JPH0193106A - Molded coil and manufacture thereof - Google Patents

Molded coil and manufacture thereof

Info

Publication number
JPH0193106A
JPH0193106A JP25047687A JP25047687A JPH0193106A JP H0193106 A JPH0193106 A JP H0193106A JP 25047687 A JP25047687 A JP 25047687A JP 25047687 A JP25047687 A JP 25047687A JP H0193106 A JPH0193106 A JP H0193106A
Authority
JP
Japan
Prior art keywords
coil
molded
resin
core
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25047687A
Other languages
Japanese (ja)
Inventor
Masao Hayashi
林 全郎
Jiro Yoshigami
次郎 由上
Kyuzo Yoshimoto
義本 久三
Yasuhiro Akai
赤井 康宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25047687A priority Critical patent/JPH0193106A/en
Publication of JPH0193106A publication Critical patent/JPH0193106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deformation of a coil when synthetic resin is poured into the mold by a method wherein a blank coil is formed by closely fixing a sheet-like reinforcement material carrying thermosetting resin to the inner and the outer circumferential surfaces of the coil formed by a conductor and an interlayer insulating material. CONSTITUTION:A blank coil 1 is formed by closely fixing a sheet-like reinforce ment material 4 carrying thermosetting resin to the inner and the outer circum ferential surfaces of the coil on which the conductor consisting of 4-layer alumi num round wire 2 and an interlayer insulating material 3 are laminated, and the above-mentioned material is integrally formed with the coil. Accordingly, the coil 1 is hardly deformed when a synthetic resin material 5 is molded, and it is unnecessary to thickly form the resin material. As a result, the molded coil can be manufactured in an excellent economical manner.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は配電用または電圧変換用に用いるモールドトラ
ンスのモールドコイル、特に金型を使用して作られるモ
ールドコイルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a molded coil for a molded transformer used for power distribution or voltage conversion, and particularly to a molded coil made using a mold.

従来の技術 従来の金型を用いてモールドコイルを作る方法は、まず
最初に導体(電線)を巻心のまわりに巻回して巻線(コ
イル)を作り、必要側の巻線を接続して素コイルとして
いた。そしてこの素コイルを、注型用心材と底抜および
側板からなる外枠とで構成される金型にセットし、この
金型と前記素コイルを予熱してから樹脂を注型し、前記
素コイルの周囲に樹脂硬化材層を形成していた。このと
き、前記素コイル内面と注型用心材との隙間に充填され
た樹脂が内周絶縁層を、また前記素コイル外側と側板と
の間に充填された樹脂が外周絶縁層を形成する。
Conventional technology The method of making a molded coil using a conventional mold is to first create a winding (coil) by winding a conductor (electric wire) around the winding core, and then connect the windings on the required side. It was a bare coil. Then, this raw coil is set in a mold consisting of a core material for casting and an outer frame consisting of a bottom punch and side plates, and after preheating this mold and the raw coil, resin is poured into the mold. A resin hardening material layer was formed around the coil. At this time, the resin filled in the gap between the inner surface of the element coil and the casting core material forms an inner peripheral insulation layer, and the resin filled between the outer side of the element coil and the side plate forms an outer peripheral insulation layer.

発明が解決しようとする問題点 内周または外周絶縁層の厚さは3■もあれば十分である
が、従来の技術ではコイルの寸法精度が悪いため5〜1
0mm位必要であった。すなわち、巻心を用いてコイル
を形成しても、巻心をはずすとコイルが変形して、内側
へへこんだり、外側へふくらんだりするため、そのまま
樹脂注型を行うと、絶縁層厚さが不足する場所が発生し
てしまうという問題があった。
Problems to be Solved by the Invention It is sufficient if the thickness of the inner or outer insulating layer is 3 mm, but in the conventional technology, the dimensional accuracy of the coil is poor, so the thickness is 5 to 1 mm.
Approximately 0 mm was required. In other words, even if a coil is formed using a core, when the core is removed, the coil will deform and dent inward or bulge outward, so if resin is cast as is, the insulation layer thickness will be reduced. There was a problem that there was a shortage of places.

