JPH0194827A - Mechanical scanning type ultrasonic probe - Google Patents

Mechanical scanning type ultrasonic probe

Info

Publication number
JPH0194827A
JPH0194827A JP62252731A JP25273187A JPH0194827A JP H0194827 A JPH0194827 A JP H0194827A JP 62252731 A JP62252731 A JP 62252731A JP 25273187 A JP25273187 A JP 25273187A JP H0194827 A JPH0194827 A JP H0194827A
Authority
JP
Japan
Prior art keywords
groups
group
mol
organosiloxane
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62252731A
Other languages
Japanese (ja)
Inventor
Shiro Takeda
武田 志郎
Fumihiro Namiki
並木 文博
Atsuo Iida
安津夫 飯田
Nobushiro Shimura
孚城 志村
Noboru Shimamoto
島本 登
Ryuichi Handa
隆一 半田
Yasuhisa Tanaka
靖久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Fujitsu Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Fujitsu Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP62252731A priority Critical patent/JPH0194827A/en
Publication of JPH0194827A publication Critical patent/JPH0194827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To make acoustic impedance near to that of the skin of a human body and to improve time resolving power, by using organosiloxane containing a predetermined organosiloxane unit in a window part. CONSTITUTION:The window part of a mechanical scanning type ultrasonic probe is formed of a cured substance of organosiloxane containing an organosiloxane unit represented by general formula [I] wherein R<1> and R<2> are a group selected from a substituted or non-substituted monovalent hydrocarbon group and at least 80mol.% of R<1> is a methyl group and at least 50mol.% of R<2> is a phenyl group and X is an integer of 5-400 and the phenyl group among the total org. groups is 10-50mol.%.

Description

【発明の詳細な説明】 皇栗よ(2)五尻分豆 本発明は、超音波診断装置用探触子に係わり、特に音響
イジピーダンスが人体の皮膚の音響インピーダンスと近
く、かつ減衰率の小さい材料を窓部に用いることによっ
て、従来得られてル1なかった時間分解能のよいメカニ
カル・スキャン型超音波探触子・に関する。
[Detailed Description of the Invention] The present invention relates to a probe for ultrasonic diagnostic equipment, and in particular a probe having an acoustic impedance close to that of human skin and a low attenuation rate. The present invention relates to a mechanical scan type ultrasonic probe that uses a small material for the window and has good time resolution, which has not been previously achieved.

従来の 術 び 日が解゛ しようとする問題点メカニ
カル・スキャン型超音波探触子においては、その窓部は
ポリウレタンなどで作られていたが、音響インピーダン
スが人体の皮膚の音響インピーダンスと異なっていたた
め、探触子と皮膚の間で多重反射が起き、パルス幅を増
加させ、時間分解能を悪くするという問題があった。ま
た、減衰が大きく信号が小さくなるという欠点があった
Problems that will soon be solved with conventional techniques In mechanical scan type ultrasound probes, the window portion is made of polyurethane, etc., but the acoustic impedance is different from that of the human skin. Therefore, there was a problem in that multiple reflections occurred between the probe and the skin, increasing the pulse width and worsening the temporal resolution. Another drawback is that the attenuation is large and the signal becomes small.

メカニカル・スキャン型超音波探触子の窓部を構成する
材料は次の特性を備えている必要がある。
The material constituting the window of a mechanical scanning ultrasonic probe must have the following properties:

探触子から送信された超音波が窓部を通り、人体内部で
反射され、窓部を通って戻ってきた音波を探触子が受信
、そのときの音圧が、人体内部の反射率など音響特性の
微細な差を示すに十分なものであること。すなわち、窓
部の音響インピーダンスが人体の皮膚の音響インピーダ
ンスと近い値であることと、減衰率ができるだけ小さい
こと、および、メカニカル・スキャン型超音波探触子に
特有の球面を含む複雑な形状に作れることと、人体に押
し当てたとき変形や破損をしないことが必要である。
The ultrasonic waves transmitted from the probe pass through the window, are reflected inside the human body, and the probe receives the sound waves that return through the window.The sound pressure at that time is measured by the reflectance inside the human body, etc. Must be sufficient to indicate minute differences in acoustic characteristics. In other words, the acoustic impedance of the window should be close to the acoustic impedance of the human skin, the attenuation rate should be as small as possible, and the complex shape including the spherical surface unique to mechanical scanning ultrasound probes should be It needs to be able to be manufactured easily and not deform or break when pressed against the human body.

