JPH0192048A - Motor built-in type main spindle device equipped with cooling means - Google Patents

Motor built-in type main spindle device equipped with cooling means

Info

Publication number
JPH0192048A
JPH0192048A JP24429787A JP24429787A JPH0192048A JP H0192048 A JPH0192048 A JP H0192048A JP 24429787 A JP24429787 A JP 24429787A JP 24429787 A JP24429787 A JP 24429787A JP H0192048 A JPH0192048 A JP H0192048A
Authority
JP
Japan
Prior art keywords
rotor
stator
cooling
cooling liquid
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24429787A
Other languages
Japanese (ja)
Other versions
JP2510621B2 (en
Inventor
Kazuyuki Hiramoto
平元 一之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP62244297A priority Critical patent/JP2510621B2/en
Publication of JPH0192048A publication Critical patent/JPH0192048A/en
Application granted granted Critical
Publication of JP2510621B2 publication Critical patent/JP2510621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the thermal expansion of a main shaft and obtain the small-sized high speed title device having a high output by installing a stator cooling means for cooling a stator and a rotor cooling means for cooling a rotor from the inner peripheral side by the cooling liquid which circulates in the main shaft. CONSTITUTION:A spiral cooling liquid passage 68 is formed on the outer periphery of a stator 62, and cooling liquid is allowed to flow from an outside cooling liquid source 66 through an inlet hole 102, and cools a stator 62 from an outer peripheral side and is recovered into the cooling liquid source 66, passing through an outlet 104. Further, the cooling liquid is allowed to flow into a cooling liquid feeding hole 70 from the cooling liquid source 66, and the cooling liquid which flows into a cooling liquid feeding ring 72 turns together with a main shaft 10, and is applied with a centrifugal force, and the cooling liquid is allowed to flow in the left direction to the part having a large inside diameter. Then, the liquid flows into an annular space in which a belleville spring 38 is arranged. While, in the main shaft 10, a cooling liquid return conduit 78 communicates to the above-described annular space closely to the left edge of a rotor 64, and in said conduit 78, the radius position gradually increases in the direction (rightward direction) of flow of the cooling liquid, and the cooling liquid flows smoothly, and the rotor 64 is cooled from the inside.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はモータ内蔵形主軸装置に関し、特にモータの効
率を上げるための冷却手段を備えたモータ内蔵形主軸装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spindle device with a built-in motor, and more particularly to a spindle device with a built-in motor provided with cooling means for increasing the efficiency of the motor.

〔従来の技術〕[Conventional technology]

一般に工作機械において、主軸ヘッド部の小形化、主軸
慣性力の低下や高速化、主軸部の振動や騒音の低下、及
び部品点数の低減等を目的として、モータ内蔵形、所謂
ビルトイン形のモータを有した主軸装置が使用されてい
る。例えば特開昭62−107903号公報にはモータ
を内蔵した主軸装置であって、その主軸が主軸ヘッドに
対して回転可能であると共に軸心方向に摺動可能なタイ
プのものが開示されている0本公報にはモータの冷却に
ついて開示されてはいないが、一般に高出力のビルトイ
ンモータに対しての冷却は不可欠であり、従来ステータ
を収納するハウジングや、ステータ内に埋設した冷却管
に冷却液を循環させることにより冷却していた。あるい
は発熱が少ない場合は、フィンによる自然放熱や強制空
冷により冷却していた。
Generally, in machine tools, built-in motors are used for the purpose of downsizing the spindle head, reducing spindle inertia, increasing speed, reducing spindle vibration and noise, and reducing the number of parts. A spindle device with a spindle is used. For example, JP-A-62-107903 discloses a spindle device with a built-in motor, the spindle of which is rotatable relative to the spindle head and slidable in the axial direction. 0 This publication does not disclose motor cooling, but cooling is generally essential for high-output built-in motors, and conventionally cooling fluid is used in the housing that houses the stator or in the cooling pipes buried inside the stator. It was cooled by circulating the water. Alternatively, if the amount of heat generated was small, cooling was done by natural heat radiation using fins or forced air cooling.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

モータは高出力で小形化される程発熱量は大きい、近年
、従来の様にステータの外側のみを液体冷却していたの
では冷却効果が充分得られない程の高出力で小形のビル
トインモータが要求されるようになって来た。こうした
要求に応えるべく、例えば実開昭62−78245号公
報に開示されている主軸軸受部の吸熱用にヒートパイプ
を主軸内に埋め込んだ技術を応用するとしても、高出力
モータの様な発熱量の大きな場合には必ずしも充分な吸
熱効果が得られない。
The higher the output and the smaller the motor, the greater the amount of heat generated.In recent years, small-sized built-in motors with high output have become so powerful that the conventional liquid cooling of only the outside of the stator does not provide sufficient cooling effect. It's starting to be demanded. In order to meet these demands, for example, even if we apply the technology disclosed in Japanese Utility Model Application Publication No. 62-78245 in which a heat pipe is embedded in the main shaft for heat absorption in the main shaft bearing part, the amount of heat generated by a high-output motor is low. In the case of a large value, a sufficient endothermic effect cannot necessarily be obtained.

依って本発明は斯る問題点の解決を図るべく、モータの
内部をも冷却することによって、モータの冷却を充分に
行ない、主軸の熱膨張を低減させてワークの加工精度を
高めると共に、より小形で高速、高出力なモータ内蔵形
主軸装置を提供することを目的とする。
Therefore, in order to solve these problems, the present invention cools the inside of the motor sufficiently, thereby reducing the thermal expansion of the spindle and improving the machining accuracy of the workpiece. The purpose is to provide a small, high-speed, high-output spindle device with a built-in motor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的に鑑みて第1の発明は、ハウジングに回転自在
に軸支された主軸の外周にロータを取り付け、該ロータ
と対向させて前記ハウジングの内周にステータを取り付
け主軸を回転させるようにしたモータ内蔵形主軸装置に
おいて、前記ステータを冷却するステータ冷却手段と、
前記ロータを前記主軸内に循環させた冷却液により該ロ
ータの内周側から冷却するロータ冷却手段とを具備した
ことを特徴とする冷却手段を備えたモータ内蔵形主軸装
置を提供する。
In view of the above object, the first invention is such that a rotor is attached to the outer periphery of a main shaft which is rotatably supported by a housing, and a stator is attached to the inner periphery of the housing to face the rotor and rotate the main shaft. In the motor built-in spindle device, a stator cooling means for cooling the stator;
Provided is a motor built-in spindle device having a cooling means, characterized in that the rotor is cooled from the inner circumferential side of the rotor using a cooling liquid circulated within the main spindle.