この問題を解決する方法として、あらかじめコイルの変
型を考慮して注型用心材をより小さくしたり、外枠の寸
法をより大きくして少なくとも一定以上の樹脂厚を確保
する方法が行われているが、使用樹脂量の増加および放
熱性の低下をまねき。
As a way to solve this problem, methods are being used to take into account the deformation of the coil in advance and make the casting core material smaller, or to increase the dimensions of the outer frame to ensure at least a certain level of resin thickness. However, this leads to an increase in the amount of resin used and a decrease in heat dissipation.

結果的に高価なトランスにならざるを得なかった。As a result, I had no choice but to use an expensive transformer.

また、他の方法として電線の外表面に熱融着性の樹脂層
を形成し1巻線後にコルイを巻心ごと加熱し融着して、
コイルの変形を防止する方法が知られている。この方法
は確かに有効な方法ではあるが、電線全てに熱融着性の
樹脂層を形成する必要があり、結果的に電線のコストア
ップにつながっていた。
Another method is to form a heat-fusible resin layer on the outer surface of the wire, heat the core together with the core after one winding, and fuse it.
Methods for preventing coil deformation are known. Although this method is certainly an effective method, it is necessary to form a heat-fusible resin layer on all the wires, which results in an increase in the cost of the wires.

本発明は上記問題点を解決するもので、素コイルの周囲
に形成される絶縁層の厚さを確保できるととも、に大幅
なコストアップを伴うことがないモールドコイルを提供
することを目的とするものである。
The present invention solves the above-mentioned problems, and aims to provide a molded coil that can ensure the thickness of the insulating layer formed around the bare coil and does not involve a significant increase in cost. It is something to do.

問題点を解決するための手段 上記問題点を解決するために本発明は、導体と眉間絶縁
材を重ねて巻回したコイルと、熱硬化性樹脂を担持して
なり、前記コイルの内周面と外周面と巻心軸方向の端面
との少なくとも一部に密着して前記コイルと一体化され
るシート状の補強材と、前記コイルおよび前記補強材の
周囲に形成される合成樹脂層とを有せしめたものである
Means for Solving the Problems In order to solve the above problems, the present invention comprises a coil in which a conductor and an insulating material between the eyebrows are wound in layers, and a thermosetting resin is supported on the inner peripheral surface of the coil. a sheet-shaped reinforcing material that is integrated with the coil by closely contacting at least a portion of the outer peripheral surface and the end surface in the axial direction of the core; and a synthetic resin layer formed around the coil and the reinforcing material. It is a gift.

作用 上記構成により、合成樹脂層を注入する前に。action With the above configuration, before injecting the synthetic resin layer.

コイルは補強材に担持された熱硬化性樹脂により補強材
と一体化するため、合成樹脂層を注型するときに前記コ
イルの変形は生じない、したがって、従来のようにコイ
ルの変形を考慮して樹脂厚を厚めに設定する必要がなく
なり、コストの低減化が図れる。
Since the coil is integrated with the reinforcing material by the thermosetting resin supported on the reinforcing material, the coil does not deform when casting the synthetic resin layer. Therefore, there is no need to set the resin thickness to be thicker, and costs can be reduced.

実施例 以下1本発明の実施例を図面に基づき説明する。Example An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示すモールドコイルの部分
断面図、第2図および第3図は同モールドコイルの素コ
イルの外観斜視図および部分断面図である。第2図およ
び第3図において、1は上下面が開口されたほぼ角筒形
状の素コイルで、この素コイル1は、導体としての4層
のアルミ丸線2と層間絶縁材3を重ねて巻回してコイル
を形成し、このコイルの内周面と外周面とに、熱硬化性
樹脂を担持してなる補強材4がコイルと一体化されて配
設されたものである。そして、第1図に示すように、こ
の素コイル1の周囲を合成樹脂5で囲ってモールドコイ
ルとされる。
FIG. 1 is a partial sectional view of a molded coil showing an embodiment of the present invention, and FIGS. 2 and 3 are an external perspective view and a partial sectional view of an elementary coil of the same molded coil. In FIGS. 2 and 3, reference numeral 1 denotes an elementary coil in the shape of a rectangular cylinder with openings on the upper and lower surfaces. The coil is wound to form a coil, and a reinforcing material 4 carrying a thermosetting resin is disposed integrally with the coil on the inner and outer circumferential surfaces of the coil. Then, as shown in FIG. 1, the raw coil 1 is surrounded by a synthetic resin 5 to form a molded coil.

