JPH0192523A - Variable volume type after-cooler - Google Patents

Variable volume type after-cooler

Info

Publication number
JPH0192523A
JPH0192523A JP25041687A JP25041687A JPH0192523A JP H0192523 A JPH0192523 A JP H0192523A JP 25041687 A JP25041687 A JP 25041687A JP 25041687 A JP25041687 A JP 25041687A JP H0192523 A JPH0192523 A JP H0192523A
Authority
JP
Japan
Prior art keywords
air
engine
coolers
valves
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25041687A
Other languages
Japanese (ja)
Inventor
Godo Ozawa
吾道 小沢
Fumihide Sato
文秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP25041687A priority Critical patent/JPH0192523A/en
Publication of JPH0192523A publication Critical patent/JPH0192523A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To aim at enhancing the performance of an engine by providing a plurality of air-cooled after-coolers and a plurality of valves for controlling the cooling capacities of the after-coolers in accordance with an operating condition of the engine which incorporates a turbo-charger, so that the after- coolers are always operated appropriately. CONSTITUTION:Two after-coolers 71, 72 and two valves 6, 9 for controlling the cooling capacities of the after-coolers 71, 72, respectively, are disposed between an engine 1 and a turbo-charger 2. The cooling capacities of the after- coolers 71, 72 are changed in accordance with the operating condition of the engine by opening and closing the valves 6, 9 so as to adjust the cross-sectional areas of the after-coolers 71, 72. For example, the valves 6, 9 are opened so as to allow intake-air to flow therethrough in order to aim at lowering the temperature of intake-air, at enhancing the durability of thermally loading components and so forth. Meanwhile the valves 6, 9 are closed so as to allow intake-air to flow only through one after-cooler 71 so as to prevent intake-air from being excessively cooled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ターボチャージャ装着エンジンにおいて、空
冷アフタクーラの冷却能力を制御することにより、最適
使用状態を確保し、エンジンの性能アップと、耐久性を
向上させる可変容量形アフタクーラに関するものである
Detailed Description of the Invention (Field of Industrial Application) The present invention secures optimal operating conditions by controlling the cooling capacity of an air-cooled aftercooler in a turbocharged engine, thereby improving engine performance and durability. The present invention relates to a variable capacity aftercooler that improves.

(従来の技術) エンジンの出力アップの1手段として、空冷アフタクー
ラを装着、吸気温度を下げて空気密度を濃<シているが
、空冷アフタクーラの必要冷却能力はターボヂャージャ
勘案のブロア出口温度、吸気流量、エンジンの各部許容
限界温度等に決定されている。
(Prior art) As a means of increasing engine output, an air-cooled aftercooler is installed to lower the intake air temperature and increase the air density. It is determined by the intake air flow rate, the allowable limit temperature of each part of the engine, etc.

(発明が解決しようとする問題点) 第4図はアフタクーラを装着した従来エンジンの吸排気
糸路図で、空気はエアクリーナ3(ろ過)□ターボチャ
ージャ2(@込、圧送)→アフタクーラ7(冷却)→エ
ンジン1(燃焼)→ターボチャージャ2(排気で駆動)
→マフラ8(消音)と流れて排出される。エンジンのエ
アクリーナ→シリンダヘッド入口までの空気温度は、第
3図のように圧縮熱により、かなり高温となるため、ピ
ストン等各部温度が許容値をこえないようアフタクーラ
を装着して吸気を冷やしているが、アフタクーラ冷却能
力が一定である場合、エンジンの稼動状態によっては、
例えばアフタクーラ内部容積が大きすぎる状態となると
、急加速時、空気圧縮に時間がかかり、加速時間が伸び
排気色が悪くなる。また冷始動時及び寒冷地での稼動の
場合、吸気がオーバクールの状態となり、エンジンの耐
久性上好ましくない。逆に冷却能力が少ない状態となる
と最大出力時の冷却効果が減り吸気温度が上昇して、オ
ーバヒート状態となるため、ピストンなどの熱負荷部品
の耐久性が著しくそこなわれる。
(Problem to be solved by the invention) Figure 4 is an intake and exhaust line diagram of a conventional engine equipped with an aftercooler, where air is transferred from air cleaner 3 (filtration) to turbocharger 2 (@included, pressure feeding) to aftercooler 7 (cooling). ) → Engine 1 (combustion) → Turbocharger 2 (driven by exhaust)
→ It flows through muffler 8 (silence) and is discharged. As shown in Figure 3, the air temperature from the engine air cleaner to the cylinder head inlet becomes quite high due to the heat of compression, so an aftercooler is installed to cool the intake air so that the temperature of the piston and other parts does not exceed allowable values. However, if the aftercooler cooling capacity is constant, depending on the engine operating condition,
For example, if the internal volume of the aftercooler is too large, it will take time to compress the air during sudden acceleration, which will extend the acceleration time and worsen the exhaust color. Furthermore, when starting cold or operating in a cold region, the intake air becomes overcooled, which is unfavorable in terms of engine durability. On the other hand, when the cooling capacity is low, the cooling effect at maximum output is reduced, the intake air temperature rises, and an overheating state occurs, which significantly impairs the durability of heat-loaded parts such as pistons.