第2の発明は上記第1の発明に対して、ステータとロー
タとの対向隙間に冷却用加圧気体を流す気体冷却手段を
追加したものである。
The second aspect of the present invention is such that a gas cooling means is added to the first aspect of the present invention for flowing pressurized cooling gas into the opposing gap between the stator and the rotor.

第3の発明は、上記第2の発明に対して更にステータ及
びロータの端部を冷却する他の冷却液を流す端部冷却手
段を追加したものである。
A third aspect of the present invention is the second aspect of the present invention in which an end cooling means for flowing another cooling liquid to cool the ends of the stator and rotor is added.

〔作 用〕[For production]

上記第1の発明ではステータ側のみならずロータの内周
側からも液体によって冷却されるのでモータの吸熱効果
が高くなる。第2の発明ではステータの内周とロータの
外周の冷却作用が加わるため一段とモータの冷却効果が
高まる。更には第3の発明ではステータ及びロータの端
部からも液体によって冷却されるため更に一段と冷却効
果が高まる。この第3の発明によるステータとロータの
端部に流す液体がステータとロータとの対向隙間に侵入
しようとするが、冷却用加圧気体の流出作用によってこ
の侵入が阻止できる。
In the first invention, the motor is cooled by liquid not only from the stator side but also from the inner peripheral side of the rotor, so that the heat absorption effect of the motor is enhanced. In the second invention, since the cooling effect is added to the inner periphery of the stator and the outer periphery of the rotor, the cooling effect of the motor is further enhanced. Furthermore, in the third invention, the end portions of the stator and rotor are also cooled by the liquid, so that the cooling effect is further enhanced. Although the liquid flowing at the ends of the stator and rotor according to the third aspect of the invention tends to enter the opposing gap between the stator and rotor, this entry can be prevented by the outflow action of the pressurized cooling gas.

〔実施例〕〔Example〕

以下本発明を添付図面に示す実施例に基づいて更に詳細
に説明する。第1図は本発明に係る主軸装置の縦断面図
、第2図は第1図の矢視線n−nによる横断面図、第3
図は本発明に係る主軸装置の他の実施例を示す。
The present invention will be described in more detail below based on embodiments shown in the accompanying drawings. FIG. 1 is a longitudinal cross-sectional view of the spindle device according to the present invention, FIG. 2 is a cross-sectional view taken along arrow line nn in FIG. 1, and FIG.
The figure shows another embodiment of the spindle device according to the present invention.

まず第1図を参照すると、工作機械の主軸1゜は前方軸
受12と後方軸受36とを介して回転可能ニハウジング
14内に収容保持されている。前方軸受12は内輪用カ
ラー18と外輪用カラー20とを介して隔てられ、該軸
受12の前後方向端部は軸受押え16と軸受押えナフト
22によって前後方向(長手方向)に移動しない様に固
定されている。更に後方軸受36は同様な軸受押えナツ
ト23によって長手方向に移動しない様に固定されてい
る。この様に回転可能に軸承された主軸10の先端部に
は、テーパシャンク28を有した工具ホルダ26を引き
込み、主軸10と一体回転可能にするテーバ孔24が設
けられている。主軸10の中心貫通孔41にはドローバ
−34が挿通されており、該ドローバ−34は上記中心
貫通孔41内を長手方向に摺動可能な止め金40に螺合
させることによって、その中心軸線が主軸10の中心軸
線と一致するようにセンタリング保持されている。この
ドローバ−34は、上記テーパシャンク28の後端部に
固定されたプルスタンド32をボールコレット30を介
して引き込むことにより、工具(図示省略)を保持した
工具ホルダ26を主軸10と一体的に固定する0皿ばね
38は上記の工具ホルダ26を引き込む力を作用させる
ためにドローバ−34の外周空間(中心貫通孔41の空
間)に配設されている。皿ばね38の一端側は止め金4
0を押圧し、他端側はスリーブ33を押圧しており、該
スリーブ33によって上記ボールコレット30を保持し
ている。工具ホルダ26のクランプを解除するには主軸
10の後方に設けられた工具アンクランプピストン58
を使用する。
First, referring to FIG. 1, a main shaft 1° of a machine tool is housed and held in a rotatable housing 14 via a front bearing 12 and a rear bearing 36. The front bearing 12 is separated by an inner ring collar 18 and an outer ring collar 20, and the front and rear ends of the bearing 12 are fixed by a bearing retainer 16 and a bearing retainer napft 22 so as not to move in the front and rear direction (longitudinal direction). has been done. Furthermore, the rear bearing 36 is secured against longitudinal movement by a similar bearing retaining nut 23. A tapered hole 24 is provided at the tip of the main spindle 10 rotatably supported in this manner, into which a tool holder 26 having a tapered shank 28 can be drawn and rotated integrally with the main spindle 10. A drawbar 34 is inserted into the center through-hole 41 of the main shaft 10, and the drawbar 34 is screwed into a stopper 40 that is slidable in the longitudinal direction within the center through-hole 41, so that the center axis of the drawbar 34 can be adjusted. is held centered so that it coincides with the central axis of the main shaft 10. This drawbar 34 allows the tool holder 26 holding a tool (not shown) to be integrated with the main shaft 10 by pulling in the pull stand 32 fixed to the rear end of the taper shank 28 via the ball collet 30. A fixing disc spring 38 is disposed in the outer circumferential space of the drawbar 34 (the space of the center through hole 41) in order to apply a force for drawing the tool holder 26. One end of the disc spring 38 has a stopper 4
0, and the other end presses a sleeve 33, which holds the ball collet 30. To unclamp the tool holder 26, a tool unclamp piston 58 provided at the rear of the main shaft 10 is used.
use.