超音波が窓部を通り抜けるためには窓部の音響インピー
ダンスが、理想的には人体の音響インピーダンスと等し
い1.58±0.04 x 10’ kg/rriSで
あるが、!、25〜1.80 x 10’ kg/rt
f/sの範囲であればよい。
In order for ultrasonic waves to pass through the window, the acoustic impedance of the window should ideally be 1.58±0.04 x 10' kg/rriS, which is equal to the acoustic impedance of the human body! , 25~1.80 x 10' kg/rt
Any range of f/s is sufficient.

また、減衰率は0.80dB/翔m/MHz以下である
ことが必要である。
Further, the attenuation rate needs to be 0.80 dB/m/MHz or less.

音速に関しては、人体の皮膚の音速から極端に外れるこ
とは問題になるが、1300〜1700m/sの範囲に
あれば、球面であるためのレンズ効果は小さい。
Regarding the sound speed, it is a problem if it deviates from the sound speed of human skin, but if it is in the range of 1300 to 1700 m/s, the lens effect due to the spherical surface is small.

さらに、管壁内における減衰をできるだけ小さくするた
め、窓部の厚さを薄くするので、機械的な強度が大きい
必要がある。
Furthermore, in order to minimize the attenuation within the tube wall, the thickness of the window portion is made thin, so it is necessary to have high mechanical strength.

これらの条件を満足する材料であれば、メカニカル・ス
キャン型探触子を作ることが可能となるが、一般のプラ
スチック類で音響インピーダンスが上記範囲内ものもは
強度が小さいか、あるいは減衰が大きい欠点があった。
Mechanical scan type probes can be made with materials that satisfy these conditions, but general plastics with acoustic impedance within the above range have low strength or high attenuation. There were drawbacks.

シリコーン樹脂の場合にもポリジメチルシロキサンゴム
の場合には、減衰率が小さいけれども、20°Cないし
40°Cの温度で音響インピーダンスが約1.0X10
6.kg/rd/sであり、多重反射が大きく、また柔
らかすぎて、使用することはできない。
In the case of silicone resin and polydimethylsiloxane rubber, although the attenuation rate is small, the acoustic impedance is approximately 1.0×10 at a temperature of 20°C to 40°C.
6. kg/rd/s, has large multiple reflections, and is too soft to be used.

間 を”するための 段 び乍用 本発明者らは、上記目的を達成する為鋭意検討を重ねた
結果、特殊な組成のシリコーンレジンによって達成され
ることを見い出した。
As a result of intensive studies to achieve the above object, the inventors of the present invention have discovered that the above object can be achieved by using a silicone resin with a special composition.

これを説明するとこのシリコーンは (式中R’ 、R”は置換もしくは非置換の一価の炭化
水素基から選ばれる基でR1の少なくとも80モル%が
メチル基、Rzの少なくとも50モル%がフエらル基で
、Xは5〜400の整数)で示されるオルガノシロキサ
ン単位を含有し全有機基のうちフェニル基が10〜50
モル%であるオルガノシロキサンの硬化物である。
To explain this, this silicone (in the formula, R' and R'' are groups selected from substituted or unsubstituted monovalent hydrocarbon groups, at least 80 mol% of R1 is a methyl group, and at least 50 mol% of Rz is a phenylene group). ral group, X is an integer of 5 to 400), and contains 10 to 50 phenyl groups among all organic groups.
It is a cured product of organosiloxane in mol%.

ここで、RI、R1は炭素数1〜lOの置換もしくは非
置換の一価の炭化水素基であってこれにはメチル基、エ
チル基、プロピル基などのアルキル基、ビニル基、アリ
ル基などのアルケニル基、シクロヘキシル基などのシク
ロアルキル基、フェニル基、トリル基などのアリール基
、トリフルオロプロピル基などのハロゲン置換−価炭化
水素などが例示される。
Here, RI and R1 are substituted or unsubstituted monovalent hydrocarbon groups having 1 to 10 carbon atoms, and include alkyl groups such as methyl, ethyl, and propyl groups, vinyl groups, and allyl groups. Examples include cycloalkyl groups such as alkenyl groups and cyclohexyl groups, aryl groups such as phenyl groups and tolyl groups, and halogen-substituted-valent hydrocarbons such as trifluoropropyl groups.

