベンゾフェ
ノンテトラカルボン酸2y#水物、前記無水物の酸並び
にイソフタル酸およびテレフタル酸のようなポリカルボ
ン酸およびその無水物を含む。硬化剤がポリカルボン酸
またはそれらの無水物である場合は、通常0.4ないし
1.1当量のカルボキシル基または無水物基が1当量の
エポキシ基に対して用いられる。硬化剤がポリフェノー
ルである場合は、1当量のエポキシ基につき0.75な
いし1.25のフェノール性水酸基を使用することが好
ましい。
Typical examples of hardeners are conventional hardeners for epoxy resins such as bis(4-aminophenyl)methane, aniline/formaldehyde resins, bis(4-aminophenyl)sulfone, propane-1,3-diamine, hexa Methylenediamine, diethylenetriamine, triethylenetetramine, 2,2,4-trimethylhexamino-1,6-diamine, m-xylylenediamine, bis(4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl) ) propane and 3-aminomethyl-3,5,
Aliphatic, cycloaliphatic, aromatic and heterocyclic amines such as 5-trimethylcyclohexylamine (isophorone diamine), polyaminoamides such as those obtained from aliphatic polyamines and trimerization or trimerized fatty acids; resorcinol, hydroquinone, 2 .polyphenols such as 2-bis(4-hydroxyphenyl)propane and phenol/aldehyde resins; polythiols such as those commercially available as Thiochols; e.g. phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, hexachloro endomethylenetetrahydrophthalic anhydride, pyromellitic anhydride, 3,3°,4,4-benzophenonetetracarboxylic acid 2y# hydrate, the acids of the aforementioned anhydrides and polycarboxylic acids such as isophthalic acid and terephthalic acid and their Contains anhydrides. When the curing agent is a polycarboxylic acid or anhydride thereof, usually 0.4 to 1.1 equivalents of carboxyl group or anhydride group are used per equivalent of epoxy group. Curing. When the agent is a polyphenol, it is preferred to use 0.75 to 1.25 phenolic hydroxyl groups per equivalent of epoxy group.

硬化剤は重量でエポキシ100部につき1ないし40部
が一般に用いられる。
Hardeners are generally used in amounts of 1 to 40 parts by weight per 100 parts of epoxy.

〔実施例〕〔Example〕

以下、本発明を実施例により、更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 攪拌器、温度計、およびディーンスターク共沸蒸留トラ
ップを装着した反応容器にα、α゛−ジメトキシーp−
キシレン132.8g (0,8モル)、0−クレゾー
ル868g (8,0モル)、およびパラトルエンスル
ホン酸5gを装入し、その混合溶液を130〜150℃
に保ちながら攪拌を行った。反応中、生成するメタノー
ルは順次トラップより系外へ除去した。
Example 1 α,α゛-dimethoxyp-
132.8 g (0.8 mol) of xylene, 868 g (8.0 mol) of 0-cresol, and 5 g of para-toluenesulfonic acid were charged, and the mixed solution was heated at 130 to 150°C.
Stirring was performed while maintaining the temperature. During the reaction, generated methanol was sequentially removed from the system through a trap.

3時間でメタノールの発生が無くなり、縮合が完了した
。次いで、未反応の0−クレゾールを減圧蒸留除去し、
−数式(a)の構造を持つ234gのアルキルフェノー
ルアラルキル樹脂を得た。
After 3 hours, no methanol was generated and the condensation was completed. Next, unreacted 0-cresol was removed by distillation under reduced pressure,
- 234 g of alkylphenol aralkyl resin having the structure of formula (a) was obtained.

得られた樹脂の組成を、高速液体クロマトグラフィーで
測定した結果、n=0が77.3、n=1が18.7、
n=2のものが3.5(モル%)であった。
As a result of measuring the composition of the obtained resin by high performance liquid chromatography, n=0 was 77.3, n=1 was 18.7,
The one with n=2 was 3.5 (mol%).

また、この樹脂の軟化点(JIS、に−2548による
)は32℃であった。
Moreover, the softening point (according to JIS-2548) of this resin was 32°C.