即ち、油圧源52からの油圧力により、皿ばね38のば
ね力に抗して止め金40を前方(図の左方向)に押すこ
とによりドローバ−34をボールコレット30と共に前
方に移動させ、工具ホルダ26のプルスタンド32部分
を解放する。こうして工具を工具ホルダ26毎取り外す
ことができ、新しい工具を固定した工具ホルダ26と交
換可能となる。上述した止め金40の後方には主軸10
の内周に固定されたカラー74が配設されている。
That is, the drawbar 34 is moved forward together with the ball collet 30 by pushing the catch 40 forward (to the left in the figure) against the spring force of the disc spring 38 by the hydraulic pressure from the hydraulic source 52, and the tool is moved forward. Release the pull stand 32 portion of the holder 26. In this way, the tool can be removed together with the tool holder 26, and can be replaced with a new tool holder 26 to which a new tool is fixed. Behind the above-mentioned clasp 40 is the main shaft 10.
A collar 74 fixed to the inner periphery is disposed.

上記の如く構成された主軸装置の中心軸線に沿って、切
削液供給用の貫通孔44を有した主軸貫通パイプ42が
配設されている。更にほこの主軸貫通バイブ42と協働
して切削液を工具先端部へ導くための管路46がプルス
タッド32及び工具ホルダ26の中心に設けられている
。こうした切削液は切削液源50からロータリジツィン
ト48を介して、主軸10と共に回転する主軸貫通パイ
プ42へ供給される。工具を主軸1oに保持している間
は、主軸貫通パイプ42はラジアルスラストベアリング
57を介して、コイルばね56によって左方向に常時押
圧されており、プルスタッド32の端面に当接している
。こうして切削液を工具先端部へ供給することが可能と
なっている。工具交換を行う際には、前述の油圧源52
がらの油圧によってパイプ進退用ピストン54を右方向
へ後退させて主軸貫通パイプ42をプルスタンド32と
の当接位置から後退させておき、工具交換時にプルスタ
ンド32と該主軸貫通パイプ42とが衝突することを防
止する。
A spindle penetrating pipe 42 having a through hole 44 for supplying cutting fluid is disposed along the central axis of the spindle device configured as described above. Further, a conduit 46 is provided at the center of the pull stud 32 and the tool holder 26 for cooperating with the spindle penetrating vibrator 42 to guide cutting fluid to the tool tip. Such cutting fluid is supplied from a cutting fluid source 50 via a rotary shaft 48 to a main shaft penetrating pipe 42 that rotates together with the main shaft 10. While the tool is held on the main shaft 1o, the main shaft penetrating pipe 42 is constantly pressed leftward by the coil spring 56 via the radial thrust bearing 57, and is in contact with the end surface of the pull stud 32. In this way, it is possible to supply cutting fluid to the tool tip. When changing tools, use the aforementioned hydraulic power source 52.
The piston 54 for advancing and retracting the pipe is moved back to the right by the hydraulic pressure of the head, and the main shaft penetrating pipe 42 is retreated from the contact position with the pull stand 32, so that the pull stand 32 and the main shaft penetrating pipe 42 collide when exchanging tools. prevent

以上説明した主軸装置において、主軸1oを回転させる
ために、モータを該主軸袋装置に組み込んでいる。ロー
タ64を主軸10の適宜位置外周に固定し、該ロータ6
4と対向させてステータ62をハろリング14の内周に
固定している。こうしたビルトインタイブのモータにお
いてはその冷却が重要な課題となるが、以下にその対策
を説明する。
In the spindle device described above, a motor is incorporated in the spindle bag device in order to rotate the spindle 1o. A rotor 64 is fixed to the outer periphery of the main shaft 10 at an appropriate position, and the rotor 64 is
A stator 62 is fixed to the inner periphery of the halo ring 14 so as to face the stator 4 . Cooling is an important issue in such built-in motors, and countermeasures will be explained below.

まずステータ62の外周にはら旋状の冷却液通路68を
設けて、外部の冷却液源66から入口孔102を経由し
て冷却液を流し、ステータ62を外周側から冷却して出
口104を通して、冷却液源66へ回収する。次に、ロ
ータ64を冷却するロータ冷却手段につき説明する。主
軸lOの後端に近接して、ハウジング14の内側に冷却
液供給リング72を固定している。このリング72とハ
ウジング14とに亘って半径方向に冷却液供給孔70を
設けてあり、上述した冷却液源66から冷却液を流入さ
せる。この冷却液は、必ずしも前述のステータ62を冷
却する冷却液と同一である必要はないが、本実施例では
同一の冷却液を使用することとした。
First, a spiral coolant passage 68 is provided on the outer periphery of the stator 62, and the coolant flows from an external coolant source 66 through the inlet hole 102 to cool the stator 62 from the outer periphery side and passes through the outlet 104. Collected to coolant source 66 . Next, the rotor cooling means for cooling the rotor 64 will be explained. A coolant supply ring 72 is fixed inside the housing 14 close to the rear end of the main shaft IO. A coolant supply hole 70 is provided in the radial direction between the ring 72 and the housing 14, through which coolant flows from the above-mentioned coolant source 66. Although this cooling liquid does not necessarily have to be the same as the cooling liquid that cools the stator 62 described above, in this embodiment, the same cooling liquid is used.

