JPH0194828A - Simulated blood vessel for ultrasonic wave - Google Patents

Simulated blood vessel for ultrasonic wave

Info

Publication number
JPH0194828A
JPH0194828A JP62252730A JP25273087A JPH0194828A JP H0194828 A JPH0194828 A JP H0194828A JP 62252730 A JP62252730 A JP 62252730A JP 25273087 A JP25273087 A JP 25273087A JP H0194828 A JPH0194828 A JP H0194828A
Authority
JP
Japan
Prior art keywords
group
silicone resin
blood vessel
simulated blood
acoustic impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62252730A
Other languages
Japanese (ja)
Inventor
Shiro Takeda
武田 志郎
Fumihiro Namiki
並木 文博
Atsuo Iida
安津夫 飯田
Nobushiro Shimura
孚城 志村
Noboru Shimamoto
島本 登
Ryuichi Handa
隆一 半田
Yasuhisa Tanaka
靖久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Fujitsu Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Fujitsu Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP62252730A priority Critical patent/JPH0194828A/en
Publication of JPH0194828A publication Critical patent/JPH0194828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instructional Devices (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To enhance toughness and to make cutting processing possible, by using a predetermined silicone resin cured article wherein acoustic impedance and a sonic velocity attenuation rate are predetermined values. CONSTITUTION:A simulated blood vessel for an ultrasonic wave is formed of a silicone resin cured article containing a siloxane unit represented by general formula [I] wherein R<1> and R<2> are a group selected from a substituted or non- substituted monovalent hydrocarbon group and at least 80mol.% of P<1> is a methyl group and at least 50mol.% of R<2> is a phenyl group and X is an integer of 5-400) and obtained by curing organosiloxane whose phenyl group among total org. group. is 10-50mol.%. The acoustic impedance of this simulated blood vessel at 20-40 deg.C is 1.25-1.80X10<6>kg/m<2>/s and the sonic velocity attenuation rate thereof is 6.0 dB/mm/MHz or less.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超音波ドプラ血流計の較正などに用いる管壁
外部から血流速等を測定できる超音波用模擬血管に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a simulated blood vessel for ultrasound that can measure blood flow velocity etc. from the outside of the vessel wall and is used for calibrating an ultrasonic Doppler blood flow meter.

従来の技術及び 明が解決しようとする問題点従来、超
音波ドプラ血流計用模擬血管においては、ビニール管な
どに血液もしくは模擬血液を流し、管の一部に穴を開け
、穴に探触子を入れて、血流速、血流速プロファイル、
血流量などを測定していた。しかし超音波ドプラ血流計
で流速等を測定する場合は、探触子を血流に対し傾ける
必要があり、そのため隙間ができ、流れが乱れるなどの
正確な測定ができ難いという問題があった。また、その
隙間に超音波ゲルを詰めても、水溶性のため流出してし
まうので、短時間測定しかできなかった。
Conventional technology and the problem that Akira is trying to solve Conventionally, in the case of simulated blood vessels for ultrasonic Doppler blood flow meters, blood or simulated blood is poured into a vinyl tube, a hole is made in a part of the tube, and the hole is probed. Insert the child, check blood flow velocity, blood flow velocity profile,
Blood flow was measured. However, when measuring flow velocity etc. with an ultrasonic Doppler blood flow meter, it is necessary to tilt the probe relative to the blood flow, which creates a gap and causes turbulence in the flow, making accurate measurements difficult. . Furthermore, even if the gap was filled with ultrasonic gel, it would flow out due to its water solubility, so measurements could only be taken for a short period of time.

超音波用模擬血管を構成する材料は、次の特性を備えて
いる必要がある。
The material constituting the simulated blood vessel for ultrasound must have the following properties.

■探触子から送信された超音波が管壁を通り、血球もし
くは模擬血球で反射され、管壁を通って戻ってきた音波
を探触子が受信し、その時の音圧が、周波数の変化を解
析するに十分なものであること、すなわち、管壁の減衰
率はできるだけ小さいことが必要である。今、血流計の
周波数が2.5〜20MHzであり、管壁の厚さを0.
1M以上であるとすると、2.5MHzの場合は6.0
dB/mm/MHz以下の減衰率が、20MHz’の場
合は、0.75dB/mm/MHz以下の減衰率である
ことが必要である。
■Ultrasonic waves transmitted from the probe pass through the tube wall, are reflected by blood cells or simulated blood cells, and the probe receives the sound waves that return through the tube wall, and the sound pressure at that time changes in frequency. In other words, the attenuation factor of the pipe wall must be as small as possible. Now, the frequency of the blood flow meter is 2.5 to 20 MHz, and the thickness of the tube wall is 0.
Assuming it is 1M or more, 6.0 for 2.5MHz
When the attenuation rate of dB/mm/MHz or less is 20 MHz', it is necessary that the attenuation rate is 0.75 dB/mm/MHz or less.

