JPH0193331A - Tubular fiber reinforced plastic structural material - Google Patents

Tubular fiber reinforced plastic structural material

Info

Publication number
JPH0193331A
JPH0193331A JP62249117A JP24911787A JPH0193331A JP H0193331 A JPH0193331 A JP H0193331A JP 62249117 A JP62249117 A JP 62249117A JP 24911787 A JP24911787 A JP 24911787A JP H0193331 A JPH0193331 A JP H0193331A
Authority
JP
Japan
Prior art keywords
pipe
reinforced plastic
structural material
plastic structural
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62249117A
Other languages
Japanese (ja)
Other versions
JPH0356901B2 (en
Inventor
Shinichiro Uotani
魚谷 真一郎
Akihiro Sugiyama
杉山 昭博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP62249117A priority Critical patent/JPH0193331A/en
Publication of JPH0193331A publication Critical patent/JPH0193331A/en
Publication of JPH0356901B2 publication Critical patent/JPH0356901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a tubular fiber reinforced plastic structural material high in a strength at a connecting part between a pipe and a metal end and light in weight by a method wherein a step is not generated on a laminated layer by an end reinforcing part while the end reinforcing part, whose length is shorter than the inserting length of the metal end member, is positioned at the side of the end of the pipe. CONSTITUTION:The main body 3 of a tubular fiber reinforced plastic structural material is reinforced by highly elastic fibers such as carbon fibers, glass fibers, aromatic polyamide fibers. Fibrous reinforcing material is orientated in an end reinforcing part 4 with the angle of + or -80-90 deg. with respect to the axis of the pipe, further, the length 5 of the end reinforcing part is shorter than the inserting length 6 of the metal end and is arranged at a position of the pipe, which is shallower than the inserting end of the metal end 2. According to this arrangement the layer having the orientation of fibers of + or -80-90 deg. and not contributing substantially to the axial strain of the pipe normally, will not impair the mechanical characteristics in the axial direction of the pipe, since the length of the layer is shorter than the inserting length 6 of the metal end in the pipe end and is arranged at the side of the end of the pipe without generating any step on the layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軽量で高強度のパイプ状am強化プラスチック
構造材に関するものである。 更に詳しくは、金属エン
ド部材を挿入して使用されるパイプ状繊維強化プラスチ
ック構造材の金属エンドにより集中する局部負荷を軽減
したパイプ状繊維強化プラスチック構造材に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a lightweight, high-strength pipe-shaped am-reinforced plastic structural material. More specifically, the present invention relates to a pipe-shaped fiber-reinforced plastic structural material that reduces the local load concentrated at the metal end of the pipe-shaped fiber-reinforced plastic structural material that is used by inserting a metal end member.

[従来法及び問題点〕 従来、繊維強化プラスチック製パイプ材に金属エンドを
取り付ける場合、接着剤により固定する方法や、冷やし
はめにより固定する方法が採られている。
[Conventional Methods and Problems] Conventionally, when attaching a metal end to a fiber-reinforced plastic pipe material, a method of fixing with adhesive or a method of fixing by cold fitting has been adopted.

このような方法に於て、金属エンド固定部に比較ヒ1維
強化プラスチックパイプ本体部は弾性率が低いために、
金属エンドより伝わる荷重が繊維強化プラスチックパイ
プの端部では局所荷重となり、パイプ内径を押し拡げ破
損することがある。また、冷やしはめによる固定方法を
採った場合、固定後の金属エンドの膨鷹により#a繊維
強化プラスチック製パイプ内圧がかかりパイプ端部が破
損する場合がある。
In this method, compared to the metal end fixing part, the fiber-reinforced plastic pipe main body has a lower elastic modulus, so
The load transmitted from the metal end becomes a local load at the end of a fiber-reinforced plastic pipe, which may push the inner diameter of the pipe and cause it to break. Furthermore, when a fixing method using cold fitting is adopted, the internal pressure of the #a fiber-reinforced plastic pipe may be applied due to the expansion of the metal end after fixing, and the pipe end may be damaged.

このようなパイプ端部の破損を防止するために、パイプ
端部を補強することが行われている。
In order to prevent such damage to the pipe end, the pipe end is reinforced.