主軸10の後端部に固定された上述のカラー74は、そ
の内周孔がテーパ状に形成されており、図の左方向に進
むに従がって内径が大きくなっている。このため上記冷
却液供給リング72から流入した冷却液は主軸10と共
に回転して遠心力を受けるため、内径の大きな左方向へ
と押し流される。前述の止め金40には適所に切欠き7
5が設けられており、前記カラー74の内周孔と連通し
ており、更に前述の主軸10の中心貫通孔41内の空間
であってドローバ−34の外周側環状空間76とも連通
している。このためカラー74内を通過した冷却液は、
皿ばね38の配設されている前記環状空間76に流入す
る。一方主軸10内には、ロータ64の内周に近接して
適数本の冷却液戻り管路78が形成されており、ロータ
64の左端近くの所で上記環状空間76と連通している
The above-mentioned collar 74 fixed to the rear end of the main shaft 10 has a tapered inner circumferential hole, and the inner diameter becomes larger toward the left in the figure. Therefore, the coolant flowing in from the coolant supply ring 72 rotates together with the main shaft 10 and is subjected to centrifugal force, so that it is pushed toward the left where the inner diameter is larger. The above-mentioned clasp 40 has a notch 7 at a suitable place.
5, which communicates with the inner circumferential hole of the collar 74, and also communicates with the outer circumferential annular space 76 of the drawbar 34, which is a space within the center through hole 41 of the main shaft 10 mentioned above. . Therefore, the coolant that has passed through the collar 74 is
It flows into the annular space 76 in which the disc spring 38 is arranged. On the other hand, an appropriate number of coolant return pipes 78 are formed in the main shaft 10 in close proximity to the inner periphery of the rotor 64, and communicate with the annular space 76 near the left end of the rotor 64.

この戻り管路78は冷却液の流れる方向(右方向)に進
むに従がってその半径位置が漸増する形態が好ましい。
It is preferable that the radial position of the return pipe 78 gradually increases as it advances in the direction in which the coolant flows (rightward).

こうした形態にすると回転に伴う遠心力の作用のもとに
冷却液がスムーズに右方向へ流れる。この冷却液の作用
によりロータ64はその内周側から効率よく冷却される
。こうしてロータ64を冷却した冷却液は、主軸10の
半径方向に設けられて上記戻り管路78と連通した出口
孔79から外方向に流出し、ハウジング14に固定され
たブラケット部材81の孔80に流入し、最終的に冷却
液源66に回収される。この時出口孔79から外方向に
冷却液を吸引すると循環しやすくなる。
With this configuration, the coolant flows smoothly to the right under the action of centrifugal force that accompanies rotation. Due to the action of this cooling fluid, the rotor 64 is efficiently cooled from its inner peripheral side. The coolant that has cooled the rotor 64 in this manner flows outward from an outlet hole 79 provided in the radial direction of the main shaft 10 and communicating with the return pipe 78, and enters a hole 80 of a bracket member 81 fixed to the housing 14. and is ultimately collected in the coolant source 66. At this time, if the cooling liquid is sucked outward from the outlet hole 79, circulation becomes easier.

回転している主軸10から静止しているハウジング14
へ冷却液を流出させる際の液漏れを防止するために、空
気圧源82からエアシール用孔84を通して加圧空気が
供給されている。この加圧空気は後述の孔98Rから供
給される冷却液が上記ブラケット部材81と回転主軸l
Oとの間に浸入することを防止する役目も果たす。
A stationary housing 14 from a rotating main shaft 10
Pressurized air is supplied from an air pressure source 82 through an air seal hole 84 in order to prevent liquid leakage when the cooling liquid flows out. This pressurized air is supplied from a hole 98R to be described later, and the cooling liquid is connected to the bracket member 81 and the rotating main shaft l.
It also plays the role of preventing intrusion between O and O.

上記環状空間76内に流入した冷却液の一部は、前述の
前方軸受12の内周近くに複数本(本実施例では4本)
等角度配設した軸受冷却液管路86に流入している。第
2図を参照すると分かる様に、軸受冷却液管路86は主
軸10の前端部において、半径方向位置の位置寸法の大
きな軸受冷却液戻り管路88に連結通路110を介して
連通している。
A portion of the cooling liquid that has flowed into the annular space 76 is distributed in a plurality of (four in this embodiment) near the inner circumference of the front bearing 12.
It flows into equiangularly arranged bearing coolant lines 86 . As can be seen from FIG. 2, the bearing coolant line 86 communicates with a bearing coolant return line 88 having a large radial position at the front end of the main shaft 10 via a connecting passage 110. .

この連結通路110は冷却液の流れる方向に進むに従っ
て半径位置寸法が大きくなるので、遠心力の作用によっ
て冷却液がスムーズに流れる。上記連結通路のみならず
、軸受冷却液管路86も軸受冷却液戻り管路88も同様
に、冷却液の流れる方向に沿ってその管路の半径方向位
置寸法が漸増する形態が好ましい。こうして前方軸受1
2をその内側から冷却した冷却液は前述の冷却液源66
へ回収される。この際にも吸引すると回収しやすくなる
。そして前述のロータ64の冷却液の回収の場合と同様
に、エアシール用孔108を通して空気圧源82から加
圧空気を供給し、冷却液の漏れを防止している。更にこ
の加圧空気は後述の孔98Lから供給される冷却液がブ
ラケット部材106と回転主軸lOとの間に浸入するこ
とをも防止する。
Since the radial position of the connecting passage 110 increases in the direction in which the coolant flows, the coolant flows smoothly due to the action of centrifugal force. It is preferable that not only the above connection passage but also the bearing coolant pipe 86 and the bearing coolant return pipe 88 have a radial position dimension that gradually increases along the direction in which the coolant flows. Thus the front bearing 1
The cooling liquid that cooled the 2 from the inside is supplied to the aforementioned cooling liquid source 66.
will be collected. At this time, suction will also make it easier to collect. As in the case of recovering the coolant from the rotor 64 described above, pressurized air is supplied from the air pressure source 82 through the air seal hole 108 to prevent leakage of the coolant. Furthermore, this pressurized air also prevents the cooling liquid supplied from a hole 98L, which will be described later, from entering between the bracket member 106 and the rotating main shaft IO.