次いで、得られたアルキルフェノールアラルキル樹脂2
05gとエピクロルヒドリン730g (7,9モル)
を混合し、攪拌器、ディーンスターク共沸蒸留トラップ
および滴下ロートを装着した反応容器に装入した。
Then, the obtained alkylphenol aralkyl resin 2
05g and 730g (7.9 mol) of epichlorohydrin
were mixed and charged to a reaction vessel equipped with a stirrer, a Dean-Stark azeotropic distillation trap, and a dropping funnel.

この混合物を攪拌しながら 115〜119℃に昇温し
たのち同温度で40%水酸化ナトリウム水溶液195g
を4時間で滴下し、留出した水は連続的に分離回収し、
エピクロルヒドリンの相は反応器に戻した。滴下終了後
、留出水の除去により反応は終了する。
While stirring this mixture, the temperature was raised to 115-119°C, and at the same temperature, 195 g of a 40% aqueous sodium hydroxide solution was added.
was added dropwise over 4 hours, and the distilled water was continuously separated and collected.
The epichlorohydrin phase was returned to the reactor. After the dropwise addition is completed, the reaction is terminated by removing the distilled water.

この後、過剰のエピクロルヒドリンを減圧蒸留し、反応
生成物をメチルイソブチルケトン(MIBK)500g
に溶解し、塩化ナトリウムおよび少過剰の水酸化ナトリ
ウムを濾過した後、溶剤を減圧蒸留により留去し、黄色
油状のエポキシ樹脂を249g得た。
After this, excess epichlorohydrin was distilled under reduced pressure, and the reaction product was converted into 500 g of methyl isobutyl ketone (MIBK).
After filtering out sodium chloride and a slight excess of sodium hydroxide, the solvent was distilled off under reduced pressure to obtain 249 g of a yellow oily epoxy resin.

その樹脂のエポキシ当量は230g/eq 、粘度(東
京計器製E型粘度計による)は、172g/cm −5
ec(35℃)であった。
The epoxy equivalent of the resin is 230 g/eq, and the viscosity (according to Tokyo Keiki E-type viscometer) is 172 g/cm -5
ec (35°C).

この樹脂のIR分析(液膜法)の結果を第1図に示す。The results of IR analysis (liquid film method) of this resin are shown in FIG.

実施例2 攪拌器、温度計、およびディーンスターク共沸蒸留トラ
ップを装着した反応容器にα、α°−ジメトキシーp−
キシレン140g (0,84モル)、混合クレゾール
910g (8,4モル)、およびパラトルエンスルホ
ン酸5gを装入し、その混合溶液を130〜150℃に
保ちながら攪拌を行った。反応中、生成するメタノール
は順次トラップより系外へ除去した。
Example 2 α,α°-Dimethoxy p-
140 g (0.84 mol) of xylene, 910 g (8.4 mol) of mixed cresol, and 5 g of para-toluenesulfonic acid were charged, and the mixed solution was stirred while being maintained at 130 to 150°C. During the reaction, generated methanol was sequentially removed from the system through a trap.

3時間でメタノールの発生が無くなり、縮合が完了した
。次いで、未反応の混合クレゾールを減圧蒸留除去し、
一般式(a)の構造を持つ245gのアルキルフェノー
ルアラルキル樹脂を得た。
After 3 hours, no methanol was generated and the condensation was completed. Next, unreacted mixed cresol was removed by distillation under reduced pressure.
245 g of alkylphenol aralkyl resin having the structure of general formula (a) was obtained.

得られた樹脂の組成を、高速液体クロマトグラフィーで
測定した結果、n=oが74.8、n=1が19.1、
n=2が4.6 、 n≧3のものが1.5(モル%)
であった。また、この樹脂の軟化点(JIS、に−25
48による)は56℃であった。
The composition of the obtained resin was measured by high performance liquid chromatography and found that n=o was 74.8, n=1 was 19.1,
4.6 for n=2, 1.5 for n≧3 (mol%)
Met. In addition, the softening point of this resin (JIS, -25
48) was 56°C.