例えば、■強化材繊維を±80〜90度に配向した層を
パイプの最内層全面に設ける(第1図)、■パイプの端
部に補強層を設ける(第2図)等の方法により繊維強化
プラスチック製パイプの端部の強度を向上させることは
よく知られている。
For example, ■ providing a layer of reinforcement fibers oriented at ±80 to 90 degrees over the entire innermost layer of the pipe (Figure 1), ■ providing a reinforcing layer at the end of the pipe (Figure 2), etc. It is well known to improve the strength of reinforced plastic pipe ends.

上記■の方法は強化l!雌の配向角度を±80〜90度
とした層を配したことによりパイプ端部内径の押し拡げ
を防止し強度の向上の効果は得られるが、パイプ中央部
の±80〜90度暦は不必要でありこの暦のために軽量
化の効果は一部損なわれる。上記■の方法はパイプ端部
が肉厚となるため、外径が変り補強部において段差が生
じるという問題とともに、段差部においてパイプの破壊
が生じやすいとう問題がある。
The method of ■ above is reinforcement! By arranging a layer with a female orientation angle of ±80 to 90 degrees, it is possible to prevent the inner diameter of the end of the pipe from expanding and improve its strength. This is necessary, and some of the weight reduction effect is lost due to this calendar. In method (2) above, since the end of the pipe is thick, there is a problem that the outer diameter changes and a step is created in the reinforcing portion, and the pipe is likely to break at the step.

本発明はこのような問題を解決するものである。The present invention solves these problems.

[発明の構成] 本発明は下記の構成からなる。[Structure of the invention] The present invention consists of the following configuration.

(イ)金属エンド部材を挿入して使用されるパイプ状#
aM1強化プラスチック構造材において、パイプ軸に対
し±80〜90度方向に強化材繊維が配向し且つエンド
部材の挿入長さより短い長さの端部補強部を、該エンド
部材の挿入端よりパイプ端側に有し、しかも補強部によ
って内径又は外径に段差を持たないパイプ状繊維強化プ
ラスチック構造材。
(a) Pipe-shaped # used by inserting metal end members
In the aM1 reinforced plastic structural material, an end reinforcement part in which reinforcing material fibers are oriented in a direction of ±80 to 90 degrees with respect to the pipe axis and whose length is shorter than the insertion length of the end member is inserted from the insertion end of the end member to the pipe end. A pipe-shaped fiber-reinforced plastic structural material that has no steps on the inner or outer diameter due to the reinforcing part.

(ロ)パイプ状繊維強化プラスチック構造材の強化材m
雄が炭素繊維である前記(イ)記載のパイプ状m維強化
プラスチック構造材。
(b) Reinforcement material for pipe-shaped fiber-reinforced plastic structural materials m
The pipe-shaped m-fiber-reinforced plastic structural material according to (a) above, wherein the male fiber is carbon fiber.

(ハ)端部補強部の繊維強化材が伸度2%以上のIa雌
である前記(イ)記載のパイプ状ma強化プラスチック
構造材。
(c) The pipe-shaped ma-reinforced plastic structural material according to (a) above, wherein the fiber reinforced material of the end reinforcement portion is Ia female having an elongation of 2% or more.

(ニ)マトリックス樹脂がエポキシ樹脂、不飽和ポリエ
ステル樹脂、ビニルエステル樹脂、フェノール樹脂、お
よびポリイミド樹脂である前記(イ)記載のパイプ状繊
維強化プラスチック構造材。
(d) The pipe-shaped fiber-reinforced plastic structural material according to (a) above, wherein the matrix resin is an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, or a polyimide resin.

本発明のパイプ状席維強化プラスチック構造材は、パイ
プと金属エンドとの接合部における強度が高く、補強部
に於て外径に段差がなく軽量なパイプ状m雄強化プラス
チック構造材である。
The pipe-shaped fiber-reinforced plastic structural material of the present invention is a lightweight pipe-shaped male-reinforced plastic structural material that has high strength at the joint between the pipe and the metal end, and has no step in the outer diameter at the reinforced part.

本発明を図面によって税引する。The invention is illustrated by the drawings.