■超音波が管壁を通り抜けるためには管内にある水系の
音響インピーダンスと管の音響インピーダンスが近い値
でなければならず、理想的には1.50X10’kg/
イSであるが、1.25〜1.80 Xl 0 ’ k
g / rd / sであれば使用することができ、好
ましくは、1.35〜1.65 X 10’ kg/r
d/sが良い。
■In order for ultrasonic waves to pass through the pipe wall, the acoustic impedance of the water system inside the pipe and the acoustic impedance of the pipe must be close to each other, ideally 1.50 x 10'kg/
It is S, but 1.25-1.80 Xl 0'k
g/rd/s, preferably 1.35 to 1.65 X 10' kg/r
Good d/s.

■また、音速に関しては、超音波ビームが細く、管径が
大きい時はそれ程問題にならないが、ビーム径が管径の
1/3以上になると、ビームが管内に入ってからの拡が
りが大きくなり、信号のサンプル容積が大きくなるので
、1200m/s以上、1800■八以下であることが
望ましい。
■Also, regarding the speed of sound, when the ultrasonic beam is thin and the tube diameter is large, it is not so much of a problem, but when the beam diameter becomes 1/3 or more of the tube diameter, the beam spreads out after entering the tube. Since the sample volume of the signal becomes large, it is desirable that the speed be 1200 m/s or more and 1800 m/s or less.

■さらに、■〜■の条件を満足する材料であっても、で
きるだけ管壁内における減衰を小さくするため、管壁の
厚さを薄くするので、機械的な強度が大きい必要がある
(2) Furthermore, even if the material satisfies the conditions (2) to (2), it is necessary to have high mechanical strength because the thickness of the tube wall is made thin in order to minimize the attenuation within the tube wall.

これらの条件を満足するものであれば、超音波用模擬血
管を作ることが可能となるが、一般のプラスチック類で
音響インピーダンスが上記範囲内のものは強度が小さい
か、あるいは減衰が大きい欠点があった。シリコーン樹
脂の場合にも、ポリジメチルシロキサンゴムの場合には
、減衰率は小さいけれど・も、20℃ないし40″Cの
温度で音響インピーダンスが約1.0X10’kg/ボ
/Sであり、多重反射が大きく、また柔らがすぎて、使
用することはできない。
If these conditions are satisfied, it is possible to create a simulated blood vessel for ultrasound, but general plastics with acoustic impedance within the above range have the disadvantage of low strength or high attenuation. there were. In the case of silicone resin and polydimethylsiloxane rubber, although the attenuation rate is small, the acoustic impedance is approximately 1.0 x 10'kg/V/S at a temperature of 20°C to 40'C, and multiple It is too reflective and too soft to be used.

問題を解決するための手段及び 用 本発明者らは、上記目的を達成する為鋭意検討を重ねた
結果特殊な組成のシリコーンレジンによって達成される
ことを見い出した。
Means and Use for Solving the Problems The inventors of the present invention have made extensive studies to achieve the above object and have found that it can be achieved by using a silicone resin with a special composition.