次いで、得られたアルキルフェノールアラルキル樹脂1
30gとエピクロルヒドリン500g(5,4モル)を
混合し、攪拌器、ディーンスターク共沸蒸留トラップお
よび滴下ロートを装着した反応容器に装入した。
Then, the obtained alkylphenol aralkyl resin 1
30 g and 500 g (5.4 mol) of epichlorohydrin were mixed and charged into a reaction vessel equipped with a stirrer, a Dean-Stark azeotropic distillation trap, and a dropping funnel.

この混合物を攪拌しながら115〜119℃に昇温した
のち同温度で40%水酸化ナトリウム水溶液230gを
4時間で滴下し、留出した水は連続的に分離回収し、エ
ピクロルヒドリンの相は反応器に戻した。滴下終了後、
留出水の除去により反応は終了する。
The temperature of this mixture was raised to 115-119°C while stirring, and at the same temperature, 230 g of a 40% aqueous sodium hydroxide solution was added dropwise over 4 hours. The distilled water was continuously separated and collected, and the epichlorohydrin phase was transferred to the reactor. I returned it to . After finishing dropping,
The reaction is terminated by removing the distillate water.

この後、過剰のエピクロルヒドリンを減圧蒸留し、反応
生成物をメチルイソブチルケトン(MIBK)350g
に溶解し、塩化ナトリウムおよび少過剰の水酸化ナトリ
ウムを濾過した後、溶剤を減圧蒸留により留去し、黄色
のエポキシ樹脂を167g得た。
After this, excess epichlorohydrin was distilled under reduced pressure, and 350 g of methyl isobutyl ketone (MIBK) was obtained as a reaction product.
After filtering out sodium chloride and a slight excess of sodium hydroxide, the solvent was distilled off under reduced pressure to obtain 167 g of a yellow epoxy resin.

その樹脂のエポキシ当量は23ag/eq 、粘度(東
京計器製E型粘度計による)は、651g/cm −5
ec(35℃)であフた。
The epoxy equivalent of the resin is 23ag/eq, and the viscosity (according to Tokyo Keiki E-type viscometer) is 651g/cm -5
EC (35°C).

この樹脂のIR分析(液膜法)の結果を第2図に示す。The results of IR analysis (liquid film method) of this resin are shown in FIG.

実施例3 攪拌器、温度計、およびディーンスターク共沸蒸留トラ
ップを装着した反応容器にα、α゛−ジメトキシーP−
キシレン166g(1モル)、2゜6−シメチルフエノ
ール732g(6モル)、およびパラトルエンスルホン
酸6gを装入し、その混合溶液を130〜150℃に保
ちながら攪拌を行った。反応中、生成するメタノールは
順次トラップより糸外へ除去した。
Example 3 α,α゛-Dimethoxy P-
166 g (1 mol) of xylene, 732 g (6 mol) of 2°6-dimethylphenol, and 6 g of para-toluenesulfonic acid were charged, and the mixed solution was stirred while being maintained at 130 to 150°C. During the reaction, generated methanol was sequentially removed from the thread through the trap.

3時間でメタノールの発生が無くなり、縮合が完了した
。次いで、未反応の2.6−シメチルフエノールを減圧
蒸留除去し、一般式(a)の構造を持つ317gのアル
キルフェノールアラルキル樹脂を得た。
After 3 hours, no methanol was generated and the condensation was completed. Next, unreacted 2,6-dimethylphenol was removed by distillation under reduced pressure to obtain 317 g of an alkylphenol aralkyl resin having the structure of general formula (a).

得られた樹脂の組成を、高速液体クロマトグラフィーで
測定した結果、n=0が62.3、n=1が25.0、
n=2が8.6  、n≧3のものが4.1(モル%)
であった。また、この樹脂の軟化点(JIS。
The composition of the obtained resin was measured by high performance liquid chromatography and found that n=0 was 62.3, n=1 was 25.0,
n=2 is 8.6, n≧3 is 4.1 (mol%)
Met. In addition, the softening point (JIS) of this resin.

K−2548による)は49℃であった。K-2548) was 49°C.