ただしR1のうち少なくとも80モル%がメチル基R2
のうち少なくともフェニル基を50モル%を必要とする
。この範囲をはずれる場合は充分な機械的強度を有する
ことができない。また全有機基中フェニル基量が10〜
50モル%が必須とされる理由は10モル%以下では音
速が1150o+/s以下、密度が約1.1 g /C
l11であることからその音響インピーダンス(音速×
密度)は1.25X10bkg/rrr/s以下となり
、又50モル%以上では音速が1500a+/sを越え
、密度が約1.2g/c4であることから、その音響イ
ンピーダンスが1.8X106kg/rrr/s以上と
なり、目標とする音響インピーダンス1.25〜1.8
0XllO’ kg/nf/sの範囲に入らない。
However, at least 80 mol% of R1 is a methyl group R2
Of these, at least 50 mol% of phenyl groups is required. If it is outside this range, it will not have sufficient mechanical strength. In addition, the amount of phenyl groups in all organic groups is 10~
The reason why 50 mol% is essential is that when it is 10 mol% or less, the sound velocity is 1150 o+/s or less and the density is about 1.1 g/C.
Since it is l11, its acoustic impedance (sound speed ×
Density) is 1.25X10bkg/rrr/s or less, and at 50 mol% or more, the sound velocity exceeds 1500a+/s and the density is approximately 1.2g/c4, so the acoustic impedance is 1.8X106kg/rrr/ s or more, and the target acoustic impedance is 1.25 to 1.8.
Not within the range of 0XllO' kg/nf/s.

Xを5〜400としている理由は機械的強度、特に脆さ
を改良する部分であり、この範囲にある硬化物は靭性に
冨み、切削加工も可能となる。
The reason why X is set to 5 to 400 is to improve mechanical strength, especially brittleness, and a cured product within this range has high toughness and can be cut.

このオルガノポリシロキサンの硬化方法としてオルガノ
ハイドロジエンシロキサンを使用する場合、このオルガ
ノポリシロキサンはアルケニル基が少なくとも0.1モ
ル%以上有することが必須であり、オルガノハイドロジ
エンシロキサンは、1分子中にけい素原子に結合した水
素原子を3個以上有するオルガノハイドロジエンポリシ
ロキサンは、その分子構造については特に制限がなく、
直鎖状(線状)、分枝鎖状、環状あるいは網状のいずれ
かであってもよく、また単一のシロキサン単位からなる
単独重合体あるいは2種以上のシロキサン単位からなる
ブロックないしランダム共重合体のいずれであっても差
し支えない。
When using an organohydrodiene siloxane as a curing method for this organopolysiloxane, it is essential that the organopolysiloxane has at least 0.1 mol% or more of alkenyl groups, and the organohydrodiene siloxane contains silicon in one molecule. Organohydrodiene polysiloxanes having three or more hydrogen atoms bonded to elementary atoms have no particular restrictions on their molecular structure;
It may be linear (linear), branched, cyclic or network-like, and may be a homopolymer consisting of a single siloxane unit or a block or random copolymer consisting of two or more types of siloxane units. There is no problem with either combination.

また、重合度についても制限はなく、けい素原子数が数
個から数十個の高重合度のものが包含されるが、合成の
容易さ等からは数個〜数百個程度のものが好適とされる
There is also no limit to the degree of polymerization, and it includes high degrees of polymerization with a few to several tens of silicon atoms, but from the viewpoint of ease of synthesis, it is preferable to have a few to several hundred silicon atoms. It is considered suitable.

さらに白金系化合物触媒としては、塩化白金酸、塩化白
金酸とオレフィン、アルコール、アルデヒド等とのコン
プレックスが例示され、これらはpt量でおおむね0.
1〜100 ppm使用される。
Furthermore, examples of platinum-based compound catalysts include chloroplatinic acid and complexes of chloroplatinic acid and olefins, alcohols, aldehydes, etc., which have a pt amount of about 0.
1-100 ppm is used.

また、末端の反応基が水酸基またはアルコキシ基のよう
な縮合反応によって硬化するタイプの場合には、溶剤を
溶解したワニスタイプになり、成形時に溶剤を乾燥させ
る必要があり、薄い層を何度も形成しながら厚くしてゆ
くので面倒ではあるが、音響特性その他物性的には十分
目的を達することのできる材料となる。
In addition, if the reactive group at the end is a type that hardens through a condensation reaction, such as a hydroxyl group or an alkoxy group, it will be a varnish type with a solvent dissolved in it, and the solvent will need to be dried during molding, and thin layers will be applied over and over again. Although it is cumbersome because the thickness is increased as it is formed, it is a material that is sufficient to achieve the intended purpose in terms of acoustic properties and other physical properties.

好ましくは前記した、付加硬化型タイプである。Preferably, it is the addition curing type described above.

この理由は短時間で厚物成形が可能であり、目的とする
形状に直接成形することができるからである。
The reason for this is that thick materials can be molded in a short time and can be directly molded into the desired shape.