実施例1 次に第1図〜第3図の具体例を説明する。断面積が15
0 X 100■■で四隅の曲率半径が16mmである
長さ36011■の矩形状の巻心に、補強材4として、
厚さ0.25■■、幅110■菖のガラス繊維を基板と
するエポキシプリプレグを4回巻回した後、絶縁被膜を
有する直径1.Om層のアルミ丸線2を巻心に巻回され
たエポキシプリプレグの端部より5禦■はなした位置か
ら位置をずらしながら100回巻回して第1層巻線を形
成した。その後、層間絶縁材3として。
Example 1 Next, specific examples shown in FIGS. 1 to 3 will be explained. The cross-sectional area is 15
As a reinforcing material 4, a rectangular core with a length of 36011 cm and a radius of curvature of 16 mm at the four corners with a size of 0 x 100
After winding an epoxy prepreg with a glass fiber substrate of thickness 0.25 mm and width 110 mm four times, a diameter of 1 mm with an insulating coating is formed. The Om layer round aluminum wire 2 was wound 100 times from a position 5 mm away from the end of the epoxy prepreg wound around the core to form a first layer winding. After that, as an interlayer insulating material 3.

厚さ50μ■1幅110■■のポリエチレンテレフタレ
ート$I(pH!T)フィルム2枚を前記巻線上に3回
巻回し、アルミ丸線2を前記巻線の最終位置から前記フ
ィルム上を巻き始め方向に位置をずらしながら100回
巻線を行って第2層巻線を形成した。以後同様の方法で
フィルムとアルミ丸線2の巻回を行い、4層からなるコ
イルを得た1次に、このコイルの外周に補強材4として
、幅110菖璽の前記エポキシプリプレグを端面を最初
に巻心に巻回されたエポキシプリプレグと合わせて2回
巻回した後、乾燥機中に移して150℃、1時間の加熱
を行ってエポキシプリプレグの硬化を行った。硬化後、
室温まで冷却した後、巻心をはずしてエポキシプリプレ
グが密着一体化された素コイル1を得た。得られた素コ
イル1を断面積が138X86mm、四隅の曲率半径が
10■■である注型用心材と、内寸法が162X112
mm、四隅の曲率半径が271腸で一方向に端子引出部
を設けた注型用外枠とからなる金型に移し、100℃、
4時間予熱後、合成樹脂5としてフィラー60%を含む
エポキシ樹脂を真空注型し、80℃、10時間、さらに
140℃、4時間の加熱を行ってエポキシ樹脂を硬化さ
せ、素コイル1の内周および外周に平均4+smのエポ
キシ樹脂層を有するモールドコイルを作った。
Two polyethylene terephthalate $I (pH!T) films with a thickness of 50μ and a width of 110 are wound three times on the winding, and aluminum round wire 2 is started from the final position of the winding on the film. The second layer winding was formed by winding the wire 100 times while shifting the position in the direction. Thereafter, the film and round aluminum wire 2 were wound in the same manner to obtain a four-layer coil. Next, the epoxy prepreg having a width of 110 mm was wrapped around the outer periphery of the coil as a reinforcing material 4 on the end face. The epoxy prepreg was wound twice together with the epoxy prepreg that was first wound around the core, and then transferred to a dryer and heated at 150° C. for 1 hour to cure the epoxy prepreg. After curing,
After cooling to room temperature, the core was removed to obtain a bare coil 1 in which the epoxy prepreg was tightly integrated. The obtained raw coil 1 was molded into a casting core material with a cross-sectional area of 138 x 86 mm and a radius of curvature of 10 mm at the four corners, and an inner dimension of 162 x 112 mm.
It was transferred to a mold consisting of an outer frame for casting with a radius of curvature of 271 mm at the four corners and a terminal drawer in one direction, and heated to 100°C.
After preheating for 4 hours, an epoxy resin containing 60% filler was vacuum cast as the synthetic resin 5, and heated at 80°C for 10 hours and then at 140°C for 4 hours to harden the epoxy resin. A molded coil having an average 4+sm of epoxy resin layer on the circumference and outer periphery was made.