(問題点を解決するための手段および作用)そのため、
本発明は複数の空冷アフタクーラとバルブにより、アフ
タクーラの冷却能力をエンジンの稼動条件に応じて制御
することにより、最適使用状態を確保し、エンジンの性
能アップと耐久性を向上させ従来の問題点を解決もので
ある。
(Means and actions for solving problems) Therefore,
The present invention utilizes a plurality of air-cooled aftercoolers and valves to control the cooling capacity of the aftercooler according to engine operating conditions, thereby ensuring optimal operating conditions, improving engine performance and durability, and solving the conventional problems. It is a solution.

(実施例) 以下本発明の詳細を実施例により説明する。(Example) The details of the present invention will be explained below with reference to Examples.

第1図(a)は本発明の1実施例を示す給排気糸路図で
あり、第1図(b)は、その立体斜視図である。
FIG. 1(a) is a supply/exhaust line diagram showing one embodiment of the present invention, and FIG. 1(b) is a three-dimensional perspective view thereof.

ターボチャージャ2を装着したエンジン1において、前
記ターボチャージャとエンジンの間に2個の空冷アフタ
クーラ7−1.7.とこれらの冷却能力を制御するバル
ブ6.9を設けている。ラジェータ4、ファン5は従来
通り配置しである。
In the engine 1 equipped with the turbocharger 2, two air-cooled aftercoolers 7-1.7. and a valve 6.9 for controlling these cooling capacities. The radiator 4 and fan 5 are arranged in the conventional manner.

本構成において、エンジン1を稼動するとターボチャー
ジャ2の働きによりエアクリーナ3から吸込まれた吸気
は圧縮されて空気密度を濃くすることができる。しかし
吸気温度はかなり高温となるので、前記バルブ6.9を
開いて空冷アフタクーラの通路面積を大きくし、吸気を
冷却する。逆に寒冷地で稼動する場合は、バルブ6.9
を閉じて、吸気のオーバークールを防止する。
In this configuration, when the engine 1 is operated, the intake air taken in from the air cleaner 3 is compressed by the action of the turbocharger 2, and the air density can be increased. However, since the intake air temperature is quite high, the valve 6.9 is opened to increase the passage area of the air-cooled aftercooler to cool the intake air. Conversely, when operating in a cold region, use valve 6.9.
close to prevent overcooling of the intake air.

また、急加速時にもバルブ6.9を閉じてアフタクーラ
内部容積を減らして、空気圧縮のためのタイムロスを少
なくし過渡特性向上、加速時間短縮を図る。
Further, even during sudden acceleration, the valve 6.9 is closed to reduce the internal volume of the aftercooler, thereby reducing time loss due to air compression, improving transient characteristics, and shortening acceleration time.

以上のようにバルブ6.9の開閉により空冷アフタクー
ラ7−+、74の通路面積を加減して、アフタクーラの
冷却能力をエンジンの稼動条件に応じて変化させること
ができる。
As described above, by opening and closing the valves 6.9, the passage areas of the air-cooled aftercoolers 7-+ and 74 can be adjusted, and the cooling capacity of the aftercoolers can be changed according to the operating conditions of the engine.

バルブの開閉は第2図(a)(b)(c)に示す如く、
エンジン又は作業機の稼動状況を電気信号としてとらえ
電磁弁をON、OFFさせることにより行う。即ち第2
図(a)はエンジン回転数とラックの稼動量をキャッチ
して、その組合せにより空冷アフタクーラの使用を1ケ
又は2ケに切換える方式、第2図(b)は、アクセルペ
ダルの踏み込み量、又は現状スロットルの動き量が大と
なった時、電気信号が出る方式、大2図(C)は作業機
油圧(P)の低下の度合が一定量をこえる場合(d p
/d tで負荷が減少してくる場合)電気信号が出る。
The opening and closing of the valve is as shown in Fig. 2 (a), (b), and (c).
This is done by capturing the operating status of the engine or work equipment as an electrical signal and turning a solenoid valve on and off. That is, the second
Figure (a) shows a system that detects the engine speed and the amount of rack operation and switches the use of the air-cooled aftercooler to one or two depending on the combination. At present, when the amount of throttle movement becomes large, an electric signal is output. Figure 2 (C) shows when the degree of decrease in work machine hydraulic pressure (P) exceeds a certain amount (d p
/d When the load decreases at t) an electrical signal is output.

