JPH0192071A - Preparing and jetting device for superfine frozen particle - Google Patents

Preparing and jetting device for superfine frozen particle

Info

Publication number
JPH0192071A
JPH0192071A JP25034187A JP25034187A JPH0192071A JP H0192071 A JPH0192071 A JP H0192071A JP 25034187 A JP25034187 A JP 25034187A JP 25034187 A JP25034187 A JP 25034187A JP H0192071 A JPH0192071 A JP H0192071A
Authority
JP
Japan
Prior art keywords
frozen
particles
vapor
pressure
frozen particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25034187A
Other languages
Japanese (ja)
Inventor
Takeshi Fujino
毅 藤野
Nobumi Hattori
服部 信美
Hayaaki Fukumoto
福本 隼明
Toshiaki Omori
大森 寿朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25034187A priority Critical patent/JPH0192071A/en
Publication of JPH0192071A publication Critical patent/JPH0192071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To obtain the fine frozen particles by installing a means for freezing the vapor evaporated from the frozen liquid under decompression state in comparison with the atmospheric pressure. CONSTITUTION:The frozen liquid 1 in a sealed container 2 is heated by heater 3a, and the vapor generated from the frozen liquid 1 is introduced into a cooling container 4 through a valve 6. In this case, the pressure in a cooling container 4 is in the pressure state lower than the atomospheric pressure by the action of a vacuum pump 9a. Therefore, the frequency in which the vapor particles introduced into the container 4 collide reduces than that in the atmospheric pressure state, and a long period is necessary until the coagulation and growth of the vapor particles. Therefore, freezing is generated before the vapor particles coagulated and the particle diameter increases, and the superfine frozen particles having a fine particle diameter can be prepared. The superfine frozen particles thus prepared are jetted onto the surface of a treated substance (e.g., mask for preparing a semiconductor manufacturing device) 8 through a valve 7, and the surface is blast-treated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超微凍結粒の製造噴射装置に関し、特に半
導体装置製造用マスク等の表面処理に用いられる超微凍
結粒を製造および噴射する装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for producing and injecting ultra-fine frozen particles, particularly for producing and injecting ultra-fine frozen particles used for surface treatment of masks for manufacturing semiconductor devices, etc. It is related to the device.

[従来の技術] 従来から、ブラスト、クリーニング等の表面処理用の砥
粒、研磨剤として用いられる微細な氷等の凍結粒を製造
するための装置として、種々の構造のものが提案されて
きた。超微細な凍結粒を得るという目的に適用される装
置としては、たとえば、第2図に示すような装置が提案
されている。
[Prior Art] Various structures have been proposed as devices for producing frozen particles such as fine ice used as abrasive particles and abrasives for surface treatments such as blasting and cleaning. . For example, an apparatus as shown in FIG. 2 has been proposed as an apparatus used for the purpose of obtaining ultrafine frozen particles.

第2図はこのような超微凍結粒の製造噴射装置の概略構
成図である。
FIG. 2 is a schematic diagram of a production injection device for such ultrafine frozen particles.

図において、被凍結液1は密閉容器2内に収容され、そ
の蒸気を発生させるために加熱するヒータ3a、3bが
設けられている。冷却容器4内には発生した蒸気が導か
れるとともに、その蒸気を凍結させるための液体窒素等
の冷媒が冷媒導入管5によって矢印Aで示す方向に導入
されている。
In the figure, a liquid to be frozen 1 is contained in a closed container 2, and heaters 3a and 3b are provided for heating the liquid to generate steam. The generated vapor is guided into the cooling container 4, and a refrigerant such as liquid nitrogen for freezing the vapor is introduced in the direction shown by arrow A through a refrigerant introduction pipe 5.

冷却容器4内に導入する蒸気量を制御するためにバルブ
6が設けられ、冷却容器4内で発生した超微凍結粒を含
む気体の噴出を制御するためにバルブ7が設けられてい
る。被処理物8はバルブ7の噴出口に設置されている。
A valve 6 is provided to control the amount of steam introduced into the cooling container 4, and a valve 7 is provided to control the ejection of gas containing ultrafine frozen particles generated within the cooling container 4. The object to be treated 8 is installed at the spout of the valve 7.

次に動作について説明する。Next, the operation will be explained.

被凍結液1は密閉容器2においてヒータ3aにより加熱
され、被凍結液1より発生した蒸気はバルブ6により制
御され、冷却容器4内に導入される。ヒータ3bは発生
した蒸気をバルブ6の部分において液化させないために
用いられる。冷却容器4に導かれた蒸気は冷媒導入管5
から導入される液体窒素等の冷媒との間で熱交換が行な
われることにより、冷却され、超微凍結粒が形成される
The liquid to be frozen 1 is heated by a heater 3a in a closed container 2, and the steam generated from the liquid to be frozen 1 is controlled by a valve 6 and introduced into a cooling container 4. The heater 3b is used to prevent the generated steam from being liquefied at the valve 6. The steam led to the cooling container 4 is passed through the refrigerant introduction pipe 5
By exchanging heat with a refrigerant such as liquid nitrogen introduced from the inside, the particles are cooled and ultrafine frozen particles are formed.