このモールドコイルによれば、エポキシ樹脂により囲ま
れる前の素コイル1が、硬化されたエポキシプリプレグ
と一体化されて、エポキシ樹脂の注型時に設計通りの厚
みのエポキシ樹脂層が得られる。
According to this molded coil, the elementary coil 1 before being surrounded by the epoxy resin is integrated with the cured epoxy prepreg, and an epoxy resin layer having a designed thickness can be obtained when the epoxy resin is cast.

第4図および第5図は他の実施例を示す素コイルの斜視
図および部分断面図である。第4図および第5図におい
て、素コイル11は導体としての銅箔12と層間絶縁材
13を重ねて巻回してコイルを形成し、このコイルの内
周面に熱硬化性樹脂を担持してなる補強材14が配設さ
れ、さらにこの内周面の補強材14の上からさらに別の
テープ状補強材15をコイルの2箇所に巻回してコイル
と一体化したものである。
FIG. 4 and FIG. 5 are a perspective view and a partial sectional view of an elementary coil showing another embodiment. In FIGS. 4 and 5, an elementary coil 11 is formed by overlapping and winding a copper foil 12 as a conductor and an interlayer insulating material 13 to form a coil, and carrying a thermosetting resin on the inner peripheral surface of this coil. A reinforcing material 14 is disposed, and another tape-shaped reinforcing material 15 is further wound around two locations of the coil from above the reinforcing material 14 on the inner circumferential surface to be integrated with the coil.

実施例2 次に第4図および第5図の具体例を説明する。Example 2 Next, specific examples shown in FIGS. 4 and 5 will be explained.

実施例1で用いた巻心の直線部の2箇所にテープ状補強
材15として、幅10eu+、長さ10(1層朧のテー
プ状エポキシプリプレグを巻心軸方向にそろえて張りつ
けた後、補強材14として、幅76II11のエポキシ
プリプレグを巻心の回りに4回巻回した。このエポキシ
プリプレグ上に幅66mm、厚さ20μ墓の銅箔12と
、眉間絶縁材13としての厚さ16μ議、幅74m■の
PETフィルム2枚と重ねて150回巻回してコイルを
形成した。巻回後、巻心の直線部にとりつけたテープ状
エポキシプリプレグを、前記コイルに巻回させ、ポリエ
ステルテープ(図示せず)で固定した。このコイルを巻
心と共に乾燥機中に移し、実施例1と同一条件で加熱を
行ってエポキシプリプレグを硬化させた。室温まで冷却
後、巻心をはずしてエポキシプリプレグが密着一体化さ
れた素コイル11を得た。この素コイル11を実施例1
と同様の方法で樹脂注型を行って素コイル11の内周側
および外周側に合成樹脂として平均4−のエポキシ樹脂
層を有するモールドコイルを作った。
A tape-like reinforcing material 15 of 10 eu+ in width and 10 mm in length (1 layer of hazy tape-like epoxy prepreg was applied to two locations on the straight part of the core used in Example 1 in the axial direction of the core, and then reinforced. As the material 14, an epoxy prepreg with a width of 76mm and 11mm was wound around the core four times.A copper foil 12 with a width of 66mm and a thickness of 20μ and a thickness of 16μ as the glabella insulating material 13 were placed on this epoxy prepreg. A coil was formed by overlapping two sheets of PET film with a width of 74 m and winding it 150 times. After winding, the tape-shaped epoxy prepreg attached to the straight part of the core was wound around the coil, and a polyester tape (Fig. (not shown). This coil was transferred to a dryer together with the core, and heated under the same conditions as in Example 1 to cure the epoxy prepreg. After cooling to room temperature, the core was removed and the epoxy prepreg was An elementary coil 11 that was tightly integrated was obtained.This elementary coil 11 was used in Example 1.
Resin casting was performed in the same manner as above to produce a molded coil having an average 4-layer epoxy resin layer as a synthetic resin on the inner and outer circumferential sides of the bare coil 11.