三y坏と丸果 上記したシリコーン樹脂硬化物は、音響インピーダンス
が1.25〜1.80X 10hkg/rd/sであり
、超音波の減衰率が2.0dB/a+m/MHz以下の
範囲にあり、音速も1500m八前後と水の音速に近い
ものであるだけでなく、通常の共加水分解等で得られる
シリコーン樹脂硬化物に比べ、シリコーン樹脂硬化物特
有の脆さが改良された極めて靭性に冨む成形品として切
削加工可能な機械的特性に優れた材料となる。
The cured silicone resin material described above has an acoustic impedance of 1.25 to 1.80X 10 hkg/rd/s, and an ultrasonic attenuation rate of 2.0 dB/a+m/MHz or less, Not only is the sound velocity around 1,500 m8, which is close to the sound speed of water, but it is also extremely tough, with the brittleness characteristic of cured silicone resins being improved compared to cured silicone resins obtained through normal co-hydrolysis, etc. This material has excellent mechanical properties and can be machined into molded products.

以下実施例を用いて詳細に述べるが、本発明の範囲は、
実施例によって限定されるものではない。
The scope of the present invention will be described in detail below using examples, but the scope of the present invention is as follows:
It is not limited by the examples.

〔実施例1〕 の共重合体であり、Xが約50、R1がメチル基、R2
がフェニル基で、全有機基のうち70%がメチル基、約
30%がフェニル基であり、末端にメチルジェトキシ基
を有するシリコーン樹脂と縮合触媒をトルエンに溶解し
たワニスタイプのシリコーン樹脂溶液を用いた。
[Example 1] It is a copolymer of
is a phenyl group, 70% of all organic groups are methyl groups, and about 30% are phenyl groups. A varnish-type silicone resin solution is prepared by dissolving a silicone resin with a methyljetoxy group at the end and a condensation catalyst in toluene. Using.

そのシリコーン樹脂溶液を適当な容器に入れ、ゆっくり
と溶剤を揮発させ、150°C12時間加熱硬化し、さ
らに20回の同様の操作によって厚さ10aaのブロッ
クを作った。
The silicone resin solution was placed in a suitable container, the solvent was slowly evaporated, and the solution was cured by heating at 150° C. for 12 hours, and the same operation was repeated 20 times to form a block with a thickness of 10 aa.

このブロックの音速、音響インピーダンスおよび減衰率
はそれぞれ、1315m八、1.51xlO’ kg/
m / sおよび0.4dB/mn+ MHzであった
。硬さはショア硬度Aで85あり、切削などの機械加工
をすることができるものであった。
The sound velocity, acoustic impedance and attenuation factor of this block are 1315m8, 1.51xlO' kg/
m/s and 0.4 dB/mn+MHz. The hardness was 85 on the Shore hardness A, and it could be machined such as cutting.

このブロックをくり抜いて窓部を作り、メカニカル・ス
キャン型探触子を完成させた。この探触子はポリウレタ
ンを用いて窓部とした場合に比べ、時間分解能がよく、
鮮明な画像が得られた。
This block was hollowed out to create a window and a mechanical scan type probe was completed. This probe has better temporal resolution than a window made of polyurethane.
A clear image was obtained.

〔実施例2〕 実施例1で用いたシリコーン樹脂とほぼ同一構造であり
、ただし、反応基はエトキシ基ではなく、付加反応でき
るようにビニルジメチルシロキサン基を用いた。これに
、ポリメチルハイドロジエンシロキサンと白金触媒を加
え、混合後、150°c110分の加圧成形によって直
径15cmのブロックを得た。
[Example 2] It had almost the same structure as the silicone resin used in Example 1, except that the reactive group was not an ethoxy group, but a vinyl dimethylsiloxane group to enable addition reaction. Polymethylhydrodienesiloxane and a platinum catalyst were added thereto, and after mixing, a block with a diameter of 15 cm was obtained by pressure molding at 150°C for 110 minutes.

このブロックの音響特性および機械的物性は実施例1で
得たブロックとほぼ同じであり、このブロックをくり抜
いて窓部としたメカニカル・スキャン型探触子の特性も
実施例1とほぼ同様であった。
The acoustic properties and mechanical properties of this block are almost the same as those of the block obtained in Example 1, and the characteristics of the mechanical scan type probe with a window section cut out of this block are also almost the same as in Example 1. Ta.