超微凍結粒は冷媒として用いられた気体を媒体として輸
送されるが、これをバルブ7により制御し、被処理物8
に射出させることにより、被処理物8のブラスト、クリ
ーニング等の表面処理を行なう。
The ultrafine frozen particles are transported using a gas used as a refrigerant, but this is controlled by a valve 7 and the object to be processed 8 is transported.
Surface treatment such as blasting and cleaning of the object 8 to be treated is performed by injecting the beam to the surface of the object 8.

[発明が解決しようとする問題点] 従来の超微凍結粒の製造噴射装置は以上のように構成さ
れており、冷却容器4の内部温度、蒸気の冷却容器4内
への噴射圧力を制御することによって粒径1〜2μmの
均一な凍結粒が得られている。しかしながら、たとえば
、半導体装置製造用マスク等のクリーニングを行なう場
合、表面に付着する超微細な異物等を除去するために粒
径1μm以下の凍結粒の製造が要請されているが、従来
のこのような装置構成ではこの要求を満足することがで
きないという問題点があった。
[Problems to be Solved by the Invention] The conventional ultra-fine frozen particle production injection device is configured as described above, and controls the internal temperature of the cooling container 4 and the injection pressure of steam into the cooling container 4. As a result, uniform frozen particles with a particle size of 1 to 2 μm are obtained. However, when cleaning masks for semiconductor device manufacturing, for example, it is required to produce frozen particles with a particle size of 1 μm or less in order to remove ultrafine foreign matter adhering to the surface. There was a problem that this requirement could not be satisfied with a conventional device configuration.

そこで、この発明は上記のような問題点を解消するため
になされたもので、粒径1μm以下の超微凍結粒を得る
ことができる超微凍結粒の製造噴射装置を提供すること
を目的とする。
Therefore, this invention was made to solve the above-mentioned problems, and an object of the present invention is to provide an ultra-fine frozen particle production/injection device that can obtain ultra-fine frozen particles with a particle size of 1 μm or less. do.

[問題点を解決するための手段] この発明に従った超微凍結粒の製造噴射装置は、次のよ
うな手段を備えたものである。
[Means for Solving the Problems] The ultrafine frozen particle manufacturing and injection apparatus according to the present invention is equipped with the following means.

(a)被凍結液を加熱して蒸気を発生させる手段。(a) Means for heating the liquid to be frozen to generate steam.

(b)蒸気を冷媒中に噴射し、凍結させて凍結粒を得る
手段。
(b) Means for injecting steam into a refrigerant and freezing it to obtain frozen particles.

(c)凍結粒を噴射させる手段。(c) Means for injecting frozen particles.

そして、この発明の装置は、蒸気を冷媒中で凍結させる
過程が大気圧より減圧下の状態で行なわれるものである
In the apparatus of the present invention, the process of freezing vapor in a refrigerant is carried out at a pressure lower than atmospheric pressure.

[作用] この発明における被凍結液より発生する蒸気は大気圧よ
り減圧下の状態で凍結させられる。このような状態では
、蒸気の粒子間の相互作用による凝結成長が大気圧下よ
りも遅速となる。そのため、蒸気粒子の粒径が大きく成
長する前に凍結が生じることになり、より微小な粒径を
持つ超微凍結粒を得ることができる。
[Operation] In the present invention, the vapor generated from the liquid to be frozen is frozen at a pressure lower than atmospheric pressure. Under such conditions, condensation growth due to interactions between vapor particles is slower than under atmospheric pressure. Therefore, freezing occurs before the particle size of the vapor particles grows large, making it possible to obtain ultrafine frozen particles having a smaller particle size.

[実施例] 以下、この発明の一実施例を図について説明する。第1
図はこの発明に従った超微凍結粒の製造噴射装置を示す
概略構成図である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a schematic configuration diagram showing an apparatus for producing and injecting ultrafine frozen particles according to the present invention.