次いで、得られたアルキルフェノールアラルキル樹脂2
00gとエピクロルヒドリン530g (5,7モル)
を混合し、攪拌器、ディーンスターク共沸蒸留トラップ
および滴下ロートを装着した反応容器に装入した。
Then, the obtained alkylphenol aralkyl resin 2
00g and epichlorohydrin 530g (5.7 mol)
were mixed and charged to a reaction vessel equipped with a stirrer, a Dean-Stark azeotropic distillation trap, and a dropping funnel.

この混合物を攪拌しながら 115〜119℃に昇温し
たのち同温度で40%水酸化ナトリウム水溶液135g
を4時間で滴下し、留出した水は連続的に分離回収し、
エピクロルヒドリンの相は反応器に戻した。滴下終了後
、留出水の除去により反応は終了する。
While stirring this mixture, the temperature was raised to 115-119°C, and at the same temperature, 135 g of a 40% sodium hydroxide aqueous solution was added.
was added dropwise over 4 hours, and the distilled water was continuously separated and collected.
The epichlorohydrin phase was returned to the reactor. After the dropwise addition is completed, the reaction is terminated by removing the distilled water.

この後、過剰のエピクロルヒドリンを減圧蒸留し、反応
生成物をメチルイソブチルケトン(MIBK)500g
に溶解し、塩化ナトリウムおよび少過剰の水酸化ナトリ
ウムを濾過した後、溶剤を減圧蒸留により留去し、褐色
のエポキシ樹脂を242g得た。
After this, excess epichlorohydrin was distilled under reduced pressure, and the reaction product was converted into 500 g of methyl isobutyl ketone (MIBK).
After filtering out sodium chloride and a slight excess of sodium hydroxide, the solvent was distilled off under reduced pressure to obtain 242 g of a brown epoxy resin.

その樹脂のエポキシ当量は243g/eq 、粘度(東
京計器製E型粘度計による)は、879g/cm−8e
c(35℃)であった。
The epoxy equivalent of the resin is 243 g/eq, and the viscosity (according to Tokyo Keiki E-type viscometer) is 879 g/cm-8e.
c (35°C).

この樹脂のIR分析(液膜法)の結果を第3図に示す。The results of IR analysis (liquid film method) of this resin are shown in FIG.

比較例1 攪拌器、温度計、およびディーンスターク共沸蒸留トラ
ップを装着した反応容器にα、α°−ジメトキシーp−
キシレン250g (1,5モル)、フェノール847
g(9モル)、およびパラトルエンスルホン酸1.1g
を装入し、その混合溶液を130〜150℃に保ちなが
ら攪拌を行った。反応中、生成するメタノールは順次ト
ララップより糸外へ除去した。
Comparative Example 1 α, α°-Dimethoxy p-
xylene 250g (1.5 mol), phenol 847
g (9 moles), and 1.1 g of para-toluenesulfonic acid.
was charged, and the mixed solution was stirred while being maintained at 130 to 150°C. During the reaction, methanol produced was sequentially removed from the yarn through trap wraps.

2時間でメタノールの発生が無くなり、縮合が完了した
。次いで、未反応のフェノールを減圧蒸留除去し、−数
式(a)の構造を持つ393gのフェノールアラルキル
樹脂を得た。
After 2 hours, no methanol was generated and the condensation was completed. Next, unreacted phenol was removed by distillation under reduced pressure to obtain 393 g of a phenol aralkyl resin having the structure of formula (a).

得られた樹脂の組成を、高速液体クロマトグラフィーで
測定した結果、n=0が60.3、n=1が24.3、
n=2が9.2、n=3が3.8、n≧4のものが2.
4(モル%)であった。また、この樹脂の軟化点(JI
S、に−2548による)は45℃であった。
The composition of the obtained resin was measured by high performance liquid chromatography and found that n=0 was 60.3, n=1 was 24.3,
n=2 is 9.2, n=3 is 3.8, n≧4 is 2.
4 (mol%). In addition, the softening point of this resin (JI
S, ni-2548) was 45°C.