第3図は、本発明パイプ状am強化プラスチック構造材
端部の軸方向断面図を示したものである。
FIG. 3 shows an axial cross-sectional view of the end of the tubular AM reinforced plastic structure of the present invention.

第4図は1本発明パイプ状繊維強化プラスチック構造材
に金属エンドを挿入した状態の端部軸方向断面図を示し
たものである。
FIG. 4 shows an axial cross-sectional view of the end portion of the pipe-shaped fiber-reinforced plastic structural material of the present invention with a metal end inserted therein.

第3図、第4図番コおいて、3はパイプ状繊維強化プラ
スチック構造材本体部、4は端部補強部、2は金属エン
ド部材を示す。
In FIGS. 3 and 4, numeral 3 indicates a main body of the pipe-shaped fiber-reinforced plastic structural material, 4 indicates an end reinforcement portion, and 2 indicates a metal end member.

パイプ状繊維強化プラスチック構造材本体部3は、炭素
Iam、硝子#aM1、芳香族ポリアミド繊維のような
品弾性繊維を強化材とした繊維強化プラスチックである
The pipe-shaped fiber-reinforced plastic structural material main body 3 is a fiber-reinforced plastic reinforced with elastic fibers such as carbon Iam, glass #aM1, and aromatic polyamide fiber.

特に炭素#a雄を強化材としたものは軽量化、高弾性の
点に慣れている。
In particular, those using carbon #a male as a reinforcing material are known for their light weight and high elasticity.

このパイプ状繊維強化プラスチック構造材本体部は、直
管、曲管、テーパー管のいずれでもよく、用途に応じ曲
げ剛性1曲げ強度、ねじり剛性、ねじり強度等を満足す
るよう設計される。
This pipe-shaped fiber-reinforced plastic structural material main body may be a straight pipe, a curved pipe, or a tapered pipe, and is designed to satisfy bending rigidity, bending strength, torsional rigidity, torsional strength, etc. depending on the purpose.

端部補強部4は、線錐強化材がパイプ軸に対し±80〜
90度の配向し、しかも端部補強部の長さは、挿入され
る金属エンドの挿入長さより知く、金属エンドの挿入端
よりパイプの浅い位置に配されている。
In the end reinforcement part 4, the wire reinforcement material has a width of ±80~ with respect to the pipe axis.
It is oriented at 90 degrees, and the length of the end reinforcing portion is greater than the insertion length of the metal end to be inserted, and is placed at a shallower position in the pipe than the insertion end of the metal end.

このように配設することにより1通常はパイプの軸方向
の歪に対しては殆んど寄与しない±80〜90度配向層
が、パイプ端部の金属エンドの挿入長さより短くしかも
パイプ端側に、段差を有することなく配されているため
、パイプの軸方向の機械的特性を損なうことがない。
By arranging it in this way, 1) the ±80 to 90 degree orientation layer, which normally contributes little to the strain in the axial direction of the pipe, is shorter than the insertion length of the metal end at the end of the pipe, and Since the pipes are arranged without any step, the mechanical properties of the pipe in the axial direction are not impaired.

この端部補強部4の強化繊維は、炭素#am、ガラス繊
維、アラミド繊維、ボロンtaxs等が適切である。特
に強化#a雄の引張伸度が2%以上あるものは、パイプ
本体の軸方向衝撃荷重に対し効果がある。補強識雄の形
態は、平織物、朱子織物等でもよく、此等の織物の一部
の繊維の繊維軸がパイプ軸に対し±80〜90度となる
ように配設することもできる。
Suitable reinforcing fibers for the end reinforcing portion 4 include carbon #am, glass fiber, aramid fiber, boron taxs, and the like. In particular, reinforcement #a male having a tensile elongation of 2% or more is effective against axial impact loads on the pipe body. The form of the reinforcement may be plain woven fabric, satin woven fabric, etc., and the fiber axis of some of the fibers of such woven fabric may be arranged at ±80 to 90 degrees with respect to the pipe axis.

端部補強部4のマトリックス樹脂は、パイプ本体部と同
じ樹脂を使用することが好ましい。
It is preferable to use the same resin as the matrix resin for the end reinforcement portion 4 as for the pipe main body.