更にモータを効率よく冷却するためにロータ64とステ
ータ62との対向隙間94に前記空気圧源82から加圧
空気を流す。このためロータ64の中央位置に対向する
よう、ハウジング14とステータ62とに亘って半径方
向孔90を円周方向に適数個配設する。ロータ64の外
周は、前記孔90と対向するロータ64の中央位置を最
も半径の小さな底部となし、ロータ64の左右各端面方
向に進むに従って外径が漸増するテーパ面92を有して
構成している。このためロータ64とステータ62との
対向隙間94の断面積はロータ64の各端面に近づくに
従って小さくなり、加圧空気の流速は漸増する。この加
圧空気はロータ64の外周部とステータ62の内周部を
冷却するのみならず、後述するモータの両端部を冷却す
べく流す冷却液がロータ64とステータ62との対向隙
間94に該隙間94の両端96から浸入しない様にシー
ルをする作用をも果たす。このシール効果を大きくする
ために、前述の如く隙間94の両端96において流出速
度が最大となるようロータ64の外径をテーパ面92で
構成している。
Further, in order to efficiently cool the motor, pressurized air is caused to flow from the air pressure source 82 into the opposing gap 94 between the rotor 64 and the stator 62. For this purpose, an appropriate number of radial holes 90 are provided in the circumferential direction across the housing 14 and the stator 62 so as to face the center position of the rotor 64. The outer periphery of the rotor 64 has a tapered surface 92 whose outer diameter gradually increases toward the left and right end surfaces of the rotor 64, with the bottom having the smallest radius located at the center of the rotor 64 facing the hole 90. ing. Therefore, the cross-sectional area of the opposing gap 94 between the rotor 64 and the stator 62 becomes smaller as it approaches each end face of the rotor 64, and the flow velocity of the pressurized air gradually increases. This pressurized air not only cools the outer periphery of the rotor 64 and the inner periphery of the stator 62, but also coolant flowing to cool both ends of the motor, which will be described later, flows into the opposing gap 94 between the rotor 64 and the stator 62. It also acts as a seal to prevent intrusion from both ends 96 of the gap 94. In order to enhance this sealing effect, the outer diameter of the rotor 64 is configured with a tapered surface 92 so that the outflow velocity is maximum at both ends 96 of the gap 94 as described above.

次にステータ62とロータ64の各端部を冷却させるた
めにハウジング14に設けた半径方向孔98L、98R
を通して冷却液源66から冷却液を供給し、ステータ6
2とロータ64の各端部を冷却した後に出口孔100L
と100Rとから上記冷却液源66へ回収する。この際
に冷却液がモータの内部へ浸入することを防止するため
に、上述の如くロータ64とステータ62との対向隙間
94から加圧空気を流出させてシールする他、ステータ
62とロータ64とをエポキシ樹脂で含浸処理している
。このとき半径方向孔98L、98Rから流入した冷却
液は、主軸10の外周にも直接的にかがり、主軸の発熱
を防止するのに一役かっている。
Next, radial holes 98L and 98R are provided in the housing 14 to cool each end of the stator 62 and rotor 64.
coolant is supplied from a coolant source 66 through the stator 6.
2 and each end of the rotor 64, the outlet hole 100L is
and 100R to the cooling liquid source 66. At this time, in order to prevent the coolant from entering the inside of the motor, pressurized air is flowed out from the opposing gap 94 between the rotor 64 and the stator 62 to seal the gap 94 between the stator 62 and the rotor 64 as described above. is impregnated with epoxy resin. At this time, the coolant flowing in from the radial holes 98L and 98R directly covers the outer periphery of the main shaft 10, thereby helping to prevent the main shaft from generating heat.

以上の如くモータを外周、内周、及び両端から冷却液に
よって冷却し、更にはシール作用を兼ねた加圧空気をロ
ータ64とステータ62との対向隙間94に流すことに
よってモータ全体を冷却することができる。
As described above, the motor is cooled from the outer periphery, the inner periphery, and both ends with the cooling liquid, and furthermore, the entire motor is cooled by flowing pressurized air, which also serves as a seal, into the opposing gap 94 between the rotor 64 and the stator 62. Can be done.

上記第1の実施例に対し、第3図に第2の実施例を図示
している。本第2実施例では、加工領域へ供給する切削
液は主軸10の中を通過させる構造とはしておらず、例
えば主軸頭の外部に配管した切削油ノズル等図示してい
ない他の供給手段により供給する。従って第1図に示す
切削液供給用の主軸貫通バイブ42や工具ホルダ26を
貫通する管路46は存在しない。この切削液供給用の主
軸貫通バイブ42の代わりに、第3図では冷却液供給用
の導管142がドローバ−34を貫通して主軸10の中
心に配設されており、冷却液源66から供給される冷却
液をロータリジヨイント48を経由して上記導管142
に送り込む。導管142に送り込まれた冷却液は該導管
142とドローバ−34とを半径方向に貫通させた孔1
16と、該孔116と連通する孔を有したカラー112
とを経由して、第1の実施例で説明したものと同じ冷却
液戻り管路78に流入する。また導管142内の冷却液
の一部は、該導管142の先端部から半径方向に固定さ
れた管路114を経由し、第1の実施例で説明したもの
と同じ軸受冷却液管路86に流入する。
In contrast to the first embodiment described above, a second embodiment is illustrated in FIG. In the second embodiment, the cutting fluid supplied to the machining area is not structured to pass through the spindle 10, but other supply means (not shown) such as a cutting oil nozzle piped outside the spindle head, etc. are used. Supplied by Therefore, there is no pipe line 46 that passes through the spindle penetrating vibe 42 and tool holder 26 for supplying cutting fluid as shown in FIG. In place of the spindle penetrating vibrator 42 for supplying cutting fluid, in FIG. The coolant is passed through the rotary joint 48 to the conduit 142.
send to. The cooling liquid sent into the conduit 142 flows through the hole 1 that passes through the conduit 142 and the drawbar 34 in the radial direction.
16, and a collar 112 having a hole communicating with the hole 116.
and into the same coolant return line 78 as described in the first embodiment. A portion of the coolant in the conduit 142 is routed from the tip of the conduit 142 through a radially fixed conduit 114 to the same bearing coolant conduit 86 as described in the first embodiment. Inflow.