次いで、得られたフェノールアラルキル樹脂393gと
エピクロルヒドリン1100g(11,9モル)を混合
し、攪拌器、ディーンスターク共沸蒸留トラップおよび
滴下ロートを装着した反応容器に装入した。
Next, 393 g of the obtained phenol aralkyl resin and 1100 g (11.9 mol) of epichlorohydrin were mixed and charged into a reaction vessel equipped with a stirrer, a Dean-Stark azeotropic distillation trap, and a dropping funnel.

この混合物を攪拌しながら 115〜119℃に昇温し
たのち同温度で40%水酸化す□トリウム水溶液275
gを4時間で滴下し、留出した水は連続的に分離回収し
、エピクロルヒドリンの相は反応器に戻した。滴下終了
後、留出水の除去により反応は終了する。
While stirring this mixture, the temperature was raised to 115-119°C, and at the same temperature, a 40% sodium hydroxide aqueous solution 275
g was added dropwise over 4 hours, the distilled water was continuously separated and collected, and the epichlorohydrin phase was returned to the reactor. After the dropwise addition is completed, the reaction is terminated by removing the distilled water.

この後、過剰のエピクロルヒドリンを減圧蒸留し、反応
生成物をメチルイソブチルケトン(MIBK)1500
gに溶解し、塩化ナトリウムおよび少過剰の水酸化ナト
リウムを濾過した後、溶剤を減圧蒸留により留去し、黄
色油状のエポキシ樹脂を465g得た。
After this, excess epichlorohydrin was distilled under reduced pressure, and the reaction product was purified as methyl isobutyl ketone (MIBK).
After filtering out sodium chloride and a slight excess of sodium hydroxide, the solvent was distilled off under reduced pressure to obtain 465 g of a yellow oily epoxy resin.

その樹脂のエポキシ当量は227g/eq 、粘度(東
京計器製E型粘度計による)は、468g/am −5
ec(35℃)であった。
The epoxy equivalent of the resin is 227 g/eq, and the viscosity (according to Tokyo Keiki E-type viscometer) is 468 g/am -5
ec (35°C).

使用例 実施例1〜3、および比較例1によって得られたエポキ
シ樹脂、並びにビスフェノールAから導入されるエピコ
ート828(シェル化学製)の各々に、硬化剤として液
状MDA (エビキュアZ;シェル化学製)を表−1に
示す条件で配合し、その混合物をそれぞれ注型加工し、
加工後の硬化樹脂の機械的性質を測定した。
Usage Examples Liquid MDA (Ebicure Z; manufactured by Shell Chemical) was added as a curing agent to each of the epoxy resins obtained in Examples 1 to 3 and Comparative Example 1, and Epikote 828 (manufactured by Shell Chemical) introduced from bisphenol A. were mixed under the conditions shown in Table 1, and each mixture was cast and processed.
The mechanical properties of the cured resin after processing were measured.

その結果を表−1に示す。なお、実施例1〜3で得られ
たエポキシ樹脂の結果を各々実験例1〜3として示し、
比較例1で得られたエポキシ樹脂の結果を比較実験例1
として示し、エピコート828(シェル化学製)の結果
を比較実験例2として示した。
The results are shown in Table-1. The results of the epoxy resins obtained in Examples 1 to 3 are shown as Experimental Examples 1 to 3, respectively.
Comparative Experiment Example 1 The results of the epoxy resin obtained in Comparative Example 1
The results of Epicote 828 (manufactured by Shell Chemical) are shown as Comparative Experimental Example 2.