これを説明すると、このシリコーンは で示されるシロキサン単位(式中R1、RZは置換もし
くは非置換の一価の炭化水素基から選ばれる基でR1の
少なくとも 80モル%がメチル基、R2の少なくとも
50モル%がフェニル基で、Xは5〜400の整数)を
含有し全有機基のうちフェニル基が10〜50モル%で
あるオルガノシロキサンを硬化させたシリコーン樹脂硬
化物よりなる超音波用模擬血管は、20°Cないし40
°Cの温度で音響インピーダンスが1.25〜1.80
X10bkg/%/sであり、超音波の減衰率が6.0
 dB/mm/MHz以下の範囲にあり、音速も150
0m/s前後と水の音速に近いものであるだけでなく、
通常の共加水分解等で得られるシリコーン樹脂硬化物に
比べ、シリコーン樹脂硬化物特有の脆さが改良された極
めて靭性に冨む成形品として切削加工可能な機械的特性
に優れた材料となる。
To explain this, this silicone is a siloxane unit represented by (wherein R1 and RZ are groups selected from substituted or unsubstituted monovalent hydrocarbon groups, at least 80 mol% of R1 is a methyl group, and at least 50 mol% of R2 is a group selected from substituted or unsubstituted monovalent hydrocarbon groups. A simulated blood vessel for ultrasonic waves made of a cured silicone resin obtained by curing an organosiloxane in which phenyl groups account for 10 to 50 mol% of all organic groups (X is an integer of 5 to 400). is 20°C to 40°C
Acoustic impedance 1.25-1.80 at temperature of °C
X10bkg/%/s, and the ultrasonic attenuation rate is 6.0
It is in the range of dB/mm/MHz or less, and the sound speed is 150
Not only is it around 0 m/s, which is close to the sound speed of water, but
Compared to cured silicone resin products obtained by conventional co-hydrolysis, the brittleness characteristic of cured silicone resin products has been improved, resulting in a material with excellent mechanical properties that can be cut into molded products with extremely high toughness.

ここで、R1、R2は炭素数1〜1oの置換もしくは非
置換の一価の炭化水素基であってこれにはメチル基、エ
チル基、プロピル基などのアルキル基、ビニル基、アリ
ル基などのアルケニル基、シクロヘキシル基などのシク
ロアルキル基、フェニル基、トリル基などのアリール基
、トリフルオロプロピル基などのハロゲン置換−価炭化
水素などが例示される。
Here, R1 and R2 are substituted or unsubstituted monovalent hydrocarbon groups having 1 to 1 carbon atoms, and include alkyl groups such as methyl, ethyl, and propyl groups, vinyl groups, and allyl groups. Examples include cycloalkyl groups such as alkenyl groups and cyclohexyl groups, aryl groups such as phenyl groups and tolyl groups, and halogen-substituted-valent hydrocarbons such as trifluoropropyl groups.

ただしR1のうち少なくとも80モル%がメチル基RZ
のうち少なくともフェニル基を50モル%を必要とする
。この範囲をはずれる場合は充分な機械的強度を有する
ことができない。また全有機基中フェニル基量が10〜
50モル%が必須とされる理由は10モル%以下では音
速が1150m/s以下、密度が約1.1g/ctll
であることからその音♂インピーダンス(音速×密度)
は1.25X10’kg / rd / s以下となり
、又50モル%以上では音速が1500o+/sを越え
、密度が約1.2g/cfflであることから、その音
響インピーダンスが1.8X10’kg/rrf/s以
上となり、目標とする音響インピーダンス1.25〜1
.80X106kg/ボ/Sの範囲に入らない。
However, at least 80 mol% of R1 is a methyl group RZ
Of these, at least 50 mol% of phenyl groups is required. If it is outside this range, it will not have sufficient mechanical strength. In addition, the amount of phenyl groups in all organic groups is 10~
The reason why 50 mol% is essential is that when it is 10 mol% or less, the sound velocity is 1150 m/s or less and the density is about 1.1 g/ctll.
Therefore, the sound ♂ impedance (sound speed x density)
is less than 1.25X10'kg/rd/s, and at 50 mol% or more, the sound velocity exceeds 1500o+/s and the density is about 1.2g/cffl, so the acoustic impedance is 1.8X10'kg/rd/s. rrf/s or higher, and the target acoustic impedance is 1.25 to 1.
.. It does not fall within the range of 80X106kg/Bo/S.

Xを5〜400としている理由は機械的強度、特に脆さ
を改良する部分であり、この範囲にある硬化物は靭性に
冨み、切削加工も可能となる。
The reason why X is set to 5 to 400 is to improve mechanical strength, especially brittleness, and a cured product within this range has high toughness and can be cut.