第1の実施例と第2の実施例の相違に関しては、上記事
項の他、第1図に示す主軸貫通バイブ42を進退させる
ためのパイプ進退用ピストン54やコイルばね56、及
びラジアルスラストベアリング57等が第2実施例中に
は存在しないことが挙げられるが、その他の主たる構成
については両者は同一である。
Regarding the differences between the first embodiment and the second embodiment, in addition to the above-mentioned matters, there are a piston 54 for advancing and retreating the pipe for advancing and retreating the main shaft penetrating vibe 42 shown in FIG. 1, a coil spring 56, and a radial thrust bearing 57. etc. are not present in the second embodiment, but the other main structures are the same.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に本発明に依れば、モータ内
蔵形の主軸装置において、ステータを冷却するのみなら
ず主軸に冷却液を循環させてロータの内周からも液冷す
るので、該モータからの吸熱率が高い、更にはモータの
ステータ及びロータの端部を直接的に液冷し、またロー
タとステータとの対向隙間に冷却用気体を流すことによ
り、ロータの外周並びにステータの内周からも冷却でき
るので、−段とモータからの吸熱率が上昇する。
As is clear from the above description, according to the present invention, in a main shaft device with a built-in motor, not only the stator is cooled, but also the cooling liquid is circulated around the main shaft to cool the rotor from the inner periphery. The heat absorption rate from the motor is high, and by directly liquid cooling the motor's stator and the end of the rotor, and by flowing cooling gas into the gap between the rotor and stator, the outer circumference of the rotor and the inner part of the stator can be cooled. Since it can also be cooled from the periphery, the heat absorption rate from the negative stage and the motor increases.

この様に吸熱率が上昇すると、モータの使用限界が向上
すると共に小型でコンパクトなモータを使用可能となり
、更には主軸の熱膨張が低減可能となる。延いては本発
明の主軸装置モワークを加工したときの加工精度が向上
する。またモータが小型化することによって主軸装置全
体がコンパクトになるのみならず、主軸の回転慣性力が
低減され、回転の立上り、立下りの俊敏な主軸装置が得
られ、ワーク加工能率も向上する。
When the heat absorption rate increases in this way, the usable limit of the motor improves, it becomes possible to use a small and compact motor, and furthermore, it becomes possible to reduce the thermal expansion of the main shaft. In turn, the machining accuracy when machining the spindle device Mowork of the present invention is improved. Furthermore, by downsizing the motor, not only the spindle device as a whole becomes more compact, but also the rotational inertia of the spindle is reduced, resulting in a spindle device that is agile in the rise and fall of rotation, and improves workpiece machining efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る主軸装置の縦断面図、第2図は第
1図の矢視線n−nによる横断面図、第3図は本発明に
係る主軸装置の他の実施例。 lO・・・主軸、     12・・・前方軸受、14
・・・ハウジング、  34・・・ドローバー、38・
・・皿ばね、    62・・・ステータ、64・・・
ロータ、   68・・・ら旋状冷却液通路、76・・
・環状空間、  78・・・冷却液戻り管路、84・・
・エアシール用孔、 86・・・軸受冷却液管路、 88・・・軸受冷却液戻り管路、 94・・・ロータとステータとの対向隙間、108・・
・エアシール用孔。
FIG. 1 is a longitudinal cross-sectional view of a spindle device according to the present invention, FIG. 2 is a cross-sectional view taken along arrow line nn in FIG. 1, and FIG. 3 is another embodiment of the spindle device according to the present invention. lO...Main shaft, 12...Front bearing, 14
...Housing, 34...Drawbar, 38.
... Disc spring, 62... Stator, 64...
Rotor, 68... Spiral coolant passage, 76...
- Annular space, 78...Cooling liquid return pipe, 84...
・Air seal hole, 86... Bearing coolant pipe, 88... Bearing coolant return pipe, 94... Opposing gap between rotor and stator, 108...
・Air seal hole.

Claims (1)

