JPH0192374A - Thin film-manufacturing equipment - Google Patents
Thin film-manufacturing equipmentInfo
- Publication number
- JPH0192374A JPH0192374A JP24885487A JP24885487A JPH0192374A JP H0192374 A JPH0192374 A JP H0192374A JP 24885487 A JP24885487 A JP 24885487A JP 24885487 A JP24885487 A JP 24885487A JP H0192374 A JPH0192374 A JP H0192374A
- Authority
- JP
- Japan
- Prior art keywords
- coaxial line
- substrate
- magnetic field
- short
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000004020 conductor Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000010409 thin film Substances 0.000 claims abstract description 13
- 239000010408 film Substances 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000010453 quartz Substances 0.000 description 13
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
プラズマCVD法による薄膜製造装置に関し、プラズマ
室にマイクロ波(以下μ波とする)を導入する部分にコ
イルを用い、膜が付着してもμ波の導入効率に影響ない
ようにすることを目的とし、
像形成される基板を保持する真空容器内に導入された材
料ガスを、導波管を介して真空容器内に導入されたマイ
クロ波によりプラズマ状とし、前記基板に堆積させて薄
膜を形成する薄膜製造装置であって、前記導波管を同軸
線構造とし、前記同軸線の内部導体と外部導体の間を、
前記真空容器内で磁界を発生するように前記真空容器内
を通して短絡させて構成する。[Detailed Description of the Invention] [Summary] Regarding a thin film manufacturing apparatus using the plasma CVD method, a coil is used in the part where microwaves (hereinafter referred to as μ waves) are introduced into the plasma chamber, so that the μ waves can be introduced even if the film is attached. In order to avoid affecting efficiency, the material gas introduced into the vacuum container that holds the substrate to be imaged is turned into plasma by microwaves introduced into the vacuum container via a waveguide. , a thin film manufacturing apparatus for forming a thin film by depositing it on the substrate, wherein the waveguide has a coaxial line structure, and between an inner conductor and an outer conductor of the coaxial line,
A short circuit is formed through the vacuum container so as to generate a magnetic field within the vacuum container.
〔産業上の利用分野〕 −
本発明はプラズマCVD法による薄膜製造装置に関する
。 −マイクロ波を励起源とし
て原料ガスを分解して、基板上に薄膜を堆積させるマイ
クロ波CVD法において、真空内にマイクロ波を導入す
る部分に石英管や石英窓が一般に用いられている。[Industrial Application Field] - The present invention relates to a thin film manufacturing apparatus using plasma CVD method. - In the microwave CVD method, which uses microwaves as an excitation source to decompose a source gas and deposit a thin film on a substrate, a quartz tube or a quartz window is generally used in the part where microwaves are introduced into a vacuum.
ところが、真空内に導入された原料ガスが、マイクロ波
の導入によって励起され、発生したプラズマが基板以外
の上記石英管や石英窓にも付着し、マイクロ波の吸収や
反射を起し、マイクロ波の真空内への導入効率を悪くし
ており、導入効率を悪くしないような装置が要望される
。However, the raw material gas introduced into a vacuum is excited by the introduction of microwaves, and the generated plasma adheres to the quartz tube and quartz window other than the substrate, causing absorption and reflection of microwaves. Therefore, there is a need for a device that does not reduce the efficiency of introduction into the vacuum.
〔従来の技術]
第2図(a)(b)は従来のマイクロ波CVD装置を示
す。[Prior Art] FIGS. 2(a) and 2(b) show a conventional microwave CVD apparatus.
第2図(a)において、真空容器1内のプラズマ室2に
、ヒータ3を内蔵した台4があり、その上に基板5を置
く。プラズマ室2をポンプにより真空排気し、ヒータ3
により基板5を加熱する。In FIG. 2(a), in a plasma chamber 2 within a vacuum container 1, there is a table 4 having a built-in heater 3, and a substrate 5 is placed on the table 4. The plasma chamber 2 is evacuated by a pump, and the heater 3
The substrate 5 is heated.