(表−1の注) ・配 合・・・・・・・・・・・・重量比・ゲル化時間
・−−−−−JIS、に−6910による・熱変形温度
・・・・・・JIS、に−7207による・煮沸時吸水
率・・・煮沸100℃/2時間・曲げ強度・・・・・・
・・−JIS、に−7203による・引張強度・・・・
−−−−−JTS、に−7113による(発明の効果〕 以上説明したきたように、本発明のエポキシ樹脂は低分
子量であり、また常温において液体または低融点である
ため、種々の硬化剤との相溶性に優れ、配合、塗布、含
浸等の操作は極めて容易に行なわれ、均質な硬化生成物
が得られる。その硬化生成物は耐衝撃性などの機械的特
性、耐水性、耐酸化性、特に引張強度、伸びについて優
れた性能を有し、更に十分な耐熱性も有する。
(Notes on Table 1) ・Formulation・・・・Weight ratio・Geling time・・・According to JIS, Ni-6910・Heat distortion temperature・・・・・・・According to JIS, Ni-7207・Water absorption rate at boiling...Boiling at 100℃/2 hours・Bending strength...
・・Tensile strength according to JIS, Ni-7203・・・・
------- JTS, 2007-7113 (Effects of the Invention) As explained above, the epoxy resin of the present invention has a low molecular weight and is liquid or has a low melting point at room temperature, so it can be used with various curing agents. It has excellent compatibility, and operations such as blending, coating, and impregnation are extremely easy, and a homogeneous cured product can be obtained.The cured product has excellent mechanical properties such as impact resistance, water resistance, and oxidation resistance. It has excellent performance, especially in terms of tensile strength and elongation, and also has sufficient heat resistance.

以上のような利点を有する本発明のエポキシ樹脂は、各
種用途への展開が期待でき、特に従来からそのような性
能が要望されていた電子材料分野への展開が有望視され
る。
The epoxy resin of the present invention, which has the above-mentioned advantages, can be expected to be used in various applications, particularly in the field of electronic materials, where such performance has long been desired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、実施例1〜3で得られたエポキシ樹
脂のIR分析結果(液膜法)を示す図である。 特許出願人  三井東圧化学株式会社
FIGS. 1 to 3 are diagrams showing the IR analysis results (liquid film method) of the epoxy resins obtained in Examples 1 to 3. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)一般式(a) ▲数式、化学式、表等があります▼(a) (但し、式中のR^1は水素または炭素数が1〜9のア
ルキル基を示し、R^2は炭素数が1〜9のアルキル基
を示し、nは0〜5の整数を示す。)で表わされるアル
キルフェノールアラルキル樹脂とエピハロヒドリンとを
ハロゲン化水素アクセプターの存在下に反応させて得ら
れるエポキシ樹脂。 2)一般式(b) ▲数式、化学式、表等があります▼(b) (但し、式中のR^3は炭素数が4以下の低級アルキル
基を示す。) で表わされるα、α’−ジアルコキシ−p−キシレンに
一般式(c) ▲数式、化学式、表等があります▼(c) (但し、式中のR^1は水素または炭素数が1〜9のア
ルキル基を示し、R^2は炭素数が1〜9のアルキル基
を示す。) で表わされるアルキルフェノールを4モル比以上で酸触
媒の存在下で反応させ、未反応のアルキルフェノールを
分離して得られる一般式(a)▲数式、化学式、表等が
あります▼(a) (但し、式中のR^1は水素または炭素数が1〜9のア
ルキル基を示し、R^2は炭素数が1〜9のアルキル基
を示し、nは0〜5の整数を示す。)で表わされるアル
キルフェノールアラルキル樹脂を主成分とする反応生成
物と、エピハロヒドリンとをハロゲン化水素アクセプタ
ーの存在下に反応させることを特徴とするエポキシ樹脂
の製造方法。
[Claims] 1) General formula (a) ▲ Numerical formula, chemical formula, table, etc. ▼ (a) (However, R^1 in the formula represents hydrogen or an alkyl group having 1 to 9 carbon atoms, R^2 represents an alkyl group having 1 to 9 carbon atoms, and n represents an integer of 0 to 5.) Obtained by reacting an alkylphenol aralkyl resin represented by the following with epihalohydrin in the presence of a hydrogen halide acceptor. Epoxy resin. 2) General formula (b) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(b) (However, R^3 in the formula represents a lower alkyl group having 4 or less carbon atoms.) α, α' -Dialkoxy-p-xylene has the general formula (c) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(c) (However, R^1 in the formula represents hydrogen or an alkyl group having 1 to 9 carbon atoms, R^2 represents an alkyl group having 1 to 9 carbon atoms.) The general formula (a ) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (a) (However, R^1 in the formula represents hydrogen or an alkyl group having 1 to 9 carbon atoms, and R^2 represents an alkyl group having 1 to 9 carbon atoms. (n is an integer of 0 to 5) and epihalohydrin are reacted in the presence of a hydrogen halide acceptor. Method of manufacturing resin.
JP62250663A 1987-10-06 1987-10-06 Epoxy resin composition and method for producing the same Expired - Lifetime JPH0780991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62250663A JPH0780991B2 (en) 1987-10-06 1987-10-06 Epoxy resin composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62250663A JPH0780991B2 (en) 1987-10-06 1987-10-06 Epoxy resin composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0195122A true JPH0195122A (en) 1989-04-13
JPH0780991B2 JPH0780991B2 (en) 1995-08-30