【特許請求の範囲】 1、ハウジングに回転自在に軸支された主軸の外周にロ
ータを取り付け、該ロータと対向させて前記ハウジング
の内周にステータを取り付け主軸を回転させるようにし
たモータ内蔵形主軸装置において、前記ステータを冷却
するステータ冷却手段と、前記ロータを前記主軸内に循
環させた冷却液により該ロータの内周側から冷却するロ
ータ冷却手段とを具備したことを特徴とする冷却手段を
備えたモータ内蔵形主軸装置。 2、前記ロータ冷却手段が、前記主軸の軸心に挿入され
た工具クランプ用のドローバーと該主軸内周との環状隙
間に該主軸の後方から前記冷却液を供給し、軸心方向途
中位置から前記環状隙間の外側に配設されると共に前記
ロータの内周側に近接して前記主軸内に設けられた戻り
管路を通して前記冷却液を循環させて成る特許請求の範
囲第1項記載の冷却手段を備えたモータ内蔵形主軸装置
。 3、前記ロータ冷却手段が、前記主軸の軸心に挿入され
た工具クランプ用のドローバーの軸心に設けた軸心方向
孔に前記主軸の後方から前記冷却液を供給し、軸心方向
途中位置から前記ロータの内周側に近接して前記主軸内
に設けられた戻り管路を通して前記冷却液を循環させて
成る特許請求の範囲第1項記載の冷却手段を備えたモー
タ内蔵形主軸装置。 4、前記ロータ冷却手段は、前記冷却液を循環させる管
路が前記冷却液の流れる方向に進むに従って前記主軸の
軸心からの径方向位置が遠ざかって成る特許請求の範囲
第2項又は第3項記載の冷却手段を備えたモータ内蔵形
主軸装置。 5、ハウジングに回転自在に軸支された主軸の外周にロ
ータを取り付け、該ロータと対向させて前記ハウジング
の内周にステータを取り付け主軸を回転させるようにし
たモータ内蔵形主軸装置において、前記ステータを冷却
するステータ冷却手段と、前記ロータを前記主軸内に循
環させた冷却液により該ロータの内周側から冷却するロ
ータ冷却手段と、前記ステータと前記ロータとの間隙に
冷却用加圧気体を流して該ステータの内周及び該ロータ
の外周を冷却する気体冷却手段とを具備したことを特徴
とする冷却手段を備えたモータ内蔵形主軸装置。 6、前記気体冷却手段は、前記ステータとロータとの間
隙に向けて前記ステータの内周面に開口した加圧気体供
給孔を設け、該加圧気体供給孔付近の前記ロータ外径を
小さくし、該ロータ端面に近づくに従って該ロータ外径
を大きくして形成した特許請求の範囲第5項記載の冷却
手段を備えたモータ内蔵形主軸装置。 7、ハウジングに回転自在に軸支された主軸の外周にロ
ータを取り付け、該ロータと対向させて前記ハウジング
の内周にステータを取り付け主軸を回転させるようにし
たモータ内蔵形主軸装置において、前記ステータを冷却
するステータ冷却手段と、前記ロータを前記主軸内に循
環させた冷却液により該ロータの内周側から冷却するロ
ータ冷却手段と、前記ステータと前記ロータとの間隙に
冷却用加圧気体を流して該ステータの内周及び該ロータ
の外周を冷却する気体冷却手段と、前記ステータ及びロ
ータの端面に沿って流れるよう他の冷却液を流す端部冷
却手段とを具備したことを特徴とする冷却手段を備えた
モータ内蔵形主軸装置。 8、前記ステータ及びロータは、共に樹脂を含浸させて
前記他の冷却液の浸入を防止して成る特許請求の範囲第
7項記載の冷却手段を備えたモータ内蔵形主軸装置。 9、前記気体冷却手段は、前記ステータとロータとの間
隙に向けて前記ステータの内周面に開口した加圧気体供
給孔を設け、該加圧気体供給孔付近の該ロータ外径を小
さくし、該ロータ端面に近づくに従って該ロータ外径を
大きく形成した特許請求の範囲第7項または第8項記載
の冷却手段を備えたモータ内蔵形主軸装置。
[Scope of Claims] 1. A built-in motor type in which a rotor is attached to the outer periphery of a main shaft rotatably supported by a housing, and a stator is attached to the inner periphery of the housing to face the rotor and rotate the main shaft. A cooling means for a main shaft device, comprising: a stator cooling means for cooling the stator; and a rotor cooling means for cooling the rotor from an inner circumferential side using a cooling liquid circulated within the main shaft. Spindle device with built-in motor. 2. The rotor cooling means supplies the cooling liquid from the rear of the main spindle to an annular gap between the tool clamp drawbar inserted into the axial center of the main spindle and the inner periphery of the main spindle, and Cooling according to claim 1, characterized in that the cooling liquid is circulated through a return conduit provided outside the annular gap and in the main shaft adjacent to the inner peripheral side of the rotor. A spindle device with a built-in motor. 3. The rotor cooling means supplies the cooling liquid from the rear of the main spindle to an axial hole provided in the axial center of a tool clamp drawbar inserted into the axial center of the main spindle, and 2. A motor-built-in spindle device comprising a cooling means according to claim 1, wherein said cooling liquid is circulated through a return conduit provided in said spindle adjacent to an inner peripheral side of said rotor. 4. The rotor cooling means is configured such that the radial position of the rotor cooling means becomes farther away from the axis of the main shaft as the pipe line for circulating the cooling liquid advances in the direction in which the cooling liquid flows. A built-in motor type spindle device equipped with the cooling means described in 2. 5. A built-in motor type spindle device in which a rotor is attached to the outer periphery of a main shaft rotatably supported by a housing, and a stator is attached to the inner periphery of the housing facing the rotor to rotate the main shaft, wherein the stator a stator cooling means for cooling the rotor from an inner circumferential side of the rotor using a cooling liquid circulated within the main shaft; What is claimed is: 1. A spindle device with a built-in motor, comprising: a gas cooling means that cools the inner periphery of the stator and the outer periphery of the rotor by flowing gas. 6. The gas cooling means is configured to provide a pressurized gas supply hole opening on the inner peripheral surface of the stator toward the gap between the stator and the rotor, and reduce the outer diameter of the rotor in the vicinity of the pressurized gas supply hole. A built-in motor spindle device comprising a cooling means as set forth in claim 5, wherein the outer diameter of the rotor increases as it approaches the end face of the rotor. 7. In a motor-built-in spindle device in which a rotor is attached to the outer periphery of a main shaft rotatably supported by a housing, and a stator is attached to the inner periphery of the housing to face the rotor and rotates the main shaft, the stator a stator cooling means for cooling the rotor from an inner circumferential side of the rotor using a cooling liquid circulated within the main shaft; It is characterized by comprising: a gas cooling means for cooling the inner periphery of the stator and the outer periphery of the rotor; and an end cooling means for causing another cooling liquid to flow along the end surfaces of the stator and rotor. A built-in motor spindle device with cooling means. 8. A motor built-in spindle device equipped with a cooling means according to claim 7, wherein the stator and rotor are both impregnated with resin to prevent the other cooling liquid from entering. 9. The gas cooling means is configured to provide a pressurized gas supply hole opening on the inner peripheral surface of the stator toward the gap between the stator and the rotor, and reduce the outer diameter of the rotor in the vicinity of the pressurized gas supply hole. A built-in motor spindle device comprising a cooling means according to claim 7 or 8, wherein the outer diameter of the rotor increases as it approaches the end face of the rotor.
JP62244297A 1987-09-30 1987-09-30 Motor built-in spindle device with cooling means Expired - Lifetime JP2510621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62244297A JP2510621B2 (en) 1987-09-30 1987-09-30 Motor built-in spindle device with cooling means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62244297A JP2510621B2 (en) 1987-09-30 1987-09-30 Motor built-in spindle device with cooling means

Publications (2)

Publication Number Publication Date
JPH0192048A true JPH0192048A (en) 1989-04-11
JP2510621B2 JP2510621B2 (en) 1996-06-26