上記実施例において、熱硬化性樹脂を担持した補強材と
してはガラス繊維だけでなく、ポリエチレンテレフタレ
ート、ポリプロピレンなどの高分子フィルム、ノーメッ
クス、ガラスペーパーなどの芳香族ポリアミド積唐紙な
どの絶縁材で耐熱性のすぐれた材料に熱硬化性樹脂を担
持したものであればどれでもよい。また、密着する位置
や巻回数は使用する電線の種類1寸法、形状などに応じ
て決めればよい。
In the above examples, the reinforcing material supporting the thermosetting resin is not only glass fiber, but also heat-resistant insulating materials such as polymer films such as polyethylene terephthalate and polypropylene, Nomex, and aromatic polyamide laminated paper such as glass paper. Any material may be used as long as it has a thermosetting resin supported on a material with excellent properties. Further, the position of close contact and the number of turns may be determined depending on the type, size, shape, etc. of the electric wire used.

比較例1 実施例1で用いた巻心に、実施例1で用いたエポキシプ
リプレグの基板と同一仕様である幅1101腸のガラス
クロスを4回巻回した後、実施例1で用いたアルミ丸線
をガラスクロスの端部より5−はなした位置から位置を
ずらしながら100回巻回して第1層巻線を形成した。
Comparative Example 1 After winding glass cloth with a width of 110 mm, which has the same specifications as the epoxy prepreg substrate used in Example 1, four times around the core used in Example 1, the aluminum circle used in Example 1 was wrapped. A first layer winding was formed by winding the wire 100 times while shifting the wire from a position 5 mm away from the end of the glass cloth.

その後、厚さ50μm、幅110mmのPETフィルム
2枚を前記巻線上に3回巻回した層間絶縁材とし、アル
ミ丸線を前記巻線の最終位置から前記フィルム上を巻き
始め方向に位置をずらしながら100回巻線を行って第
2層巻線を形成した。以後同様の方法でフィルムとアル
ミ丸線の巻回を行い、4層からなるコイルを得た。
Thereafter, two sheets of PET film with a thickness of 50 μm and a width of 110 mm were wound three times on the winding wire as an interlayer insulation material, and the aluminum round wire was shifted from the final position of the winding wire in the direction of the winding start on the film. The second layer winding was formed by winding the wire 100 times. Thereafter, the film and round aluminum wire were wound in the same manner to obtain a four-layer coil.

次にこのコイルの外周に前記ガラスクロスを2回巻回後
、ノーメックステープで固定した。そして巻心をはずし
て素コイルを得た。
Next, the glass cloth was wound twice around the outer periphery of this coil, and then fixed with Nomex tape. Then, the core was removed to obtain a bare coil.

比較例2 実施例1で用いた巻心に実施例2で用いたエポキシプリ
プレグの基材と同一仕様である幅76mm+のガラスク
ロスを4回巻回した。このガラスクロス上に実施例2で
用いた銅箔とPETフィルムを実施例2と同一方法で同
一回数巻回した。さらに、接着テープでガラスクロスと
銅箔、 PETフィルムを接着させて銅箔巻線の素コイ
ルを得た。
Comparative Example 2 A glass cloth having a width of 76 mm+, which had the same specifications as the epoxy prepreg base material used in Example 2, was wound four times around the core used in Example 1. The copper foil and PET film used in Example 2 were wound on this glass cloth by the same method as in Example 2 the same number of times. Furthermore, glass cloth, copper foil, and PET film were adhered using adhesive tape to obtain a bare coil of copper foil winding.