ガス人口6からシラン系ガスを、導波管7と接した円筒
キャビティ8内の石英管9に流し、μ波を放電させてガ
スをプラズマ化し、基板5上にアモルファスシリコンを
堆積させる。この時、可動短絡子10を動かしてμ波の
整合をとり、石英管9内に効率よくμ波が送られるよう
に調整する。A silane-based gas is flowed from a gas port 6 into a quartz tube 9 in a cylindrical cavity 8 in contact with a waveguide 7, and a μ wave is discharged to turn the gas into plasma, thereby depositing amorphous silicon on a substrate 5. At this time, the movable shunt 10 is moved to match the μ waves and adjust so that the μ waves are efficiently sent into the quartz tube 9.
第2図(b)はμ波の入れ方が多少違う装置である。第
2図(a)と違う点は、μ波が導波管7より直接プラズ
マ室2に導入できるよう、石英窓11を介し真空容器1
に接続し、さらにμ波を効率よく吸収する為に電磁石1
2を設けている。他は第2図(a )と同じように、■
は真空容器、3はヒータ、4は台、5は基板、6はガス
入口を示し、真空容器1内にシラン系ガスを導入し、前
述と同様に基板5上にアモルファスシリコンを堆積させ
る。FIG. 2(b) shows a device in which the way of inputting μ waves is slightly different. The difference from FIG. 2(a) is that in order to introduce μ waves directly into the plasma chamber 2 from the waveguide 7, the vacuum vessel 1 is
Electromagnet 1 is connected to the
2 are provided. The rest is the same as in Figure 2 (a), ■
3 is a vacuum container, 3 is a heater, 4 is a stand, 5 is a substrate, and 6 is a gas inlet. Silane-based gas is introduced into the vacuum container 1, and amorphous silicon is deposited on the substrate 5 in the same manner as described above.
従来のμ波CVD装置において、真空容器1内にμ波を
導入する部分には、゛第2図(a)、第2図(b)のよ
うに石英管9や石英窓11が用いられていた。この部分
はμ波を損失なく良好に通過させ耐熱性が高く、しかも
真空を保ことができる必要がある為、最も優れた材料と
して石英が用いられている。しかし、基板5への薄膜の
堆積とともに石英部分にも膜が付着するため、この部分
でのμ波の吸収や反射が起こり、μ波の導入効率が低下
していき、最後にはμ波は全く導入されなくなっていた
。このため−回あたりの成膜時間が制限されるため、比
較的厚い膜の堆積には適せず、また石英部分を頻繁に掃
除したり交換する必要があった。In a conventional μ-wave CVD apparatus, a quartz tube 9 and a quartz window 11 are used in the part where μ-waves are introduced into the vacuum vessel 1, as shown in FIGS. 2(a) and 2(b). Ta. This part must pass μ-waves well without loss, have high heat resistance, and be able to maintain a vacuum, so quartz is used as the most excellent material. However, as the thin film is deposited on the substrate 5, the film also adheres to the quartz part, so the μ-waves are absorbed or reflected in this part, and the efficiency of introducing the μ-waves decreases. It was not introduced at all. For this reason, the film forming time per cycle is limited, making it unsuitable for depositing relatively thick films, and requiring frequent cleaning or replacement of the quartz portion.
そこで、本発明はプラズマ室にμ波を導入する部分に膜
が付着してもμ波の導入効率に影響ないようにすること
を目的とする。Therefore, an object of the present invention is to prevent the introduction efficiency of μ-waves from being affected even if a film is attached to the portion where μ-waves are introduced into the plasma chamber.
前記問題点は、第1図(a)(b)に示されるように像
形成される基板5を保持する真空容器1内に導入された
材料ガスを、導波管7を介して真空容器1内に導入され
たマイクロ波によりプラズマ状とし、前記基板5に堆積
させて薄膜を形成する薄膜製造装置であって、
前記導波管7を同軸線13構造とし、前記同軸線を通し
て短絡させた本発明−の薄膜製造装置によって解決され
る。The problem is that, as shown in FIGS. 1(a) and 1(b), the material gas introduced into the vacuum container 1 holding the substrate 5 to be imaged is transferred through the waveguide 7 to the vacuum container 1. This is a thin film manufacturing apparatus that forms a plasma by microwaves introduced into the substrate and deposits it on the substrate 5 to form a thin film, wherein the waveguide 7 has a coaxial line 13 structure and is short-circuited through the coaxial line. This problem is solved by the thin film manufacturing apparatus of the invention.