(発明の効果) 最大出力時では、バルブを開いて複数の空冷アフタクー
ラに吸気を通過させて、吸気温度を十分に下げ、出力の
向上とともに、熱負荷部品の耐久性向上が可能となり冷
始動、寒冷地稼動、急加速時、或いは低負荷域では、バ
ルブを閉じて空冷アフタクーラ1ケにのみ吸気を通過さ
せることにより、エンジン入口温度のオーバクール状態
を阻止することが可能となり、始動時の暖気運転時間の
短縮、エンジン過渡特性の改善および加速時間の短縮に
役立つ。
(Effects of the invention) At maximum output, the valve is opened to allow intake air to pass through multiple air-cooled aftercoolers, lowering the intake air temperature sufficiently, increasing output and improving the durability of heat-loaded parts, resulting in cold starting and When operating in cold regions, during sudden acceleration, or in low load ranges, by closing the valve and allowing intake air to pass through only one air-cooled aftercooler, it is possible to prevent the engine inlet temperature from overcooling, thereby reducing warm air during startup. Helps reduce operating time, improve engine transient characteristics and reduce acceleration time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の吸排気経路図。第1図(b)は
(a)の立体斜視図。第2図(a)(b)(C)は、バ
ルブ作動方式の説明図。第3図は、ターボチャージャを
装着した従来エンジンの吸気行程と吸気温度との関係図
。第4図はアフタクーラを装着した従来エンジンの吸排
気糸路図。 1・・・エンジン本体  2・・・ターボチャージャ3
・・・エアクリーナ  4・・・ラジェータ5・・・フ
ァン     6・・・バルブ7・・・空冷アフタクー
ラ 7−I・・・空冷アフタクーラV。 7−t・・・空冷アフタクーラ■2
FIG. 1(a) is an intake and exhaust route diagram of the present invention. FIG. 1(b) is a three-dimensional perspective view of FIG. 1(a). FIGS. 2(a), 2(b), and 2(C) are explanatory diagrams of the valve operating system. FIG. 3 is a diagram showing the relationship between the intake stroke and intake air temperature of a conventional engine equipped with a turbocharger. Figure 4 is an intake and exhaust line diagram of a conventional engine equipped with an aftercooler. 1...Engine body 2...Turbocharger 3
...Air cleaner 4...Radiator 5...Fan 6...Valve 7...Air-cooled aftercooler 7-I...Air-cooled aftercooler V. 7-t...Air-cooled aftercooler■2

Claims (1)

【特許請求の範囲】[Claims] ターボチャージャ装着エンジンにおいて、複数の空冷ア
フタクーラと、前記空冷アフタクーラの冷却能力をエン
ジンの稼動条件に応じて制御するバルブを設けたことを
特徴とする可変容量形アフタクーラ。
1. A variable capacity aftercooler for a turbocharged engine, comprising a plurality of air-cooled aftercoolers and a valve that controls the cooling capacity of the air-cooled aftercoolers according to operating conditions of the engine.
JP25041687A 1987-10-02 1987-10-02 Variable volume type after-cooler Pending JPH0192523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25041687A JPH0192523A (en) 1987-10-02 1987-10-02 Variable volume type after-cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25041687A JPH0192523A (en) 1987-10-02 1987-10-02 Variable volume type after-cooler

Publications (1)

Publication Number Publication Date
JPH0192523A true JPH0192523A (en) 1989-04-11

Family

ID=17207562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25041687A Pending JPH0192523A (en) 1987-10-02 1987-10-02 Variable volume type after-cooler

Country Status (1)

Country Link
JP (1) JPH0192523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628970A (en) * 2012-08-20 2014-03-12 福特环球技术公司 Method for controlling a variable charge air cooler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628970A (en) * 2012-08-20 2014-03-12 福特环球技术公司 Method for controlling a variable charge air cooler

Similar Documents

Publication Publication Date Title
US7100584B1 (en) Method and apparatus for controlling an internal combustion engine
CN101743390B (en) Internal combustion engine
US9051871B1 (en) Variable twin-scroll turbine for turbocharged internal combustion engine featuring cylinder deactivation
EP0703355B1 (en) Internal combustion engine
US9441531B2 (en) Diverter valve for charge air system
US20180179946A1 (en) Engine system
US6293262B1 (en) Intake air temperature control system
US5531194A (en) Cylinder head for engine
US6314950B1 (en) Intake air temperature control system
JPH0192523A (en) Variable volume type after-cooler
JPH0213132B2 (en)
JPS63195314A (en) Cooling device for water-cooled engine
JPH0320501Y2 (en)
JP3608668B2 (en) Diesel engine with intercooler
JPH04153524A (en) Intake device of engine
KR200206922Y1 (en) Engine oil cooling system for turbocharger engine
JPH06221165A (en) Supercharging engine with intake air cooling device
JPS60224937A (en) Engine with supercharger
JPS58148226A (en) Intake temperature controller of internal-combustion engine
JP2975970B2 (en) Engine cooling control device
KR200158181Y1 (en) Inter cooler for vehicles
JPH0346180Y2 (en)
JPH0326263Y2 (en)
JPH0212271Y2 (en)
JP2021131081A (en) Engine control device