上記実施例1,2および比較例1,2で得られたサンプ
ルについて、寸法安定性の比較評価を行った。すなわち
巻心をつけたままの状態で素コイルの内側寸法として第
2図に示すXおよびyの値を測定し、巻心を除去した後
、再度x、yの値を測定し、コイルの変形の程度を調べ
た。測定結果を第1表に示す゛。次に実施例1.実施例
2、比較例1および比較例2で得られた素コイルを内周
絶縁層および外周絶縁層の厚さが41になるような寸法
である金型にセットして樹脂注型を行い、得られたモー
ルドコイルの直線部すなわち第2図に示すA−A部を切
断して樹脂層の厚さを測定した結果も第1表に示す。
The samples obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were comparatively evaluated for dimensional stability. In other words, measure the X and y values shown in Figure 2 as the inner dimensions of the bare coil with the core attached, and after removing the core, measure the x and y values again to determine the deformation of the coil. We investigated the extent of The measurement results are shown in Table 1. Next, Example 1. The raw coils obtained in Example 2, Comparative Example 1, and Comparative Example 2 were set in a mold with dimensions such that the thickness of the inner circumferential insulating layer and the outer circumferential insulating layer was 41 mm, and resin casting was performed. Table 1 also shows the results of measuring the thickness of the resin layer by cutting the straight portion of the molded coil obtained, that is, the section AA shown in FIG. 2.

(以下余白) 第1表かられかるように、実施例1および実施例2の素
コイルは巻心除去後でも寸法の変化がない反面、比較例
1,2には大きい寸法変化が見られる。また、エポキシ
樹脂によるモールド後の絶縁層の厚みについても、実施
例1および実施例2の素コイルを用いたものは、はぼ設
計通りの樹脂厚が得られた反面、比較例1,2において
はほとんど絶縁層が形成されなかった。
(Margin below) As can be seen from Table 1, the element coils of Examples 1 and 2 do not change in dimension even after the core is removed, while Comparative Examples 1 and 2 show large dimensional changes. In addition, regarding the thickness of the insulating layer after molding with epoxy resin, the resin thickness according to the Habo design was obtained in the cases using the bare coils of Examples 1 and 2, but on the other hand, in Comparative Examples 1 and 2. Almost no insulating layer was formed.

発明の効果 以上、本発明によれば、コイルの内周面と外周面と巻心
軸方向の端面との少なくとも一部に密着してシート状の
補強材を配設するとともにこの補強材に熱硬化性樹脂を
担持させて1合成樹脂層が注型される前の素コイルを一
体化できるような構成としたもので、前記素コイルの寸
法安定性が良好となり、合成樹脂層の厚みを設計通りに
確保できるモールドコイルを容易に作ることができ、モ
ールドトランスのコストダウンも図れる。
As described above, according to the present invention, a sheet-like reinforcing material is disposed in close contact with at least a portion of the inner circumferential surface, outer circumferential surface, and end surface in the core axis direction of the coil, and this reinforcing material is heated. The structure is such that the bare coil can be integrated before one synthetic resin layer is cast by carrying a curable resin, and the dimensional stability of the bare coil is good, and the thickness of the synthetic resin layer can be designed. Molded coils that can be obtained on the street can be easily made, and the cost of molded transformers can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すモールドコイルの部分
断面図、第2図および第3図は同モールドコイルの素コ
イルの外観斜視図および部分断面図、第4図および第5
図は本発明の他の実施例を示すモールドコイルの素コイ
ルの外観斜視図およ  ゛び部分断面図である。 1.11・・・素コイル、2・・・アルミ丸線、3,1
3・・・層間絶縁材、4.14.15・・・補強材(エ
ポキシプリプレグ)、5・・・合成樹脂、12・・・銅
箔。 代理人   森  本  義  弘 第を図 第2図 第3図 第4図 第5図
FIG. 1 is a partial sectional view of a molded coil showing an embodiment of the present invention, FIGS. 2 and 3 are external perspective views and partial sectional views of an elementary coil of the same molded coil, and FIGS. 4 and 5.
The figures are an external perspective view and a partial sectional view of an elementary coil of a molded coil showing another embodiment of the present invention. 1.11...Elementary coil, 2...Aluminum round wire, 3,1
3... Interlayer insulation material, 4.14.15... Reinforcement material (epoxy prepreg), 5... Synthetic resin, 12... Copper foil. Agent Yoshihiro Morimoto Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] 1.導体と層間絶縁材を重ねて巻回したコイルと、熱硬
化性樹脂を担持してなり、前記コイルの内周面と外周面
と巻心軸方向の端面との少なくとも一部に密着して前記
コイルと一体化されるシート状の補強材と、前記コイル
および前記補強材の周囲に形成される合成樹脂層とを有
するモールドコイル。
1. The coil is formed by carrying a thermosetting resin and a coil formed by overlappingly wound a conductor and an interlayer insulating material, and is in close contact with at least a portion of the inner circumferential surface, outer circumferential surface, and end surface of the core in the axial direction of the coil. A molded coil comprising a sheet-like reinforcing material that is integrated with a coil, and a synthetic resin layer formed around the coil and the reinforcing material.
2.熱硬化性樹脂を担持したシート状の補強材をコイル
の内周面と外周面と巻心軸方向の端面との少なくとも一
部に密着させ、加熱硬化によって前記シート状の補強材
と前記コイルを一体化した後、前記コイルの周囲に合成
樹脂層をモールドするモールドコイルの製造方法。
2. A sheet-shaped reinforcing material carrying a thermosetting resin is brought into close contact with at least a portion of the inner circumferential surface, outer circumferential surface, and end surface in the axial direction of the coil, and the sheet-shaped reinforcing material and the coil are bonded together by heating and curing. A method for manufacturing a molded coil, which comprises molding a synthetic resin layer around the coil after the coil is integrated.
JP25047687A 1987-10-02 1987-10-02 Molded coil and manufacture thereof Pending JPH0193106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25047687A JPH0193106A (en) 1987-10-02 1987-10-02 Molded coil and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25047687A JPH0193106A (en) 1987-10-02 1987-10-02 Molded coil and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0193106A true JPH0193106A (en) 1989-04-12