[作用〕
即ち、真空容器1内のプラズマ室2にμ波を導人する部
分が、前記真空容器チ内で磁界を発生するように同軸線
13の内部導体16と外部導体17とを真空容器y内を
通して短絡させであるので、短絡部分を流れるμ波電流
による磁界により磁界と直交する方向にμ波が導入され
て、導入された材料ガスがプラズマ状態となる。[Function] That is, the inner conductor 16 and outer conductor 17 of the coaxial line 13 are connected to the vacuum chamber so that the part that guides μ waves to the plasma chamber 2 in the vacuum chamber 1 generates a magnetic field within the vacuum chamber. Since it is short-circuited through the inside of y, the magnetic field caused by the μ-wave current flowing through the short-circuited portion introduces μ-waves in a direction perpendicular to the magnetic field, and the introduced material gas becomes a plasma state.
このように、本発明では、磁界の作用によってμ波を導
入しているので、短絡部分等に膜付着があっても、短絡
部分をμ波電流が吸収、反射することなく流れるので、
同等問題とならない。In this way, in the present invention, the μ-waves are introduced by the action of the magnetic field, so even if there is film adhesion to the short-circuited portion, the μ-wave current will flow through the short-circuited portion without being absorbed or reflected.
There is no equivalence issue.
第1図(a)(b)は本発明の一実施例を説明する図で
ある。なお、全図を通じて同一符号は同一対象物を示す
。FIGS. 1(a) and 1(b) are diagrams illustrating an embodiment of the present invention. Note that the same reference numerals indicate the same objects throughout the figures.
第1図(a)は本発明によるμ波CVD装置で、第1図
(b)は第1図(a)のコイル部の詳細を示す。第1図
(b)において、真空容器1内のプラズマ室2にμ波を
導入する部分が、同軸線13終端が真空容器7内で磁界
が発生するようにコイル14で短絡した形になっている
。コイル14を流れるμ波電流による磁界により磁界と
直交する方向に発生する電界によりμ波がプラズマ室2
に導入される。FIG. 1(a) shows a μ-wave CVD apparatus according to the present invention, and FIG. 1(b) shows details of the coil portion of FIG. 1(a). In FIG. 1(b), the part where μ waves are introduced into the plasma chamber 2 in the vacuum vessel 1 is configured such that the end of the coaxial line 13 is short-circuited with a coil 14 so that a magnetic field is generated within the vacuum vessel 7. There is. Due to the magnetic field caused by the μ wave current flowing through the coil 14, μ waves are generated in the plasma chamber 2 due to the electric field generated in the direction orthogonal to the magnetic field.
will be introduced in
導波管7を通して送られて来たμ波は、同軸線モードに
変換されて同軸線13を伝搬する。コイル部は同軸線1
3の内部導体16と外部導体17の間をコイル14で短
絡した形になっている。また、内部導体16と外部導体
17の間は絶縁体15で真空シールされている。この絶
縁体15はμ波に対する良好な誘電体であるテフロン、
石英、碑石(磁器)等が適当であるが、特に耐熱性に優
れる石英や碑石の方が良い。The μ waves sent through the waveguide 7 are converted into a coaxial line mode and propagate through the coaxial line 13. The coil part is coaxial line 1
The inner conductor 16 and outer conductor 17 of No. 3 are short-circuited by a coil 14. Further, the space between the internal conductor 16 and the external conductor 17 is vacuum-sealed with an insulator 15. This insulator 15 is made of Teflon, which is a good dielectric material against μ waves.
Quartz, monument stone (porcelain), etc. are suitable, but quartz and monument stone are particularly good because of their excellent heat resistance.
・題
また、外部導体17の材料としては、金属※のもに導入
されるので、ステンレスが望ましい。・Title Also, as the material for the outer conductor 17, stainless steel is preferable since metal* is used.