図において、被凍結液1は密閉容器2内に収容され、ヒ
ータ3a、3bが被凍結液1を加熱し、蒸気を発生させ
るために設けられている。発生した蒸気は冷却容器4内
に導入されるとともに、その蒸気を凍結させるために液
体窒素等の冷媒が冷媒導入管5によって矢印Aで示す方
向に冷却容器4内に導入されている。密閉容器2内で発
生した蒸気の冷却容器4中への噴射量はバルブ6によっ
て制御され、バルブ7は冷却容器4中で発生した超微凍
結粒を含む冷媒の被処理物8への噴射を制御している。
In the figure, a liquid to be frozen 1 is housed in a closed container 2, and heaters 3a and 3b are provided to heat the liquid to be frozen 1 and generate steam. The generated vapor is introduced into the cooling container 4, and a refrigerant such as liquid nitrogen is introduced into the cooling container 4 in the direction shown by arrow A through the refrigerant introduction pipe 5 in order to freeze the vapor. The amount of vapor generated in the closed container 2 to be injected into the cooling container 4 is controlled by a valve 6, and the valve 7 controls the injection of the refrigerant containing ultrafine frozen particles generated in the cooling container 4 to the object to be processed 8. It's in control.

被処理物8はクリーニング、ブラスト等の表面処理が施
されるために処理室10内に設置されている。′真空ポ
ンプ9aは冷却容器4内を大気圧より減圧にするために
設けられ、真空ポンプ9bは被処理物8が配置されてい
る処理室10内を減圧にするために設けられている。
The object to be processed 8 is placed in a processing chamber 10 to be subjected to surface treatments such as cleaning and blasting. 'The vacuum pump 9a is provided to reduce the pressure in the cooling container 4 from atmospheric pressure, and the vacuum pump 9b is provided to reduce the pressure in the processing chamber 10 in which the object to be processed 8 is placed.

従来例と同様に、被凍結液1は密閉容器2内でヒータ3
aによって加熱され、被凍結液1より発生した蒸気はバ
ルブ6を通じて冷却容器4内に導入される。冷却容器4
は真空ポンプ9aで排気されていることにより、大気圧
より低い圧力状態になっている。このような状態では導
入された蒸気の粒子が互いに衝突を生じる開度が大気圧
の状態よりも低く、蒸気粒子が相互作用により凝結し成
長するまでに長い時間が必要である。そのため、蒸気粒
子が凝結し、粒径が大きくなる前に凍結が生じ、より微
小な粒径を持つ超微凍結粒を得ることができる。このよ
うにして得られた超微凍結粒はバルブ7を介して被処理
物8上に噴出される。
Similar to the conventional example, the liquid to be frozen 1 is stored in a sealed container 2 and heated to a heater 3.
Steam generated from the liquid to be frozen 1 is introduced into the cooling container 4 through the valve 6. Cooling container 4
is evacuated by the vacuum pump 9a, so that the pressure is lower than atmospheric pressure. In such a state, the degree of opening at which the introduced vapor particles collide with each other is lower than in the atmospheric pressure state, and it takes a long time for the vapor particles to condense and grow due to interaction. Therefore, freezing occurs before the vapor particles condense and increase in particle size, making it possible to obtain ultrafine frozen particles with even smaller particle sizes. The ultrafine frozen particles thus obtained are ejected onto the object to be processed 8 via the valve 7.

好ましくは、超微凍結粒をより高速に噴射させるために
は、被処理物8上の圧力が冷却容器4内の圧力よりも低
ければよい。この目的を達成するために、被処理物8が
配置されている処理室10を密閉し、真空ポンプ9bで
排気することにより、処理室10内を冷却容器4内より
も低い圧力とする。このようにして冷却容器4内と処理
室10内との間の圧力差を利用することにより、超微凍
結粒を含む媒体をより高速に噴出させ得る。
Preferably, in order to jet the ultra-fine frozen particles at a higher speed, the pressure on the object to be processed 8 should be lower than the pressure inside the cooling container 4. To achieve this purpose, the processing chamber 10 in which the object to be processed 8 is placed is sealed and evacuated by the vacuum pump 9b, thereby making the inside of the processing chamber 10 a lower pressure than the inside of the cooling container 4. In this way, by utilizing the pressure difference between the inside of the cooling container 4 and the inside of the processing chamber 10, the medium containing the ultrafine frozen particles can be ejected at a higher speed.