[発明の効果〕 本発明のパイプ状#a雄強化プラスチック構造材は軽量
であると共にパイプ本体部と端部補強部の接合部分の強
度が高い、しかも端部補強部によって積層層に段差を生
じさせずしかも金属エンド部材の挿入長さより、短い端
部補強部がパイプ端側にあるため接合部分に応力集中が
なく高い破壊応力を有する。
[Effects of the Invention] The pipe-shaped #a male reinforced plastic structural material of the present invention is lightweight and has high strength at the joint between the pipe main body and the end reinforcement, and the end reinforcement does not create a step in the laminated layers. Moreover, since the end reinforcing part is shorter than the insertion length of the metal end member and is located on the pipe end side, there is no stress concentration at the joint part and the joint part has high breaking stress.

本発明のパイプ状繊維強化プラスチック構造材は、自転
車、ベビーカー、ハングライダー等のJIIy造材とし
て好適である。
The pipe-shaped fiber-reinforced plastic structural material of the present invention is suitable as a JIIy construction material for bicycles, strollers, hang gliders, and the like.

以下に実施例について説明する 実施例 1 高強度タイプ炭素縁&l(東邦レーヨン■製ベスファイ
ト代)を一方向に引揃えたフェノールノボラックタイプ
エポキシ樹脂プリプレグ(硬化温痩130℃)を外径2
0mmの鉄製マンドレルに軸方向に対し内層の繊維角度
を45度。
Examples will be explained below.Example 1 A phenol novolac type epoxy resin prepreg (curing temperature: 130°C) with high-strength type carbon edges &l (Besphite made by Toho Rayon ■) aligned in one direction was made with an outer diameter of 2
The fiber angle of the inner layer is 45 degrees with respect to the axial direction on a 0 mm iron mandrel.

外層の#am角度を0度にそれぞれ配向し、パイプの曲
げ弾性率が900 Ok g / m m ’の直管と
なるよう積層し、PiiJB部は補強#a維后が配され
る部分の積層数を少なくした。
The #am angle of the outer layer is oriented at 0 degrees, and the pipes are laminated to form a straight pipe with a bending modulus of 900 Ok g/mm', and the PiiJB part is laminated at the part where the reinforcement #a fiber is arranged. reduced the number.

両端部はガラス繊維を一方向に引揃えた、前記、と同様
のエポキシ樹脂プリプレグを繊維方向が軸に対し90度
、厚さ0.4mmとなるようパイプ端部より30mmの
間に積層し、パイプの肉厚は全体が同一となるよう調製
した。
At both ends, the same epoxy resin prepreg as above, with glass fibers aligned in one direction, was laminated 30 mm from the end of the pipe so that the fiber direction was 90 degrees to the axis and the thickness was 0.4 mm. The wall thickness of the pipe was adjusted to be the same throughout.

このプリフォームを硬化炉にて130℃、120分間熱
処理し、冷却後マンドレルを引き抜いて、炭素繊維強化
プラスチック製パイプを得た。
This preform was heat treated in a curing furnace at 130° C. for 120 minutes, and after cooling, the mandrel was pulled out to obtain a carbon fiber reinforced plastic pipe.

このパイプに345C製の金属エンドを長さ50mm挿
入しパイプ物性の測定と、曲げ破壊テストを行った9 比較のため、実施例1と同じ寸法及び積層で両端部補強
部のガラス繊維(繊維角度90度)層の長さを金属エン
ドの挿入長さ(50mm)と同じとした炭素繊維強化プ
ラスチック製パイプ(比較例1・第6面断面図)を成形
した。
A metal end made of 345C was inserted into this pipe to a length of 50 mm, and the physical properties of the pipe were measured and a bending fracture test was conducted.9 For comparison, the glass fibers (fiber angle A carbon fiber-reinforced plastic pipe (Comparative Example 1, 6th side cross-sectional view) was molded in which the length of the layer (90 degrees) was the same as the insertion length (50 mm) of the metal end.