特許出願人  信越化学工業株式会社 他1名Patent applicant: Shin-Etsu Chemical Co., Ltd. 1 other person

Claims (1)

【特許請求の範囲】  式▲数式、化学式、表等があります▼と式〔R^2S
iO_1_._5〕(式中R^1、R^2は置換もしく
は非置換の一価の炭化水素基から選ばれる基でR^1の
少なくとも80モル%がメチル基、R^2の少なくとも
50モル%がフェニル基で、Xは5〜400の整数)で
示されるオルガノシロキサン単位を含有し、全有機基の
うちフェニル基が10〜50モル%であるオルガノシロ
キサンの硬化物を窓部に用いたメカニカルスキャン型超
音波探触子。
[Claims] Formula ▲ includes mathematical formulas, chemical formulas, tables, etc. ▼ and formula [R^2S
iO_1_. _5] (In the formula, R^1 and R^2 are groups selected from substituted or unsubstituted monovalent hydrocarbon groups, at least 80 mol% of R^1 is a methyl group, and at least 50 mol% of R^2 is a group selected from substituted or unsubstituted monovalent hydrocarbon groups. Mechanical scan using a cured product of organosiloxane containing an organosiloxane unit represented by a phenyl group (where X is an integer of 5 to 400) and in which phenyl groups account for 10 to 50 mol% of all organic groups as a window part. type ultrasound probe.
JP62252731A 1987-10-07 1987-10-07 Mechanical scanning type ultrasonic probe Pending JPH0194827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62252731A JPH0194827A (en) 1987-10-07 1987-10-07 Mechanical scanning type ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62252731A JPH0194827A (en) 1987-10-07 1987-10-07 Mechanical scanning type ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0194827A true JPH0194827A (en) 1989-04-13

Family

ID=17241478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62252731A Pending JPH0194827A (en) 1987-10-07 1987-10-07 Mechanical scanning type ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0194827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146308A1 (en) * 2014-03-27 2015-10-01 富士フイルム株式会社 Composition for ultrasonic probes, and silicone resin for ultrasonic probes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146308A1 (en) * 2014-03-27 2015-10-01 富士フイルム株式会社 Composition for ultrasonic probes, and silicone resin for ultrasonic probes

Similar Documents

Publication Publication Date Title
US6534587B1 (en) Silalkylenesiloxane copolymer materials and methods for their preparation
CN101081169A (en) Array-type ultrasonic probe and ultrasonic diagnostic apparatus
US20110281048A1 (en) Resin composition for disposal resin molded product, and disposal resin molded product
EP3374095B1 (en) An acoustic window layer for an ultrasound array
Baghban et al. Acoustic damping flexible polyurethane foams: Effect of isocyanate index and water content on the soundproofing
JPH059039B2 (en)
JPH036230A (en) Polyactone-modified organopolysiloxane compound
JP3105151B2 (en) Composition for acoustic lens
JPH0194827A (en) Mechanical scanning type ultrasonic probe
Kennan et al. Effect of saline exposure on the surface and bulk properties of medical grade silicone elastomers
US3377309A (en) Primer compositions and a method of making them
JPS60217262A (en) Liquid curable polyorganosiloxane composition
JPS6289765A (en) Silicone rubber composition for use in acoustic medium
JPH0194828A (en) Simulated blood vessel for ultrasonic wave
Ramotowski et al. NUWC XP-1 polyurethane-urea: a new," acoustically transparent" encapsulant for underwater transducers and hydrophones
JP7351929B2 (en) Composition for acoustic lenses, acoustic lenses, acoustic wave probes, ultrasound probes, acoustic wave measurement devices, ultrasound diagnostic devices, photoacoustic wave measurement devices, ultrasound endoscopes, and methods for producing acoustic wave probes
JPH0195157A (en) Silicone composition for acoustic medium
JPH02272021A (en) Coating or molding composition containing lactone-silicone block copolymer and production of the same copolymer
Burke et al. Acoustic and mechanical properties of polyurethanes based on polybutadiene soft segment
JPH0275644A (en) Curable resin composition
JP3442091B2 (en) Reactive organopolysiloxane-polylactone copolymer
US20240117124A1 (en) Modified silicone rubber and preparation methods thereof
Liang et al. Acoustic characterization of ultrasonic transducer materials: II. The effect of curing agent in binary epoxy blends on acoustic properties
WO2023090217A1 (en) Composition for acoustic lens, acoustic lens, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasound diagnostic device, photoacoustic wave measuring device, ultrasonic endoscope, and method for producing acoustic wave probe
Tsai et al. Improved adhesion of silicone rubber to polyurethane by induced surface reconstruction