[発明の効果] 以上のように、この発明によれば大気圧より減圧下で蒸
気を凍結させるように構成したので、より微細な凍結粒
が得られるという効果がある。
[Effects of the Invention] As described above, according to the present invention, since the vapor is frozen under a pressure lower than atmospheric pressure, there is an effect that finer frozen particles can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による超微凍結粒の製造噴
射装置の概略構成図、第2図は従来の超微凍結粒や製造
噴射装置の概略構成図である。 図において、1は被凍結液、2は密閉容器、3a、3b
はヒータ、4は冷却容器、5は冷媒導入管、6,7はバ
ルブ、8は被処理物、9a、  9bは真空ポンプ、1
0は処理室である。 なお、各図中、同一符号は同一または相当部分を示す。
FIG. 1 is a schematic diagram of a production injection device for ultra-fine frozen particles according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional ultra-fine frozen particle production and injection device. In the figure, 1 is the liquid to be frozen, 2 is a sealed container, 3a, 3b
is a heater, 4 is a cooling container, 5 is a refrigerant introduction pipe, 6 and 7 are valves, 8 is a workpiece, 9a and 9b are vacuum pumps, 1
0 is a processing chamber. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)被凍結液を加熱して蒸気を発生させる手段と、前
記蒸気を冷媒中に噴射し、凍結させて凍結粒を得る手段
と、前記凍結粒を噴射させる手段とを備えた超微凍結粒
の製造噴射装置であって、前記蒸気を冷媒中で凍結させ
る過程が、大気圧より減圧下の状態で行なわれる、超微
凍結粒の製造噴射装置。
(1) Ultrafine freezing comprising means for heating the liquid to be frozen to generate steam, means for injecting the steam into a refrigerant and freezing it to obtain frozen particles, and means for injecting the frozen particles. 1. An injection device for producing ultra-fine frozen particles, wherein the process of freezing the vapor in a refrigerant is performed at a pressure lower than atmospheric pressure.
(2)前記凍結粒を噴射させる手段は、前記蒸気を冷媒
中で凍結させる圧力状態よりも低い圧力状態下の空間に
、前記冷媒を媒体として前記凍結粒を噴射させることを
特徴とする、特許請求の範囲第1項に記載の超微凍結粒
の製造噴射装置。
(2) The means for injecting the frozen particles is characterized in that the means for injecting the frozen particles injects the frozen particles using the refrigerant as a medium into a space under a pressure state lower than the pressure state in which the vapor is frozen in the refrigerant. An injection device for producing ultrafine frozen particles according to claim 1.
JP25034187A 1987-10-02 1987-10-02 Preparing and jetting device for superfine frozen particle Pending JPH0192071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25034187A JPH0192071A (en) 1987-10-02 1987-10-02 Preparing and jetting device for superfine frozen particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25034187A JPH0192071A (en) 1987-10-02 1987-10-02 Preparing and jetting device for superfine frozen particle

Publications (1)

Publication Number Publication Date
JPH0192071A true JPH0192071A (en) 1989-04-11

Family

ID=17206477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25034187A Pending JPH0192071A (en) 1987-10-02 1987-10-02 Preparing and jetting device for superfine frozen particle

Country Status (1)

Country Link
JP (1) JPH0192071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057365A1 (en) * 1997-06-11 1998-12-17 Fsi International, Inc. Treating substrates by producing and controlling a cryogenic aerosol
CN103302598A (en) * 2012-03-09 2013-09-18 海纳微加工股份有限公司 Vacuum pressure-differential micromachining apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057365A1 (en) * 1997-06-11 1998-12-17 Fsi International, Inc. Treating substrates by producing and controlling a cryogenic aerosol
US5961732A (en) * 1997-06-11 1999-10-05 Fsi International, Inc Treating substrates by producing and controlling a cryogenic aerosol
CN103302598A (en) * 2012-03-09 2013-09-18 海纳微加工股份有限公司 Vacuum pressure-differential micromachining apparatus and method

Similar Documents

Publication Publication Date Title
US4932168A (en) Processing apparatus for semiconductor wafers
US5354433A (en) Method for producing a flow of triisobutylaluminum from liquid triisobutylaluminum containing isobutene
KR101151671B1 (en) Blast cleaning method and method and device for producing solid carbon dioxide to be used for the same
JPH0192071A (en) Preparing and jetting device for superfine frozen particle
KR20070000369A (en) Substrate cleaning apparatus and substrate cleaning method
KR20060136339A (en) Substrate cleaning apparatus and substrate cleaning method
JPH03180814A (en) Orientation treatment of liquid crystal display element
US6024105A (en) Semiconductor manufacturing device and method of removing particles therefrom
JP2809995B2 (en) Ultra-clean nozzle for cryogenic temperature and its manufacturing method
JP2836821B2 (en) Method for removing dissolved oxygen from raw water used for beverages
JPH081345B2 (en) Ultrafine frozen particle generator
JPH0192072A (en) Jetting device for preparing superfine frozen particle
JPH04348871A (en) Washing device using fine ice particle
US5357718A (en) Wafer rinsing apparatus
JPH0243730A (en) Cleaning device for semiconductor wafer
JP7312066B2 (en) Vacuum processing equipment
JP2666706B2 (en) Semiconductor processing equipment
JPS62112711A (en) Method for producing and recovering ultrafine particle
RU1768270C (en) Plant for producing granules
JP3400223B2 (en) Semiconductor manufacturing method and manufacturing apparatus, semiconductor wafer and semiconductor element
RU2080213C1 (en) Method of manufacturing powder amorphous material
JPH06196469A (en) Vapor cleaning device
JPH03245526A (en) Plasma treatment apparatus
JPS63283133A (en) Device for formation of fine ice particle
JPS6393566A (en) Frozen particle ejecting device