このオルガノポリシロキサンの硬化方法としてオルガノ
ハイドロジエンシロキサンを使用する場合、このオルガ
ノポリシロキサンはアルケニル基が少なくとも0.1モ
ル%以上有することが必須であり、オルガノハイドロジ
エンシロキサンは、1分子中にけい素原子に結合した水
素原子を3個以上有するオルガノハイドロジエンポリシ
ロキサンは、その分子構造については特に制限がなく、
直鎖状(線状)、分枝鎖状、環状あるいは網状のいずれ
かであってもよく、また単一のシロキサン単位からなる
単独重合体あるいは2種以上のシロキサン単位からなる
ブロックないしランダム共重合体のいずれであっても差
し支えない。
When using an organohydrodiene siloxane as a curing method for this organopolysiloxane, it is essential that the organopolysiloxane has at least 0.1 mol% or more of alkenyl groups, and the organohydrodiene siloxane contains silicon in one molecule. Organohydrodiene polysiloxanes having three or more hydrogen atoms bonded to elementary atoms have no particular restrictions on their molecular structure;
It may be linear (linear), branched, cyclic or network-like, and may be a homopolymer consisting of a single siloxane unit or a block or random copolymer consisting of two or more types of siloxane units. There is no problem with either combination.

また、重合度についても制限はなく、けい素原子数が数
個から数十個の高重合度のものが包含されるが、合成の
容易さ等からは数個〜数百個程度のものが好適とされる
There is also no limit to the degree of polymerization, and it includes high degrees of polymerization with a few to several tens of silicon atoms, but from the viewpoint of ease of synthesis, it is preferable to have a few to several hundred silicon atoms. It is considered suitable.

さらに白金系化合物触媒としては、塩化白金酸、塩化白
金酸とオレフィン、アルコール、アルデヒド等とのコン
プレックスが例示され、これらはpt量でおおむね0.
1〜1100pp使用される。
Furthermore, examples of platinum-based compound catalysts include chloroplatinic acid and complexes of chloroplatinic acid and olefins, alcohols, aldehydes, etc., which have a pt amount of about 0.
1 to 1100 pp is used.

また、末端の反応基が水酸基またはアルコキシ基のよう
な縮合反応によって硬化するタイプの場合には、溶剤を
溶解したワニスタイプになり、成形時に溶剤を乾燥させ
る必要があり、薄い層を何度も形成しながら厚くしてゆ
くので面倒ではあるが、音響特性その他物性的には十分
目的を達することのできる材料となる。
In addition, if the reactive group at the end is a type that hardens through a condensation reaction, such as a hydroxyl group or an alkoxy group, it will be a varnish type with a solvent dissolved in it, and the solvent will need to be dried during molding, and thin layers will be applied over and over again. Although it is cumbersome because the thickness is increased as it is formed, it is a material that is sufficient to achieve the intended purpose in terms of acoustic properties and other physical properties.

好ましくは前記した、付加硬化型タイプである。Preferably, it is the addition curing type described above.

この理由は短時間で厚物成形が可能であり、目的とする
形状に直接成形することができるからである。
The reason for this is that thick materials can be molded in a short time and can be directly molded into the desired shape.

3遭Iわ1果 上記したシリコーン樹脂硬化物は、音響インピーダンス
が1.25〜1.80 x 10bkg/イ/Sであり
、超音波の減衰率が2.0dB/■m/MHz以下の範
囲にあり、音速も1500m/s前後と水の音速に近い
ものであるだけでなく、通常の共加水分解等で得られる
シリコーン樹脂硬化物に比べ、シリコーン樹脂硬化物特
有の脆さが改良された極めて靭性に富む成形品として切
削加工可能な機械的特性に優れた材料となる。
The cured silicone resin product described above has an acoustic impedance of 1.25 to 1.80 x 10bkg/I/S and an ultrasonic attenuation rate of 2.0dB/■m/MHz or less. The sound velocity is around 1,500 m/s, which is close to the sound speed of water, and the brittleness peculiar to cured silicone resin products has been improved compared to cured silicone resin products obtained by ordinary co-hydrolysis. It is a material with excellent mechanical properties that can be cut into molded products with extremely high toughness.

以下実施例を用いて詳細に述べるが、本発明の範囲は、
実施例によって限定されるものではない。
The scope of the present invention will be described in detail below using examples, but the scope of the present invention is as follows:
It is not limited by the examples.

〔実施例1] の共重合体であり、Xが約50、R’がメチル基、R2
がフェニル基で、全有機基のうち70%がメチル基、約
30%がフェニル基であり、末端メチルジェトキシ基を
有するシリコーン樹脂と縮合触媒をトルエンに溶解した
ワニスタイプのシリコーン樹脂溶液を用いた。
[Example 1] A copolymer of
is a phenyl group, 70% of all organic groups are methyl groups, and about 30% are phenyl groups. A varnish-type silicone resin solution is used in which a silicone resin having a terminal methyljetoxy group and a condensation catalyst are dissolved in toluene. there was.