Family

ID=17116644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62244297A Expired - Lifetime JP2510621B2 (en) 1987-09-30 1987-09-30 Motor built-in spindle device with cooling means

Country Status (1)

Country Link
JP (1) JP2510621B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310737A (en) * 1989-06-05 1991-01-18 Osaka Kiko Co Ltd Spindle head for machine tool
JPH04164548A (en) * 1990-10-29 1992-06-10 Okuma Mach Works Ltd Main spindle cooling apparatus
JPH0473445U (en) * 1990-11-05 1992-06-26
JPH05341U (en) * 1991-06-25 1993-01-08 東芝機械株式会社 Motor cooling device built into the spindle head
JPH0724687A (en) * 1993-07-07 1995-01-27 Makino Milling Mach Co Ltd Main spindle device for machine tool
JPH0819937A (en) * 1994-07-04 1996-01-23 Niigata Eng Co Ltd Main spindle device of machine tool
US5664916A (en) * 1993-04-07 1997-09-09 Index-Werke Gmbh & Co. Kg Hahn & Tessky Cooling system for a motor spindle for a machine tool
KR100544004B1 (en) * 1998-12-31 2006-04-06 두산인프라코어 주식회사 Cooling device for a built in motor
US20100284756A1 (en) * 2009-05-11 2010-11-11 Tung Fu-Hsiang Tool clamping device of tool seat
DE102015217707A1 (en) 2014-09-16 2016-03-17 Dmg Mori Co., Ltd. Machine tool spindle device
DE102016102019A1 (en) 2015-02-13 2016-08-18 Fanuc Corporation Rotor having a flow path of a cooling fluid and electric motor comprising the rotor
WO2021034808A1 (en) * 2019-08-20 2021-02-25 Deere & Company Electric machine with integrated dam assembly
US11873826B2 (en) 2021-02-26 2024-01-16 Deere & Company Cooling arrangement for electric machines
CN117486224A (en) * 2023-12-28 2024-02-02 杭州嘉悦智能设备有限公司 Silicon oxide production equipment and condensation collection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168848U (en) * 1984-10-08 1986-05-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168848U (en) * 1984-10-08 1986-05-12

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310737A (en) * 1989-06-05 1991-01-18 Osaka Kiko Co Ltd Spindle head for machine tool
JPH04164548A (en) * 1990-10-29 1992-06-10 Okuma Mach Works Ltd Main spindle cooling apparatus
JPH0473445U (en) * 1990-11-05 1992-06-26
JPH05341U (en) * 1991-06-25 1993-01-08 東芝機械株式会社 Motor cooling device built into the spindle head
US5664916A (en) * 1993-04-07 1997-09-09 Index-Werke Gmbh & Co. Kg Hahn & Tessky Cooling system for a motor spindle for a machine tool
JPH0724687A (en) * 1993-07-07 1995-01-27 Makino Milling Mach Co Ltd Main spindle device for machine tool
JPH0819937A (en) * 1994-07-04 1996-01-23 Niigata Eng Co Ltd Main spindle device of machine tool
KR100544004B1 (en) * 1998-12-31 2006-04-06 두산인프라코어 주식회사 Cooling device for a built in motor
US20100284756A1 (en) * 2009-05-11 2010-11-11 Tung Fu-Hsiang Tool clamping device of tool seat
DE102015217707A1 (en) 2014-09-16 2016-03-17 Dmg Mori Co., Ltd. Machine tool spindle device
CN105415082A (en) * 2014-09-16 2016-03-23 德马吉森精机株式会社 Machine Tool Spindle Device
JP2016059975A (en) * 2014-09-16 2016-04-25 Dmg森精機株式会社 Main spindle device of machine tool
US9555515B2 (en) 2014-09-16 2017-01-31 Dmg Mori Co., Ltd. Machine tool spindle device
DE102016102019A1 (en) 2015-02-13 2016-08-18 Fanuc Corporation Rotor having a flow path of a cooling fluid and electric motor comprising the rotor
DE102016102019B4 (en) * 2015-02-13 2021-05-06 Fanuc Corporation A rotor with a flow path for a cooling fluid and an electric motor that includes the rotor
WO2021034808A1 (en) * 2019-08-20 2021-02-25 Deere & Company Electric machine with integrated dam assembly
US11873826B2 (en) 2021-02-26 2024-01-16 Deere & Company Cooling arrangement for electric machines
CN117486224A (en) * 2023-12-28 2024-02-02 杭州嘉悦智能设备有限公司 Silicon oxide production equipment and condensation collection method

Also Published As

Publication number Publication date
JP2510621B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
JPH0192048A (en) Motor built-in type main spindle device equipped with cooling means
TWI611863B (en) Spindle assembly
WO1990009053A1 (en) Liquid cooling structure of motor
US3304051A (en) Air motor
JP2003145393A (en) Spindle device
JP2677505B2 (en) Spindle device of machine tool
JPH07106534B2 (en) Spindle device with cooling liquid flowing through the spindle
TW202017679A (en) Spindle device with built-in motor
JP2000015541A (en) Main spindle device of machine tool
KR101345866B1 (en) Cooling device for headstock of lathe
JPH11333607A (en) Tool holder clamp device for main spindle
JP2000158288A (en) Main spindle cooling device for machine tool and spindle device
CN208245825U (en) Central water outlet and the integrated main shaft of loose knife and numerically-controlled machine tool
JPH1199403A (en) Spindle device
JP2521566B2 (en) High speed spindle head with fan for spindle cooling
JP4280383B2 (en) Spindle cooling structure for spindle stock with built-in motor
JP7067637B2 (en) Motor built-in spindle device
CN211540508U (en) Direct-connected main shaft center water outlet cooling structure
WO2020090276A1 (en) Spindle device having built-in motor
JP3484033B2 (en) Spindle cooling device
CN218253878U (en) Rotary shaft device, clamping device and machine tool
JPH042438A (en) Cooling structure for machine tool spindle driving motor
JPH1119848A (en) Head stock for machine tool
JP2005177964A (en) Main spindle device
CN115533557A (en) Rotary shaft device, clamping device and machine tool

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12