第1図(a)において、真空容器1内のプラズマ室2に
ヒータ3を内蔵した台4があり、その上に石英ガラスの
基板5を置く。プラズマ室2をポンプにより真空排気し
く真空度10 〜10 Torr )、ヒータ3により
基板5を加熱する。ガス人口6からシラン系ガス、例え
ばモノシランSiH4を流し、導波管7からμ波を導入
し、ガスをプラズマ化し基板5上にアモルファスシリコ
ンを堆積させた。このとき可動短絡子10を動かして7
1波の整合をとり、プラズマ室2に効率よくμ波が送ら
れるように調整する。In FIG. 1(a), there is a stand 4 containing a heater 3 in a plasma chamber 2 in a vacuum vessel 1, and a quartz glass substrate 5 is placed on it. The plasma chamber 2 is evacuated by a pump to a vacuum degree of 10 to 10 Torr), and the substrate 5 is heated by the heater 3. A silane-based gas, such as monosilane SiH4, was flowed from the gas port 6, and μ waves were introduced from the waveguide 7 to turn the gas into plasma and deposit amorphous silicon on the substrate 5. At this time, move the movable short circuit 10 to
One wave is matched and adjusted so that the μ-wave is efficiently sent to the plasma chamber 2.
第2図(b)の従来の装置で成膜した場合、膜厚が1〜
2μmところで整合がとれなくなり、5μmでμ波が導
入されなくなったが、第1図(a)の本発明の装置では
、10μm成膜したところでも、安定なプラズマが得ら
れた。When the film is formed using the conventional apparatus shown in Figure 2(b), the film thickness is 1~
Matching could no longer be achieved at 2 .mu.m, and no microwaves were introduced at 5 .mu.m, but in the apparatus of the present invention shown in FIG. 1(a), stable plasma was obtained even when a 10 .mu.m thick film was formed.
なお、本発明による方式でも絶縁体15の部分にも膜が
付着するが、内部導体16と外部導体17がコイル14
で短絡されており、その磁界によりμ波を導入するよう
にしているので、従来の方法にくらべて受ける影響は少
ない。また、コイル14部全体を絶縁体で覆う形にすれ
ば、内部導体16と外部導体17の間に膜が付かなくな
るのでさらに良い。Note that in the method according to the present invention, the film also adheres to the insulator 15, but the inner conductor 16 and the outer conductor 17 are attached to the coil 14.
Since the magnetic field is short-circuited and the μ-waves are introduced by the magnetic field, there is less influence compared to conventional methods. Further, it is even better if the entire coil 14 is covered with an insulator, since no film is formed between the inner conductor 16 and the outer conductor 17.
尚、本実施例においては、コイル14を1巻きの日系状
のものとしたが、多数巻でも良く、また、円形以外の形
状でも良く、要は真空室2内部で磁界を発生可能な形状
であれば良い。In this embodiment, the coil 14 has one winding, but it may have a large number of windings, or may have a shape other than circular.In short, it must have a shape that can generate a magnetic field inside the vacuum chamber 2. It's good to have.
以上説明したように本発明によれば、プラズマ室にμ波
を導入する部分にコイルを用いることにより、成膜時間
によるμ波導入効率の変化がなく、長時間安定したプラ
ズマが得られ、厚い膜でも連続して成膜が可能である。As explained above, according to the present invention, by using a coil in the part where μ waves are introduced into the plasma chamber, the μ wave introduction efficiency does not change depending on the film forming time, stable plasma can be obtained for a long time, and a thick film can be obtained. Even films can be formed continuously.