Family

ID=17211196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250663A Expired - Lifetime JPH0780991B2 (en) 1987-10-06 1987-10-06 Epoxy resin composition and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0780991B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002956A (en) * 2001-06-19 2003-01-08 Dainippon Ink & Chem Inc Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
JP2015189924A (en) * 2014-03-28 2015-11-02 新日鉄住金化学株式会社 Phenol aralkyl resin and manufacturing method therefor
JP2015189925A (en) * 2014-03-28 2015-11-02 新日鉄住金化学株式会社 Vinyl benzyl ether resin, manufacturing method therefor, curable resin composition containing the same and cured product
JP2017105891A (en) * 2015-12-07 2017-06-15 群栄化学工業株式会社 Phenol aralkyl resin, manufacturing method therefor, epoxy resin, and thermosetting molding material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002956A (en) * 2001-06-19 2003-01-08 Dainippon Ink & Chem Inc Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
JP2015189924A (en) * 2014-03-28 2015-11-02 新日鉄住金化学株式会社 Phenol aralkyl resin and manufacturing method therefor
JP2015189925A (en) * 2014-03-28 2015-11-02 新日鉄住金化学株式会社 Vinyl benzyl ether resin, manufacturing method therefor, curable resin composition containing the same and cured product
JP2017105891A (en) * 2015-12-07 2017-06-15 群栄化学工業株式会社 Phenol aralkyl resin, manufacturing method therefor, epoxy resin, and thermosetting molding material

Also Published As

Publication number Publication date
JPH0780991B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
US7456247B2 (en) Phenolic resin formed from a difunctional phenol and a divinyl ether
US6043333A (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JPH04217675A (en) Epoxy resin and its intermediate, production thereof and epoxy resin composition
JPS59230017A (en) Novel polyglycidyl ether, its preparation and resin prepared therefrom
US5155202A (en) Phenolic novolak resins, cured substances therefrom and method for production thereof
JP5366263B2 (en) Phenol aralkyl resin, epoxy resin composition and cured product thereof
US20050131167A1 (en) Indole resins epoxy resins and resin compositions containing the same
JP2000313737A (en) Thermosetting composition
JPH0195122A (en) Epoxy resin and its praparation
JPH0195124A (en) Alkylphenol aralkyl resin and its preparation
JP2010155796A (en) Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof
JPWO2003029323A1 (en) Phenol resin, epoxy resin, method for producing the same, and epoxy resin composition
JP2000103941A (en) Epoxy resin composition and semiconductor sealing material
JP4628621B2 (en) Method for producing phenol aralkyl resin
JPS63238122A (en) Epoxy resin and production thereof
JPS61195112A (en) Epoxy resin
JP3048268B2 (en) Epoxy resin and method for producing the same
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP2622147B2 (en) Epoxy resin composition
JP2823455B2 (en) New epoxy resin and method for producing the same
JPH06145309A (en) Hydroxynaphthalene copolymer, epoxidized product thereof, and production and use thereof
JP2004346115A (en) Epoxy resin, epoxy resin composition and cured product
JPH0780862B2 (en) Diglycidyl ether of 6,6 ▲ &#39;▼ -dihydroxy-3,3,3 ▲&#39; ▼, 3 ▲ &#39;▼ -tetramethyl-1,1 ▲&#39; ▼ -spirobiindane and method for producing the same
JPH04178419A (en) Epoxy resin and its production
JP3436794B2 (en) Epoxy resin, epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 13