他の比較例として内径寸法を実施例1と同じとし、ガラ
ス繊Ai暦Cm維角度90度)をパイプ最内層全面に設
け、曲げ強度が実施4Nlのパイプと同じになる様に炭
素繊維層を配設した炭素繊維強化プラスチック製パイプ
(比較例2@第7図断面図)を成形した。
As another comparative example, the inner diameter was the same as in Example 1, glass fiber Ai Cm fiber angle 90 degrees) was provided on the entire innermost layer of the pipe, and a carbon fiber layer was placed so that the bending strength was the same as that of the 4Nl pipe. A carbon fiber-reinforced plastic pipe (Comparative Example 2 @ sectional view in FIG. 7) was molded.

それぞれの炭素繊維強化プラスチック製パイプについて
、物性の測定と、まげ破壊テストを行なった。その結果
を第1表に示す。
Physical properties of each carbon fiber-reinforced plastic pipe were measured and a bend fracture test was conducted. The results are shown in Table 1.

この結果より1本発明の炭素#a雄強化プラスチック製
パイプは曲げ剛性が同じでありながら、破壊モーメント
が大きいことがわかる。
From these results, it can be seen that the carbon #a male reinforced plastic pipe of the present invention has a large breaking moment even though the bending rigidity is the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の端部を補強したパイプ状繊維強
化プラスチック構造材の軸方向断面図を示したものであ
る。 第3図は本発明パイプ状繊維強化プラスチック構造材の
端部断面図を示したものである。 第4図は本発明パイプ状繊維強化プラスチック構造材に
金属エンドを挿入した状態の端部断面図を示したもので
ある。 第5図は本発明実施例1のパイプの断面図を示したもの
である。 第6図は比較例1のパイプの断面図を示したものである
。 第7図は比較例2のパイプの断面図を示したものである
。 各図面において  1:パイプ本体 2:金属エンド 3:パイプ本体層 4:端部補強層 5:端部補強層の長さ 6−金属エンドの挿入ム を夫々示す。
FIGS. 1 and 2 are axial cross-sectional views of a conventional pipe-shaped fiber-reinforced plastic structural material with reinforced ends. FIG. 3 shows an end sectional view of the pipe-shaped fiber-reinforced plastic structural material of the present invention. FIG. 4 shows an end sectional view of the pipe-shaped fiber-reinforced plastic structural material of the present invention with a metal end inserted therein. FIG. 5 shows a cross-sectional view of a pipe according to Example 1 of the present invention. FIG. 6 shows a cross-sectional view of the pipe of Comparative Example 1. FIG. 7 shows a cross-sectional view of the pipe of Comparative Example 2. In each drawing: 1: Pipe body 2: Metal end 3: Pipe body layer 4: End reinforcement layer 5: Length 6 of the end reinforcement layer - Insertion length of the metal end is shown, respectively.

Claims (4)

【特許請求の範囲】[Claims] (1)金属エンド部材を挿入して使用されるパイプ状繊
維強化プラスチック構造材において、パイプ軸に対し±
80〜90度方向に強化材繊維が配向し且つエンド部材
の挿入長さより短い長さの端部補強部を、該エンド部材
の挿入端よりパイプ端側に有し、しかも補強部によって
内径又は外径に段差を持たないパイプ状繊維強化プラス
チック構造材。
(1) In pipe-shaped fiber-reinforced plastic structural materials used by inserting metal end members, ±
An end reinforcement part in which reinforcing material fibers are oriented in a direction of 80 to 90 degrees and has a length shorter than the insertion length of the end member is provided on the pipe end side from the insertion end of the end member, and the reinforcement part has an inner diameter or an outer diameter. A pipe-shaped fiber-reinforced plastic structural material with no steps in diameter.
(2)パイプ状繊維強化プラスチック構造材の強化材繊
維が炭素繊維である特許請求の範囲(1)記載のパイプ
状繊維強化プラスチック構造材。
(2) The pipe-shaped fiber-reinforced plastic structural material according to claim (1), wherein the reinforcing fibers of the pipe-shaped fiber-reinforced plastic structural material are carbon fibers.
(3)端部補強部の繊維強化材が伸度2%以上の繊維で
ある特許請求の範囲(1)記載のパイプ状繊維強化プラ
スチック構造材。
(3) The pipe-shaped fiber-reinforced plastic structural material according to claim (1), wherein the fiber reinforcement material of the end reinforcement portion is a fiber having an elongation of 2% or more.
(4)マトリックス樹脂がエポキシ樹脂、不飽和ポリエ
ステル樹脂、ビニルエスルル樹脂、フェノール樹脂、お
よびポリイミド樹脂である特許請求の範囲(1)記載の
パイプ状繊維強化プラスチック構造材。
(4) The pipe-shaped fiber-reinforced plastic structural material according to claim (1), wherein the matrix resin is an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, or a polyimide resin.
JP62249117A 1987-10-03 1987-10-03 Tubular fiber reinforced plastic structural material Granted JPH0193331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249117A JPH0193331A (en) 1987-10-03 1987-10-03 Tubular fiber reinforced plastic structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249117A JPH0193331A (en) 1987-10-03 1987-10-03 Tubular fiber reinforced plastic structural material