Family

ID=17208420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25047687A Pending JPH0193106A (en) 1987-10-02 1987-10-02 Molded coil and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0193106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099685A (en) * 2007-10-15 2009-05-07 Institute Of Physical & Chemical Research Pulse transformer
US20150109090A1 (en) * 2013-10-21 2015-04-23 Hammond Power Solutions, Inc. Electrical transformer with a shielded cast coil assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442622A (en) * 1977-09-12 1979-04-04 Hitachi Ltd Mold transformer
JPS569716B2 (en) * 1973-05-30 1981-03-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569716B2 (en) * 1973-05-30 1981-03-03
JPS5442622A (en) * 1977-09-12 1979-04-04 Hitachi Ltd Mold transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099685A (en) * 2007-10-15 2009-05-07 Institute Of Physical & Chemical Research Pulse transformer
US20150109090A1 (en) * 2013-10-21 2015-04-23 Hammond Power Solutions, Inc. Electrical transformer with a shielded cast coil assembly

Similar Documents

Publication Publication Date Title
US20120139678A1 (en) Non-Linear Transformer with Improved Construction and Method of Manufacturing the Same
KR940007051B1 (en) Magnetic core and method of consolidating same
CA2527768C (en) Low voltage composite mold
JPH0193106A (en) Molded coil and manufacture thereof
JP3441734B2 (en) Coil winding, transformer using the same, and method of manufacturing coil winding
JP2000021669A (en) Method and device for manufacturing electromagnetic coil
JP3374643B2 (en) Resin mold coil
JP2979887B2 (en) Electric device coil, electric device having coil, and method of manufacturing the same
JP2817044B2 (en) Mold coil
JP2603979B2 (en) Manufacturing method of molded coil
JPH07111747A (en) Stator for motor
JP2010252466A (en) Electromagnetic coil
JPS6151811A (en) Resin mold coil
JPH1041151A (en) Resin molded coil
JP2722722B2 (en) Bobbin manufacturing method
JPS6223057Y2 (en)
US4097987A (en) Method of manufacturing an inductive coil
JP2604473B2 (en) Manufacturing method of resin mold coil
JPS61180552A (en) Sheathing method for coil
JPS6339950Y2 (en)
JP2598095Y2 (en) Sheet winding of electromagnetic induction equipment
JPH0538084A (en) Stator core for electric rotating machine
JPS6314425Y2 (en)
CA1055128A (en) Inductive device with bobbin and method of manufacture
JP2001176740A (en) Through-current transformer