そのシリコーン樹脂溶液を適当な容器に入れ、ゆっくり
と溶剤を揮発させ、150℃、2時間加熱硬化し、さら
に6回の同様の操作によって厚さ2CIIのシートを作
った。
The silicone resin solution was placed in a suitable container, the solvent was slowly evaporated, and the solution was cured by heating at 150° C. for 2 hours, and the same operation was repeated 6 times to produce a sheet with a thickness of 2 CII.

このシートの20°C135°Cでの音速、音響インピ
ーダンスおよび減衰率はそれぞれ、1288m/s、1
26(1m八、1.44X106kg/ rrr s、
 1.38X10bkg/ボ/Sおよび0.4dB/m
w M■2であり、硬さはシ、ヨア硬度Aで85あり、
切削などの機械加工をすることができるものであった。
The sound velocity, acoustic impedance, and attenuation rate of this sheet at 20°C and 135°C are 1288 m/s and 1, respectively.
26 (1m8, 1.44X106kg/rrrs,
1.38X10bkg/bo/s and 0.4dB/m
w M■2, the hardness is 85 on the hardness A,
It was capable of machining such as cutting.

このブロックから内径4閣、外形5IIII111長さ
10.0mmの管を作り、測定部の厚さのみ0.5mm
とし、内径4Mのビニールチューブで接続し、循環ポン
プで血液を流し、20MHzのドプラ血流系で流速を測
定した結果、十分に測定可能であった。
A tube with an inner diameter of 4 mm, an outer diameter of 5 III, and a length of 10.0 mm is made from this block, and only the thickness of the measurement part is 0.5 mm.
The blood flow rate was measured using a 20 MHz Doppler blood flow system using a 20 MHz Doppler blood flow system, which was connected with a vinyl tube having an inner diameter of 4 M, and the blood flow rate was measured using a 20 MHz Doppler blood flow system.

〔実施例2〕 実施例1で用いたシリコーン樹脂とほぼ同一構造であり
、ただし、反応基はエトキシ基ではなく、付加反応でき
るようにビニルジメチルシロキサン基を用いた。これに
、ポリメチルハイドロジヱンシロキサンと白金触媒を加
え、混合後、150℃、10分の加圧成形によって厚さ
2cmの板を作った。
[Example 2] It had almost the same structure as the silicone resin used in Example 1, except that the reactive group was not an ethoxy group, but a vinyl dimethylsiloxane group to enable addition reaction. Polymethylhydrodiene siloxane and a platinum catalyst were added thereto, and after mixing, a plate with a thickness of 2 cm was made by pressure molding at 150° C. for 10 minutes.

この板の音響特性、機械的物性は実施例1の板とほぼ同
じであり、この板を用いて製作した模擬血管の特性は実
施例1とほぼ同様であった。
The acoustic properties and mechanical properties of this plate were almost the same as those of the plate of Example 1, and the characteristics of the simulated blood vessel produced using this plate were almost the same as those of Example 1.

特許出願人  信越化学工業株式会社 他1名Patent applicant: Shin-Etsu Chemical Co., Ltd. 1 other person

Claims (1)

【特許請求の範囲】 1、 式▲数式、化学式、表等があります▼と式(R^2Si
O_1_._5〕(式中R^1、R^2は置換もしくは
非置換の一価の炭化水素基から選ばれる基でR^1の少
なくとも80モル%がメチル基、R^2の少なくとも5
0モル%がフェニル基、Xは5〜400の整数であり)
で示されるオルガノシロキサン単位を含有し、全有機基
のうちフェニル基が10〜50モル%であるオルガノシ
ロキサンを硬化させたシリコーン樹脂硬化物であり、2
0℃ないし40℃の温度で音響インピーダンスが1.2
5〜1.80×10^6kg/m^2sであり、音波の
減衰率が6.0dB/mm/MHz以下である超音波用
模擬血管。
[Claims] 1. The formula ▲ includes mathematical formulas, chemical formulas, tables, etc. ▼ and the formula (R^2Si
O_1_. _5] (In the formula, R^1 and R^2 are groups selected from substituted or unsubstituted monovalent hydrocarbon groups, at least 80 mol% of R^1 is a methyl group, and at least 5 of R^2
0 mol% is a phenyl group, X is an integer from 5 to 400)
It is a cured silicone resin product obtained by curing an organosiloxane containing an organosiloxane unit shown in
Acoustic impedance is 1.2 at temperatures between 0℃ and 40℃
5 to 1.80 x 10^6 kg/m^2s and a sonic wave attenuation rate of 6.0 dB/mm/MHz or less.
JP62252730A 1987-10-07 1987-10-07 Simulated blood vessel for ultrasonic wave Pending JPH0194828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62252730A JPH0194828A (en) 1987-10-07 1987-10-07 Simulated blood vessel for ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62252730A JPH0194828A (en) 1987-10-07 1987-10-07 Simulated blood vessel for ultrasonic wave