第1図(a ) (b )は本発明の一実施例を説明
する図、
第2図(a’)(b)は従来のマイクロ波CVD装置を
説明する図である。
図において、
1は真空容器、
2はプラズマ室、
3はヒータ、
4は台、
5は基板、
6はガス入口、
7は導波管、
10は可動短絡子、
13は同軸線、
14はコイル、
15は絶縁体、
16は内部導体、
(αつFIGS. 1(a) and 1(b) are diagrams for explaining an embodiment of the present invention, and FIGS. 2(a') and (b) are diagrams for explaining a conventional microwave CVD apparatus. In the figure, 1 is a vacuum vessel, 2 is a plasma chamber, 3 is a heater, 4 is a stand, 5 is a substrate, 6 is a gas inlet, 7 is a waveguide, 10 is a movable short circuit, 13 is a coaxial line, and 14 is a coil , 15 is an insulator, 16 is an internal conductor, (α
Claims (2)
)内に導入された材料ガスを、導波管(7)を介して真
空容器(1)内に導入されたマイクロ波によりプラズマ
状とし、前記基板(5)に堆積させて薄膜を形成する薄
膜製造装置であって、前記導波管(7)を同軸線(13
)構造とし、前記同軸線(13)の内部導体(16)と
外部導体(17)の間を、前記真空容器(1)内で磁界
を発生するように前記真空容器(1)内を通して短絡さ
せたことを特徴とする薄膜製造装置。(1) Vacuum container (1) holding the substrate (5) to be imaged
) is made into a plasma by microwaves introduced into the vacuum container (1) through the waveguide (7), and is deposited on the substrate (5) to form a thin film. A manufacturing device comprising: connecting the waveguide (7) to a coaxial line (13);
) structure, and the inner conductor (16) and outer conductor (17) of the coaxial line (13) are short-circuited through the vacuum vessel (1) so as to generate a magnetic field within the vacuum vessel (1). A thin film manufacturing device characterized by:
部導体(17)の間をコイルで短絡したことを特徴とす
る特許請求の範囲第1項記載の薄膜製造装置。(2) The thin film manufacturing apparatus according to claim 1, wherein the coaxial line (13) is short-circuited between the inner conductor (16) and the outer conductor (17) by a coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24885487A JPH0192374A (en) | 1987-10-01 | 1987-10-01 | Thin film-manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24885487A JPH0192374A (en) | 1987-10-01 | 1987-10-01 | Thin film-manufacturing equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0192374A true JPH0192374A (en) | 1989-04-11 |
Family
ID=17184410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24885487A Pending JPH0192374A (en) | 1987-10-01 | 1987-10-01 | Thin film-manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0192374A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976257A (en) * | 1991-01-23 | 1999-11-02 | Canon Kabushiki Kaisha | Apparatus for continuously forming a large area deposited film by means of microwave plasma CVD process |
CN102751399A (en) * | 2012-07-17 | 2012-10-24 | 大连理工常州研究院有限公司 | Facility for manufacturing vertical GaN-based LED chips by metal substrates |
-
1987
- 1987-10-01 JP JP24885487A patent/JPH0192374A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976257A (en) * | 1991-01-23 | 1999-11-02 | Canon Kabushiki Kaisha | Apparatus for continuously forming a large area deposited film by means of microwave plasma CVD process |
CN102751399A (en) * | 2012-07-17 | 2012-10-24 | 大连理工常州研究院有限公司 | Facility for manufacturing vertical GaN-based LED chips by metal substrates |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1281082C (en) | Apparatus for producing a plasma and for the treatment of substrates therein | |
CN1029994C (en) | Microwave plasma chemical vapour deposition apparatus | |
KR20040081185A (en) | Plasma processing equipment | |
JPH0524231B2 (en) | ||
JPH05345982A (en) | Microwave introducing device having endless annular waveguide and plasma treating device provided with its device | |
WO2002056649A1 (en) | Plasma generator | |
JP2012517663A (en) | Large area plasma processing equipment | |
JP2005149887A (en) | Matching method of antenna for plasma generator, and plasma generator | |
US4320716A (en) | Ultra-high frequency device for depositing thin films on solids | |
JPH0192374A (en) | Thin film-manufacturing equipment | |
JPS61213377A (en) | Method and apparatus for plasma deposition | |
US5558719A (en) | Plasma processing apparatus | |
US5580384A (en) | Method and apparatus for chemical coating on opposite surfaces of workpieces | |
US5227202A (en) | Method for chemical coating on opposite surfaces of workpieces | |
KR0166418B1 (en) | Plasma processing device | |
JPH07161489A (en) | Device for processing inductively coupled plasma in magnetic field | |
JPH07130494A (en) | Microwave plasma processing device | |
JP3089116B2 (en) | Electron cyclotron resonance plasma CVD equipment | |
JP3021117B2 (en) | Electron cyclotron resonance plasma CDV system | |
JPH07238371A (en) | Plasma reinforced sputtering device | |
JPH0790591A (en) | Microwave plasma cvd system and formation of deposited film | |
JPS62254419A (en) | Plasma deposition device | |
JPH06140186A (en) | Manufacture of plasma | |
JPH0463284A (en) | Microwave plasma cvd device | |
JP2791770B2 (en) | Apparatus for forming functional deposited film by microwave plasma CVD |