Publications (2)

Publication Number Publication Date
JPH0193331A true JPH0193331A (en) 1989-04-12
JPH0356901B2 JPH0356901B2 (en) 1991-08-29

Family

ID=17188199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249117A Granted JPH0193331A (en) 1987-10-03 1987-10-03 Tubular fiber reinforced plastic structural material

Country Status (1)

Country Link
JP (1) JPH0193331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136397A1 (en) 2010-04-30 2011-11-03 Dow Corning Toray Co., Ltd. Novel organopolysiloxane, surfactant, emulsion composition, powder treatment agent, thickening agent of oil-based raw material, gelling agent, gel composition, and cosmetic raw material comprising novel organopolysiloxane, as well as, preparation for external use and cosmetic comprising the same
WO2012015069A1 (en) 2010-07-30 2012-02-02 Dow Corning Toray Co., Ltd. Cosmetic for hair containing sugar alcohol-modified silicone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136397A1 (en) 2010-04-30 2011-11-03 Dow Corning Toray Co., Ltd. Novel organopolysiloxane, surfactant, emulsion composition, powder treatment agent, thickening agent of oil-based raw material, gelling agent, gel composition, and cosmetic raw material comprising novel organopolysiloxane, as well as, preparation for external use and cosmetic comprising the same
WO2012015069A1 (en) 2010-07-30 2012-02-02 Dow Corning Toray Co., Ltd. Cosmetic for hair containing sugar alcohol-modified silicone

Also Published As

Publication number Publication date
JPH0356901B2 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
JPH05505228A (en) Composite tubular member with axial fibers adjacent sidewalls
US20130004715A1 (en) Reinforced composite t-joint
EP0058783B1 (en) Tubing of hybrid, fibre-reinforced synthetic resin
KR100535217B1 (en) Hybrid fiber reinforced polymer reinforcing material and concrete structure using the same
JPH0193331A (en) Tubular fiber reinforced plastic structural material
US20230204071A1 (en) Composite lug with enhanced performance
JP3414082B2 (en) Fiber reinforced plastic members
JPH0745198B2 (en) Fiber-reinforced composite resin pipe and method for producing the same
EP0577409A1 (en) Pipe-like fiber-reinforced plastic structural material and method of manufacturing the same
JPH03236946A (en) Manufacturer of fiber reinforced cylinder tube
JP2729631B2 (en) Fiber reinforced thermosetting resin pipe for bicycle frame
JPH09323364A (en) Frp cylindrical form and its manufacture
JP2007030793A (en) Arm-shaped stress transmitting member
WO1995033109A1 (en) Fibre reinforced resin composite reinforcing material and method for producing the same
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
JP2007000528A (en) Shaft for golf club made of fiber-reinforced composite material
JPH0740488A (en) Fiber reinforced resin tubular material
JPH06278671A (en) Fiber-reinforced thermosetting resin pipe for bicycle frame and its manufacture
JP3064505B2 (en) fishing rod
JP2004130564A (en) Tubular body made of fiber reinforced resin and golf club shaft comprising tubular body
JPH0939125A (en) Tubular body of fiber reinforced plastic
JP2002357284A (en) Combined pipe
JPH0422996Y2 (en)
JP2762120B2 (en) Method for coaxially fixing a pipe end and an end member
JP2681553B2 (en) Fiber reinforced resin tubular structural member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 17