Publications (1)

Publication Number Publication Date
JPH0194828A true JPH0194828A (en) 1989-04-13

Family

ID=17241463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62252730A Pending JPH0194828A (en) 1987-10-07 1987-10-07 Simulated blood vessel for ultrasonic wave

Country Status (1)

Country Link
JP (1) JPH0194828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072517A1 (en) * 2006-12-15 2008-06-19 Dow Corning Toray Co., Ltd. Silicone elastomer composition for artificial skin
JP2016139069A (en) * 2015-01-29 2016-08-04 大日本印刷株式会社 Organ model and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072517A1 (en) * 2006-12-15 2008-06-19 Dow Corning Toray Co., Ltd. Silicone elastomer composition for artificial skin
JPWO2008072517A1 (en) * 2006-12-15 2010-03-25 東レ・ダウコーニング株式会社 Silicone elastomer composition for artificial skin
US8292956B2 (en) 2006-12-15 2012-10-23 Dow Corning Toray Company, Ltd. Silicone elastomer composition for artificial integument
JP5636162B2 (en) * 2006-12-15 2014-12-03 東レ・ダウコーニング株式会社 Silicone elastomer composition for artificial skin
JP2016139069A (en) * 2015-01-29 2016-08-04 大日本印刷株式会社 Organ model and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Hartmann et al. Immersion apparatus for ultrasonic measurements in polymers
Zhao et al. Silicone–epoxy‐based hybrid photopolymers for 3D printing
US4286455A (en) Ultrasound phantom
Oral et al. Measuring the Young’s modulus of polystyrene-based composites by tensile test and pulse-echo method
EA003428B1 (en) Polymer composition for pipes
JPS6151025A (en) Silicone resin composition
JPS6211897A (en) Composition for acoustic lens
JPH0194828A (en) Simulated blood vessel for ultrasonic wave
Van Hoorn A dynamic mechanical study of the effect of chemical variations on the internal mobility of linear epoxy resins (polyhydroxyethers)
Folds Experimental determination of ultrasonic wave velocities in plastics, elastomers, and syntactic foam as a function of temperature
Rajulu et al. Ultrasonic, refractometric, and viscosity studies of some polymer blends in solution
CN102714032B (en) Attenuating mass for an ultrasonic sensor, use of an epoxy resin
Satoh et al. Synthesis of hyperbranched carbohydrate polymers by ring‐opening multibranching polymerization of anhydro sugar
Sherman et al. Novel polyisobutylene/poly (dimethylsiloxane) bicomponent networks. I. Synthesis and characterization
Genovés et al. Micronized Recycle Rubber Particles Modified Multifunctional Polymer Composites: Application to Ultrasonic Materials Engineering
JP2003082071A (en) Cross-linked body and composition for cross-linking
JPH0194827A (en) Mechanical scanning type ultrasonic probe
JPH0679816A (en) Multiple layer polycarbonate resin foam and manufacture thereof
Wang et al. Synthesis and characterization of novel biodegradable poly (carbonate‐co‐phosphate) s
JPH0195157A (en) Silicone composition for acoustic medium
Liang et al. Acoustic characterization of ultrasonic transducer materials: I. Blends of rigid and flexible epoxy resins used in piezocomposites
Jung et al. Acoustic properties of nitrile butadiene rubber for underwater applications
Montgomery et al. On the development of acoustically transparent structural plastics
Tsumura et al. Silicon‐based materials prepared by IPN formation and their properties
Maia et al. Pulse-echo ultrasonic measurements of compressibility coefficient of thick epoxy resin during the curing process